Properties

Label 104.2.s.a.69.2
Level $104$
Weight $2$
Character 104.69
Analytic conductor $0.830$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,2,Mod(69,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 69.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 104.69
Dual form 104.2.s.a.101.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +(-0.633975 - 0.366025i) q^{3} -2.00000i q^{4} -3.73205 q^{5} +(1.00000 - 0.267949i) q^{6} +(-3.00000 + 1.73205i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-1.23205 - 2.13397i) q^{9} +(3.73205 - 3.73205i) q^{10} +(-1.00000 + 1.73205i) q^{11} +(-0.732051 + 1.26795i) q^{12} +(2.59808 - 2.50000i) q^{13} +(1.26795 - 4.73205i) q^{14} +(2.36603 + 1.36603i) q^{15} -4.00000 q^{16} +(0.232051 + 0.401924i) q^{17} +(3.36603 + 0.901924i) q^{18} +(-0.633975 - 1.09808i) q^{19} +7.46410i q^{20} +2.53590 q^{21} +(-0.732051 - 2.73205i) q^{22} +(-4.09808 + 7.09808i) q^{23} +(-0.535898 - 2.00000i) q^{24} +8.92820 q^{25} +(-0.0980762 + 5.09808i) q^{26} +4.00000i q^{27} +(3.46410 + 6.00000i) q^{28} +(-2.59808 - 1.50000i) q^{29} +(-3.73205 + 1.00000i) q^{30} -4.73205i q^{31} +(4.00000 - 4.00000i) q^{32} +(1.26795 - 0.732051i) q^{33} +(-0.633975 - 0.169873i) q^{34} +(11.1962 - 6.46410i) q^{35} +(-4.26795 + 2.46410i) q^{36} +(-2.13397 + 3.69615i) q^{37} +(1.73205 + 0.464102i) q^{38} +(-2.56218 + 0.633975i) q^{39} +(-7.46410 - 7.46410i) q^{40} +(-7.96410 - 4.59808i) q^{41} +(-2.53590 + 2.53590i) q^{42} +(-2.19615 + 1.26795i) q^{43} +(3.46410 + 2.00000i) q^{44} +(4.59808 + 7.96410i) q^{45} +(-3.00000 - 11.1962i) q^{46} -6.73205i q^{47} +(2.53590 + 1.46410i) q^{48} +(2.50000 - 4.33013i) q^{49} +(-8.92820 + 8.92820i) q^{50} -0.339746i q^{51} +(-5.00000 - 5.19615i) q^{52} -3.92820i q^{53} +(-4.00000 - 4.00000i) q^{54} +(3.73205 - 6.46410i) q^{55} +(-9.46410 - 2.53590i) q^{56} +0.928203i q^{57} +(4.09808 - 1.09808i) q^{58} +(-0.267949 - 0.464102i) q^{59} +(2.73205 - 4.73205i) q^{60} +(-0.866025 + 0.500000i) q^{61} +(4.73205 + 4.73205i) q^{62} +(7.39230 + 4.26795i) q^{63} +8.00000i q^{64} +(-9.69615 + 9.33013i) q^{65} +(-0.535898 + 2.00000i) q^{66} +(-3.63397 + 6.29423i) q^{67} +(0.803848 - 0.464102i) q^{68} +(5.19615 - 3.00000i) q^{69} +(-4.73205 + 17.6603i) q^{70} +(8.02628 - 4.63397i) q^{71} +(1.80385 - 6.73205i) q^{72} +1.73205i q^{73} +(-1.56218 - 5.83013i) q^{74} +(-5.66025 - 3.26795i) q^{75} +(-2.19615 + 1.26795i) q^{76} -6.92820i q^{77} +(1.92820 - 3.19615i) q^{78} -10.3923 q^{79} +14.9282 q^{80} +(-2.23205 + 3.86603i) q^{81} +(12.5622 - 3.36603i) q^{82} -1.46410 q^{83} -5.07180i q^{84} +(-0.866025 - 1.50000i) q^{85} +(0.928203 - 3.46410i) q^{86} +(1.09808 + 1.90192i) q^{87} +(-5.46410 + 1.46410i) q^{88} +(6.46410 + 3.73205i) q^{89} +(-12.5622 - 3.36603i) q^{90} +(-3.46410 + 12.0000i) q^{91} +(14.1962 + 8.19615i) q^{92} +(-1.73205 + 3.00000i) q^{93} +(6.73205 + 6.73205i) q^{94} +(2.36603 + 4.09808i) q^{95} +(-4.00000 + 1.07180i) q^{96} +(-5.19615 + 3.00000i) q^{97} +(1.83013 + 6.83013i) q^{98} +4.92820 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 6 q^{3} - 8 q^{5} + 4 q^{6} - 12 q^{7} + 8 q^{8} + 2 q^{9} + 8 q^{10} - 4 q^{11} + 4 q^{12} + 12 q^{14} + 6 q^{15} - 16 q^{16} - 6 q^{17} + 10 q^{18} - 6 q^{19} + 24 q^{21} + 4 q^{22} - 6 q^{23}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.707107 + 0.707107i
\(3\) −0.633975 0.366025i −0.366025 0.211325i 0.305695 0.952129i \(-0.401111\pi\)
−0.671721 + 0.740805i \(0.734444\pi\)
\(4\) 2.00000i 1.00000i
\(5\) −3.73205 −1.66902 −0.834512 0.550990i \(-0.814250\pi\)
−0.834512 + 0.550990i \(0.814250\pi\)
\(6\) 1.00000 0.267949i 0.408248 0.109390i
\(7\) −3.00000 + 1.73205i −1.13389 + 0.654654i −0.944911 0.327327i \(-0.893852\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) −1.23205 2.13397i −0.410684 0.711325i
\(10\) 3.73205 3.73205i 1.18018 1.18018i
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) −0.732051 + 1.26795i −0.211325 + 0.366025i
\(13\) 2.59808 2.50000i 0.720577 0.693375i
\(14\) 1.26795 4.73205i 0.338874 1.26469i
\(15\) 2.36603 + 1.36603i 0.610905 + 0.352706i
\(16\) −4.00000 −1.00000
\(17\) 0.232051 + 0.401924i 0.0562806 + 0.0974808i 0.892793 0.450467i \(-0.148743\pi\)
−0.836512 + 0.547948i \(0.815409\pi\)
\(18\) 3.36603 + 0.901924i 0.793380 + 0.212585i
\(19\) −0.633975 1.09808i −0.145444 0.251916i 0.784095 0.620641i \(-0.213128\pi\)
−0.929538 + 0.368725i \(0.879794\pi\)
\(20\) 7.46410i 1.66902i
\(21\) 2.53590 0.553378
\(22\) −0.732051 2.73205i −0.156074 0.582475i
\(23\) −4.09808 + 7.09808i −0.854508 + 1.48005i 0.0225928 + 0.999745i \(0.492808\pi\)
−0.877101 + 0.480306i \(0.840525\pi\)
\(24\) −0.535898 2.00000i −0.109390 0.408248i
\(25\) 8.92820 1.78564
\(26\) −0.0980762 + 5.09808i −0.0192343 + 0.999815i
\(27\) 4.00000i 0.769800i
\(28\) 3.46410 + 6.00000i 0.654654 + 1.13389i
\(29\) −2.59808 1.50000i −0.482451 0.278543i 0.238987 0.971023i \(-0.423185\pi\)
−0.721437 + 0.692480i \(0.756518\pi\)
\(30\) −3.73205 + 1.00000i −0.681376 + 0.182574i
\(31\) 4.73205i 0.849901i −0.905216 0.424951i \(-0.860291\pi\)
0.905216 0.424951i \(-0.139709\pi\)
\(32\) 4.00000 4.00000i 0.707107 0.707107i
\(33\) 1.26795 0.732051i 0.220722 0.127434i
\(34\) −0.633975 0.169873i −0.108726 0.0291330i
\(35\) 11.1962 6.46410i 1.89250 1.09263i
\(36\) −4.26795 + 2.46410i −0.711325 + 0.410684i
\(37\) −2.13397 + 3.69615i −0.350823 + 0.607644i −0.986394 0.164399i \(-0.947432\pi\)
0.635571 + 0.772043i \(0.280765\pi\)
\(38\) 1.73205 + 0.464102i 0.280976 + 0.0752872i
\(39\) −2.56218 + 0.633975i −0.410277 + 0.101517i
\(40\) −7.46410 7.46410i −1.18018 1.18018i
\(41\) −7.96410 4.59808i −1.24378 0.718099i −0.273921 0.961752i \(-0.588321\pi\)
−0.969862 + 0.243653i \(0.921654\pi\)
\(42\) −2.53590 + 2.53590i −0.391298 + 0.391298i
\(43\) −2.19615 + 1.26795i −0.334910 + 0.193360i −0.658019 0.753001i \(-0.728605\pi\)
0.323109 + 0.946362i \(0.395272\pi\)
\(44\) 3.46410 + 2.00000i 0.522233 + 0.301511i
\(45\) 4.59808 + 7.96410i 0.685441 + 1.18722i
\(46\) −3.00000 11.1962i −0.442326 1.65078i
\(47\) 6.73205i 0.981971i −0.871168 0.490985i \(-0.836637\pi\)
0.871168 0.490985i \(-0.163363\pi\)
\(48\) 2.53590 + 1.46410i 0.366025 + 0.211325i
\(49\) 2.50000 4.33013i 0.357143 0.618590i
\(50\) −8.92820 + 8.92820i −1.26264 + 1.26264i
\(51\) 0.339746i 0.0475740i
\(52\) −5.00000 5.19615i −0.693375 0.720577i
\(53\) 3.92820i 0.539580i −0.962919 0.269790i \(-0.913046\pi\)
0.962919 0.269790i \(-0.0869543\pi\)
\(54\) −4.00000 4.00000i −0.544331 0.544331i
\(55\) 3.73205 6.46410i 0.503230 0.871619i
\(56\) −9.46410 2.53590i −1.26469 0.338874i
\(57\) 0.928203i 0.122944i
\(58\) 4.09808 1.09808i 0.538104 0.144184i
\(59\) −0.267949 0.464102i −0.0348840 0.0604209i 0.848056 0.529906i \(-0.177773\pi\)
−0.882940 + 0.469485i \(0.844440\pi\)
\(60\) 2.73205 4.73205i 0.352706 0.610905i
\(61\) −0.866025 + 0.500000i −0.110883 + 0.0640184i −0.554416 0.832240i \(-0.687058\pi\)
0.443533 + 0.896258i \(0.353725\pi\)
\(62\) 4.73205 + 4.73205i 0.600971 + 0.600971i
\(63\) 7.39230 + 4.26795i 0.931343 + 0.537711i
\(64\) 8.00000i 1.00000i
\(65\) −9.69615 + 9.33013i −1.20266 + 1.15726i
\(66\) −0.535898 + 2.00000i −0.0659645 + 0.246183i
\(67\) −3.63397 + 6.29423i −0.443961 + 0.768962i −0.997979 0.0635419i \(-0.979760\pi\)
0.554019 + 0.832504i \(0.313094\pi\)
\(68\) 0.803848 0.464102i 0.0974808 0.0562806i
\(69\) 5.19615 3.00000i 0.625543 0.361158i
\(70\) −4.73205 + 17.6603i −0.565588 + 2.11080i
\(71\) 8.02628 4.63397i 0.952544 0.549952i 0.0586738 0.998277i \(-0.481313\pi\)
0.893870 + 0.448326i \(0.147979\pi\)
\(72\) 1.80385 6.73205i 0.212585 0.793380i
\(73\) 1.73205i 0.202721i 0.994850 + 0.101361i \(0.0323196\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) −1.56218 5.83013i −0.181599 0.677738i
\(75\) −5.66025 3.26795i −0.653590 0.377350i
\(76\) −2.19615 + 1.26795i −0.251916 + 0.145444i
\(77\) 6.92820i 0.789542i
\(78\) 1.92820 3.19615i 0.218326 0.361893i
\(79\) −10.3923 −1.16923 −0.584613 0.811312i \(-0.698754\pi\)
−0.584613 + 0.811312i \(0.698754\pi\)
\(80\) 14.9282 1.66902
\(81\) −2.23205 + 3.86603i −0.248006 + 0.429558i
\(82\) 12.5622 3.36603i 1.38726 0.371715i
\(83\) −1.46410 −0.160706 −0.0803530 0.996766i \(-0.525605\pi\)
−0.0803530 + 0.996766i \(0.525605\pi\)
\(84\) 5.07180i 0.553378i
\(85\) −0.866025 1.50000i −0.0939336 0.162698i
\(86\) 0.928203 3.46410i 0.100091 0.373544i
\(87\) 1.09808 + 1.90192i 0.117726 + 0.203908i
\(88\) −5.46410 + 1.46410i −0.582475 + 0.156074i
\(89\) 6.46410 + 3.73205i 0.685193 + 0.395597i 0.801809 0.597581i \(-0.203871\pi\)
−0.116615 + 0.993177i \(0.537205\pi\)
\(90\) −12.5622 3.36603i −1.32417 0.354810i
\(91\) −3.46410 + 12.0000i −0.363137 + 1.25794i
\(92\) 14.1962 + 8.19615i 1.48005 + 0.854508i
\(93\) −1.73205 + 3.00000i −0.179605 + 0.311086i
\(94\) 6.73205 + 6.73205i 0.694358 + 0.694358i
\(95\) 2.36603 + 4.09808i 0.242749 + 0.420454i
\(96\) −4.00000 + 1.07180i −0.408248 + 0.109390i
\(97\) −5.19615 + 3.00000i −0.527589 + 0.304604i −0.740034 0.672569i \(-0.765191\pi\)
0.212445 + 0.977173i \(0.431857\pi\)
\(98\) 1.83013 + 6.83013i 0.184871 + 0.689947i
\(99\) 4.92820 0.495303
\(100\) 17.8564i 1.78564i
\(101\) 9.99038 + 5.76795i 0.994080 + 0.573932i 0.906491 0.422224i \(-0.138751\pi\)
0.0875887 + 0.996157i \(0.472084\pi\)
\(102\) 0.339746 + 0.339746i 0.0336399 + 0.0336399i
\(103\) 6.19615 0.610525 0.305263 0.952268i \(-0.401256\pi\)
0.305263 + 0.952268i \(0.401256\pi\)
\(104\) 10.1962 + 0.196152i 0.999815 + 0.0192343i
\(105\) −9.46410 −0.923602
\(106\) 3.92820 + 3.92820i 0.381541 + 0.381541i
\(107\) −15.2942 8.83013i −1.47855 0.853641i −0.478843 0.877900i \(-0.658944\pi\)
−0.999706 + 0.0242598i \(0.992277\pi\)
\(108\) 8.00000 0.769800
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 2.73205 + 10.1962i 0.260491 + 0.972165i
\(111\) 2.70577 1.56218i 0.256820 0.148275i
\(112\) 12.0000 6.92820i 1.13389 0.654654i
\(113\) 1.50000 + 2.59808i 0.141108 + 0.244406i 0.927914 0.372794i \(-0.121600\pi\)
−0.786806 + 0.617200i \(0.788267\pi\)
\(114\) −0.928203 0.928203i −0.0869342 0.0869342i
\(115\) 15.2942 26.4904i 1.42619 2.47024i
\(116\) −3.00000 + 5.19615i −0.278543 + 0.482451i
\(117\) −8.53590 2.46410i −0.789144 0.227806i
\(118\) 0.732051 + 0.196152i 0.0673907 + 0.0180573i
\(119\) −1.39230 0.803848i −0.127632 0.0736886i
\(120\) 2.00000 + 7.46410i 0.182574 + 0.681376i
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0.366025 1.36603i 0.0331384 0.123674i
\(123\) 3.36603 + 5.83013i 0.303504 + 0.525685i
\(124\) −9.46410 −0.849901
\(125\) −14.6603 −1.31125
\(126\) −11.6603 + 3.12436i −1.03878 + 0.278340i
\(127\) −0.169873 + 0.294229i −0.0150738 + 0.0261086i −0.873464 0.486889i \(-0.838132\pi\)
0.858390 + 0.512997i \(0.171465\pi\)
\(128\) −8.00000 8.00000i −0.707107 0.707107i
\(129\) 1.85641 0.163447
\(130\) 0.366025 19.0263i 0.0321026 1.66872i
\(131\) 10.7321i 0.937664i −0.883287 0.468832i \(-0.844675\pi\)
0.883287 0.468832i \(-0.155325\pi\)
\(132\) −1.46410 2.53590i −0.127434 0.220722i
\(133\) 3.80385 + 2.19615i 0.329835 + 0.190431i
\(134\) −2.66025 9.92820i −0.229811 0.857666i
\(135\) 14.9282i 1.28482i
\(136\) −0.339746 + 1.26795i −0.0291330 + 0.108726i
\(137\) −11.7679 + 6.79423i −1.00540 + 0.580470i −0.909843 0.414953i \(-0.863798\pi\)
−0.0955611 + 0.995424i \(0.530465\pi\)
\(138\) −2.19615 + 8.19615i −0.186949 + 0.697703i
\(139\) −8.19615 + 4.73205i −0.695189 + 0.401367i −0.805553 0.592524i \(-0.798132\pi\)
0.110364 + 0.993891i \(0.464798\pi\)
\(140\) −12.9282 22.3923i −1.09263 1.89250i
\(141\) −2.46410 + 4.26795i −0.207515 + 0.359426i
\(142\) −3.39230 + 12.6603i −0.284676 + 1.06242i
\(143\) 1.73205 + 7.00000i 0.144841 + 0.585369i
\(144\) 4.92820 + 8.53590i 0.410684 + 0.711325i
\(145\) 9.69615 + 5.59808i 0.805222 + 0.464895i
\(146\) −1.73205 1.73205i −0.143346 0.143346i
\(147\) −3.16987 + 1.83013i −0.261447 + 0.150946i
\(148\) 7.39230 + 4.26795i 0.607644 + 0.350823i
\(149\) 5.86603 + 10.1603i 0.480564 + 0.832360i 0.999751 0.0222997i \(-0.00709882\pi\)
−0.519188 + 0.854660i \(0.673765\pi\)
\(150\) 8.92820 2.39230i 0.728985 0.195331i
\(151\) 2.19615i 0.178720i −0.995999 0.0893602i \(-0.971518\pi\)
0.995999 0.0893602i \(-0.0284822\pi\)
\(152\) 0.928203 3.46410i 0.0752872 0.280976i
\(153\) 0.571797 0.990381i 0.0462270 0.0800676i
\(154\) 6.92820 + 6.92820i 0.558291 + 0.558291i
\(155\) 17.6603i 1.41851i
\(156\) 1.26795 + 5.12436i 0.101517 + 0.410277i
\(157\) 3.92820i 0.313505i 0.987638 + 0.156752i \(0.0501025\pi\)
−0.987638 + 0.156752i \(0.949898\pi\)
\(158\) 10.3923 10.3923i 0.826767 0.826767i
\(159\) −1.43782 + 2.49038i −0.114027 + 0.197500i
\(160\) −14.9282 + 14.9282i −1.18018 + 1.18018i
\(161\) 28.3923i 2.23763i
\(162\) −1.63397 6.09808i −0.128377 0.479110i
\(163\) 8.19615 + 14.1962i 0.641972 + 1.11193i 0.984992 + 0.172600i \(0.0552169\pi\)
−0.343020 + 0.939328i \(0.611450\pi\)
\(164\) −9.19615 + 15.9282i −0.718099 + 1.24378i
\(165\) −4.73205 + 2.73205i −0.368390 + 0.212690i
\(166\) 1.46410 1.46410i 0.113636 0.113636i
\(167\) −4.26795 2.46410i −0.330264 0.190678i 0.325694 0.945475i \(-0.394402\pi\)
−0.655958 + 0.754797i \(0.727735\pi\)
\(168\) 5.07180 + 5.07180i 0.391298 + 0.391298i
\(169\) 0.500000 12.9904i 0.0384615 0.999260i
\(170\) 2.36603 + 0.633975i 0.181466 + 0.0486236i
\(171\) −1.56218 + 2.70577i −0.119463 + 0.206916i
\(172\) 2.53590 + 4.39230i 0.193360 + 0.334910i
\(173\) 16.3923 9.46410i 1.24628 0.719542i 0.275918 0.961181i \(-0.411018\pi\)
0.970366 + 0.241639i \(0.0776850\pi\)
\(174\) −3.00000 0.803848i −0.227429 0.0609395i
\(175\) −26.7846 + 15.4641i −2.02473 + 1.16898i
\(176\) 4.00000 6.92820i 0.301511 0.522233i
\(177\) 0.392305i 0.0294874i
\(178\) −10.1962 + 2.73205i −0.764234 + 0.204776i
\(179\) −12.0000 6.92820i −0.896922 0.517838i −0.0207218 0.999785i \(-0.506596\pi\)
−0.876200 + 0.481947i \(0.839930\pi\)
\(180\) 15.9282 9.19615i 1.18722 0.685441i
\(181\) 18.4641i 1.37243i −0.727401 0.686213i \(-0.759272\pi\)
0.727401 0.686213i \(-0.240728\pi\)
\(182\) −8.53590 15.4641i −0.632723 1.14628i
\(183\) 0.732051 0.0541148
\(184\) −22.3923 + 6.00000i −1.65078 + 0.442326i
\(185\) 7.96410 13.7942i 0.585532 1.01417i
\(186\) −1.26795 4.73205i −0.0929705 0.346971i
\(187\) −0.928203 −0.0678769
\(188\) −13.4641 −0.981971
\(189\) −6.92820 12.0000i −0.503953 0.872872i
\(190\) −6.46410 1.73205i −0.468955 0.125656i
\(191\) −1.90192 3.29423i −0.137618 0.238362i 0.788976 0.614424i \(-0.210611\pi\)
−0.926595 + 0.376062i \(0.877278\pi\)
\(192\) 2.92820 5.07180i 0.211325 0.366025i
\(193\) 11.3038 + 6.52628i 0.813669 + 0.469772i 0.848228 0.529631i \(-0.177670\pi\)
−0.0345595 + 0.999403i \(0.511003\pi\)
\(194\) 2.19615 8.19615i 0.157675 0.588449i
\(195\) 9.56218 2.36603i 0.684762 0.169435i
\(196\) −8.66025 5.00000i −0.618590 0.357143i
\(197\) 6.26795 10.8564i 0.446573 0.773487i −0.551587 0.834117i \(-0.685978\pi\)
0.998160 + 0.0606302i \(0.0193110\pi\)
\(198\) −4.92820 + 4.92820i −0.350232 + 0.350232i
\(199\) 7.56218 + 13.0981i 0.536069 + 0.928498i 0.999111 + 0.0421618i \(0.0134245\pi\)
−0.463042 + 0.886336i \(0.653242\pi\)
\(200\) 17.8564 + 17.8564i 1.26264 + 1.26264i
\(201\) 4.60770 2.66025i 0.325002 0.187640i
\(202\) −15.7583 + 4.22243i −1.10875 + 0.297089i
\(203\) 10.3923 0.729397
\(204\) −0.679492 −0.0475740
\(205\) 29.7224 + 17.1603i 2.07590 + 1.19852i
\(206\) −6.19615 + 6.19615i −0.431706 + 0.431706i
\(207\) 20.1962 1.40373
\(208\) −10.3923 + 10.0000i −0.720577 + 0.693375i
\(209\) 2.53590 0.175412
\(210\) 9.46410 9.46410i 0.653085 0.653085i
\(211\) 24.7583 + 14.2942i 1.70443 + 0.984055i 0.941148 + 0.337994i \(0.109748\pi\)
0.763285 + 0.646061i \(0.223585\pi\)
\(212\) −7.85641 −0.539580
\(213\) −6.78461 −0.464874
\(214\) 24.1244 6.46410i 1.64911 0.441877i
\(215\) 8.19615 4.73205i 0.558973 0.322723i
\(216\) −8.00000 + 8.00000i −0.544331 + 0.544331i
\(217\) 8.19615 + 14.1962i 0.556391 + 0.963698i
\(218\) 6.00000 6.00000i 0.406371 0.406371i
\(219\) 0.633975 1.09808i 0.0428400 0.0742011i
\(220\) −12.9282 7.46410i −0.871619 0.503230i
\(221\) 1.60770 + 0.464102i 0.108145 + 0.0312189i
\(222\) −1.14359 + 4.26795i −0.0767530 + 0.286446i
\(223\) −22.0981 12.7583i −1.47980 0.854361i −0.480058 0.877237i \(-0.659385\pi\)
−0.999738 + 0.0228756i \(0.992718\pi\)
\(224\) −5.07180 + 18.9282i −0.338874 + 1.26469i
\(225\) −11.0000 19.0526i −0.733333 1.27017i
\(226\) −4.09808 1.09808i −0.272600 0.0730429i
\(227\) −13.0263 22.5622i −0.864585 1.49750i −0.867459 0.497508i \(-0.834248\pi\)
0.00287459 0.999996i \(-0.499085\pi\)
\(228\) 1.85641 0.122944
\(229\) −12.9282 −0.854320 −0.427160 0.904176i \(-0.640486\pi\)
−0.427160 + 0.904176i \(0.640486\pi\)
\(230\) 11.1962 + 41.7846i 0.738252 + 2.75520i
\(231\) −2.53590 + 4.39230i −0.166850 + 0.288992i
\(232\) −2.19615 8.19615i −0.144184 0.538104i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 11.0000 6.07180i 0.719092 0.396926i
\(235\) 25.1244i 1.63893i
\(236\) −0.928203 + 0.535898i −0.0604209 + 0.0348840i
\(237\) 6.58846 + 3.80385i 0.427966 + 0.247086i
\(238\) 2.19615 0.588457i 0.142355 0.0381440i
\(239\) 18.3923i 1.18970i 0.803837 + 0.594850i \(0.202788\pi\)
−0.803837 + 0.594850i \(0.797212\pi\)
\(240\) −9.46410 5.46410i −0.610905 0.352706i
\(241\) 9.69615 5.59808i 0.624584 0.360604i −0.154068 0.988060i \(-0.549237\pi\)
0.778652 + 0.627457i \(0.215904\pi\)
\(242\) −9.56218 2.56218i −0.614680 0.164703i
\(243\) 13.2224 7.63397i 0.848219 0.489720i
\(244\) 1.00000 + 1.73205i 0.0640184 + 0.110883i
\(245\) −9.33013 + 16.1603i −0.596080 + 1.03244i
\(246\) −9.19615 2.46410i −0.586325 0.157105i
\(247\) −4.39230 1.26795i −0.279476 0.0806777i
\(248\) 9.46410 9.46410i 0.600971 0.600971i
\(249\) 0.928203 + 0.535898i 0.0588225 + 0.0339612i
\(250\) 14.6603 14.6603i 0.927196 0.927196i
\(251\) 7.09808 4.09808i 0.448027 0.258668i −0.258970 0.965885i \(-0.583383\pi\)
0.706996 + 0.707217i \(0.250050\pi\)
\(252\) 8.53590 14.7846i 0.537711 0.931343i
\(253\) −8.19615 14.1962i −0.515288 0.892504i
\(254\) −0.124356 0.464102i −0.00780277 0.0291203i
\(255\) 1.26795i 0.0794021i
\(256\) 16.0000 1.00000
\(257\) −11.4282 + 19.7942i −0.712872 + 1.23473i 0.250903 + 0.968012i \(0.419273\pi\)
−0.963775 + 0.266718i \(0.914061\pi\)
\(258\) −1.85641 + 1.85641i −0.115575 + 0.115575i
\(259\) 14.7846i 0.918671i
\(260\) 18.6603 + 19.3923i 1.15726 + 1.20266i
\(261\) 7.39230i 0.457572i
\(262\) 10.7321 + 10.7321i 0.663028 + 0.663028i
\(263\) −8.19615 + 14.1962i −0.505396 + 0.875372i 0.494584 + 0.869130i \(0.335320\pi\)
−0.999981 + 0.00624249i \(0.998013\pi\)
\(264\) 4.00000 + 1.07180i 0.246183 + 0.0659645i
\(265\) 14.6603i 0.900572i
\(266\) −6.00000 + 1.60770i −0.367884 + 0.0985741i
\(267\) −2.73205 4.73205i −0.167199 0.289597i
\(268\) 12.5885 + 7.26795i 0.768962 + 0.443961i
\(269\) −8.19615 + 4.73205i −0.499728 + 0.288518i −0.728601 0.684938i \(-0.759829\pi\)
0.228873 + 0.973456i \(0.426496\pi\)
\(270\) 14.9282 + 14.9282i 0.908502 + 0.908502i
\(271\) −15.0000 8.66025i −0.911185 0.526073i −0.0303728 0.999539i \(-0.509669\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(272\) −0.928203 1.60770i −0.0562806 0.0974808i
\(273\) 6.58846 6.33975i 0.398752 0.383699i
\(274\) 4.97372 18.5622i 0.300473 1.12138i
\(275\) −8.92820 + 15.4641i −0.538391 + 0.932520i
\(276\) −6.00000 10.3923i −0.361158 0.625543i
\(277\) −12.4019 + 7.16025i −0.745159 + 0.430218i −0.823942 0.566674i \(-0.808230\pi\)
0.0787828 + 0.996892i \(0.474897\pi\)
\(278\) 3.46410 12.9282i 0.207763 0.775382i
\(279\) −10.0981 + 5.83013i −0.604556 + 0.349041i
\(280\) 35.3205 + 9.46410i 2.11080 + 0.565588i
\(281\) 10.6603i 0.635937i −0.948101 0.317969i \(-0.896999\pi\)
0.948101 0.317969i \(-0.103001\pi\)
\(282\) −1.80385 6.73205i −0.107418 0.400888i
\(283\) −26.6603 15.3923i −1.58479 0.914978i −0.994146 0.108043i \(-0.965541\pi\)
−0.590641 0.806934i \(-0.701125\pi\)
\(284\) −9.26795 16.0526i −0.549952 0.952544i
\(285\) 3.46410i 0.205196i
\(286\) −8.73205 5.26795i −0.516337 0.311500i
\(287\) 31.8564 1.88042
\(288\) −13.4641 3.60770i −0.793380 0.212585i
\(289\) 8.39230 14.5359i 0.493665 0.855053i
\(290\) −15.2942 + 4.09808i −0.898108 + 0.240647i
\(291\) 4.39230 0.257481
\(292\) 3.46410 0.202721
\(293\) −1.40192 2.42820i −0.0819013 0.141857i 0.822165 0.569249i \(-0.192766\pi\)
−0.904067 + 0.427392i \(0.859433\pi\)
\(294\) 1.33975 5.00000i 0.0781356 0.291606i
\(295\) 1.00000 + 1.73205i 0.0582223 + 0.100844i
\(296\) −11.6603 + 3.12436i −0.677738 + 0.181599i
\(297\) −6.92820 4.00000i −0.402015 0.232104i
\(298\) −16.0263 4.29423i −0.928377 0.248758i
\(299\) 7.09808 + 28.6865i 0.410492 + 1.65899i
\(300\) −6.53590 + 11.3205i −0.377350 + 0.653590i
\(301\) 4.39230 7.60770i 0.253168 0.438500i
\(302\) 2.19615 + 2.19615i 0.126374 + 0.126374i
\(303\) −4.22243 7.31347i −0.242572 0.420148i
\(304\) 2.53590 + 4.39230i 0.145444 + 0.251916i
\(305\) 3.23205 1.86603i 0.185067 0.106848i
\(306\) 0.418584 + 1.56218i 0.0239289 + 0.0893038i
\(307\) −2.19615 −0.125341 −0.0626705 0.998034i \(-0.519962\pi\)
−0.0626705 + 0.998034i \(0.519962\pi\)
\(308\) −13.8564 −0.789542
\(309\) −3.92820 2.26795i −0.223468 0.129019i
\(310\) −17.6603 17.6603i −1.00304 1.00304i
\(311\) −18.5885 −1.05405 −0.527027 0.849848i \(-0.676693\pi\)
−0.527027 + 0.849848i \(0.676693\pi\)
\(312\) −6.39230 3.85641i −0.361893 0.218326i
\(313\) −2.53590 −0.143337 −0.0716687 0.997428i \(-0.522832\pi\)
−0.0716687 + 0.997428i \(0.522832\pi\)
\(314\) −3.92820 3.92820i −0.221681 0.221681i
\(315\) −27.5885 15.9282i −1.55443 0.897453i
\(316\) 20.7846i 1.16923i
\(317\) −25.1962 −1.41516 −0.707578 0.706635i \(-0.750212\pi\)
−0.707578 + 0.706635i \(0.750212\pi\)
\(318\) −1.05256 3.92820i −0.0590246 0.220283i
\(319\) 5.19615 3.00000i 0.290929 0.167968i
\(320\) 29.8564i 1.66902i
\(321\) 6.46410 + 11.1962i 0.360791 + 0.624908i
\(322\) 28.3923 + 28.3923i 1.58224 + 1.58224i
\(323\) 0.294229 0.509619i 0.0163713 0.0283560i
\(324\) 7.73205 + 4.46410i 0.429558 + 0.248006i
\(325\) 23.1962 22.3205i 1.28669 1.23812i
\(326\) −22.3923 6.00000i −1.24020 0.332309i
\(327\) 3.80385 + 2.19615i 0.210353 + 0.121448i
\(328\) −6.73205 25.1244i −0.371715 1.38726i
\(329\) 11.6603 + 20.1962i 0.642851 + 1.11345i
\(330\) 2.00000 7.46410i 0.110096 0.410885i
\(331\) −6.00000 10.3923i −0.329790 0.571213i 0.652680 0.757634i \(-0.273645\pi\)
−0.982470 + 0.186421i \(0.940311\pi\)
\(332\) 2.92820i 0.160706i
\(333\) 10.5167 0.576309
\(334\) 6.73205 1.80385i 0.368361 0.0987021i
\(335\) 13.5622 23.4904i 0.740981 1.28342i
\(336\) −10.1436 −0.553378
\(337\) −33.2487 −1.81117 −0.905586 0.424162i \(-0.860569\pi\)
−0.905586 + 0.424162i \(0.860569\pi\)
\(338\) 12.4904 + 13.4904i 0.679387 + 0.733780i
\(339\) 2.19615i 0.119279i
\(340\) −3.00000 + 1.73205i −0.162698 + 0.0939336i
\(341\) 8.19615 + 4.73205i 0.443847 + 0.256255i
\(342\) −1.14359 4.26795i −0.0618385 0.230784i
\(343\) 6.92820i 0.374088i
\(344\) −6.92820 1.85641i −0.373544 0.100091i
\(345\) −19.3923 + 11.1962i −1.04405 + 0.602781i
\(346\) −6.92820 + 25.8564i −0.372463 + 1.39005i
\(347\) 1.09808 0.633975i 0.0589478 0.0340335i −0.470236 0.882540i \(-0.655831\pi\)
0.529184 + 0.848507i \(0.322498\pi\)
\(348\) 3.80385 2.19615i 0.203908 0.117726i
\(349\) −2.66025 + 4.60770i −0.142400 + 0.246644i −0.928400 0.371582i \(-0.878815\pi\)
0.786000 + 0.618227i \(0.212149\pi\)
\(350\) 11.3205 42.2487i 0.605107 2.25829i
\(351\) 10.0000 + 10.3923i 0.533761 + 0.554700i
\(352\) 2.92820 + 10.9282i 0.156074 + 0.582475i
\(353\) −15.8205 9.13397i −0.842041 0.486152i 0.0159167 0.999873i \(-0.494933\pi\)
−0.857957 + 0.513721i \(0.828267\pi\)
\(354\) −0.392305 0.392305i −0.0208508 0.0208508i
\(355\) −29.9545 + 17.2942i −1.58982 + 0.917882i
\(356\) 7.46410 12.9282i 0.395597 0.685193i
\(357\) 0.588457 + 1.01924i 0.0311445 + 0.0539438i
\(358\) 18.9282 5.07180i 1.00039 0.268053i
\(359\) 13.0718i 0.689903i 0.938621 + 0.344952i \(0.112105\pi\)
−0.938621 + 0.344952i \(0.887895\pi\)
\(360\) −6.73205 + 25.1244i −0.354810 + 1.32417i
\(361\) 8.69615 15.0622i 0.457692 0.792746i
\(362\) 18.4641 + 18.4641i 0.970452 + 0.970452i
\(363\) 5.12436i 0.268959i
\(364\) 24.0000 + 6.92820i 1.25794 + 0.363137i
\(365\) 6.46410i 0.338347i
\(366\) −0.732051 + 0.732051i −0.0382649 + 0.0382649i
\(367\) 14.0981 24.4186i 0.735914 1.27464i −0.218408 0.975858i \(-0.570086\pi\)
0.954321 0.298782i \(-0.0965804\pi\)
\(368\) 16.3923 28.3923i 0.854508 1.48005i
\(369\) 22.6603i 1.17965i
\(370\) 5.83013 + 21.7583i 0.303094 + 1.13116i
\(371\) 6.80385 + 11.7846i 0.353238 + 0.611826i
\(372\) 6.00000 + 3.46410i 0.311086 + 0.179605i
\(373\) −22.3301 + 12.8923i −1.15621 + 0.667538i −0.950393 0.311052i \(-0.899319\pi\)
−0.205817 + 0.978590i \(0.565985\pi\)
\(374\) 0.928203 0.928203i 0.0479962 0.0479962i
\(375\) 9.29423 + 5.36603i 0.479952 + 0.277100i
\(376\) 13.4641 13.4641i 0.694358 0.694358i
\(377\) −10.5000 + 2.59808i −0.540778 + 0.133808i
\(378\) 18.9282 + 5.07180i 0.973562 + 0.260865i
\(379\) 11.0263 19.0981i 0.566382 0.981002i −0.430538 0.902573i \(-0.641676\pi\)
0.996920 0.0784297i \(-0.0249906\pi\)
\(380\) 8.19615 4.73205i 0.420454 0.242749i
\(381\) 0.215390 0.124356i 0.0110348 0.00637093i
\(382\) 5.19615 + 1.39230i 0.265858 + 0.0712365i
\(383\) 17.3205 10.0000i 0.885037 0.510976i 0.0127209 0.999919i \(-0.495951\pi\)
0.872316 + 0.488943i \(0.162617\pi\)
\(384\) 2.14359 + 8.00000i 0.109390 + 0.408248i
\(385\) 25.8564i 1.31776i
\(386\) −17.8301 + 4.77757i −0.907530 + 0.243172i
\(387\) 5.41154 + 3.12436i 0.275084 + 0.158820i
\(388\) 6.00000 + 10.3923i 0.304604 + 0.527589i
\(389\) 18.7128i 0.948777i 0.880316 + 0.474389i \(0.157331\pi\)
−0.880316 + 0.474389i \(0.842669\pi\)
\(390\) −7.19615 + 11.9282i −0.364391 + 0.604008i
\(391\) −3.80385 −0.192369
\(392\) 13.6603 3.66025i 0.689947 0.184871i
\(393\) −3.92820 + 6.80385i −0.198152 + 0.343209i
\(394\) 4.58846 + 17.1244i 0.231163 + 0.862713i
\(395\) 38.7846 1.95147
\(396\) 9.85641i 0.495303i
\(397\) 12.1244 + 21.0000i 0.608504 + 1.05396i 0.991487 + 0.130204i \(0.0415634\pi\)
−0.382983 + 0.923755i \(0.625103\pi\)
\(398\) −20.6603 5.53590i −1.03560 0.277490i
\(399\) −1.60770 2.78461i −0.0804854 0.139405i
\(400\) −35.7128 −1.78564
\(401\) 8.42820 + 4.86603i 0.420884 + 0.242998i 0.695456 0.718569i \(-0.255203\pi\)
−0.274571 + 0.961567i \(0.588536\pi\)
\(402\) −1.94744 + 7.26795i −0.0971295 + 0.362492i
\(403\) −11.8301 12.2942i −0.589301 0.612419i
\(404\) 11.5359 19.9808i 0.573932 0.994080i
\(405\) 8.33013 14.4282i 0.413927 0.716943i
\(406\) −10.3923 + 10.3923i −0.515761 + 0.515761i
\(407\) −4.26795 7.39230i −0.211554 0.366423i
\(408\) 0.679492 0.679492i 0.0336399 0.0336399i
\(409\) 0.696152 0.401924i 0.0344225 0.0198739i −0.482690 0.875791i \(-0.660340\pi\)
0.517113 + 0.855917i \(0.327007\pi\)
\(410\) −46.8827 + 12.5622i −2.31537 + 0.620402i
\(411\) 9.94744 0.490671
\(412\) 12.3923i 0.610525i
\(413\) 1.60770 + 0.928203i 0.0791095 + 0.0456739i
\(414\) −20.1962 + 20.1962i −0.992587 + 0.992587i
\(415\) 5.46410 0.268222
\(416\) 0.392305 20.3923i 0.0192343 0.999815i
\(417\) 6.92820 0.339276
\(418\) −2.53590 + 2.53590i −0.124035 + 0.124035i
\(419\) 16.9019 + 9.75833i 0.825713 + 0.476726i 0.852383 0.522919i \(-0.175157\pi\)
−0.0266696 + 0.999644i \(0.508490\pi\)
\(420\) 18.9282i 0.923602i
\(421\) 30.1244 1.46817 0.734086 0.679057i \(-0.237611\pi\)
0.734086 + 0.679057i \(0.237611\pi\)
\(422\) −39.0526 + 10.4641i −1.90105 + 0.509384i
\(423\) −14.3660 + 8.29423i −0.698500 + 0.403279i
\(424\) 7.85641 7.85641i 0.381541 0.381541i
\(425\) 2.07180 + 3.58846i 0.100497 + 0.174066i
\(426\) 6.78461 6.78461i 0.328715 0.328715i
\(427\) 1.73205 3.00000i 0.0838198 0.145180i
\(428\) −17.6603 + 30.5885i −0.853641 + 1.47855i
\(429\) 1.46410 5.07180i 0.0706875 0.244869i
\(430\) −3.46410 + 12.9282i −0.167054 + 0.623453i
\(431\) 15.4641 + 8.92820i 0.744880 + 0.430056i 0.823841 0.566821i \(-0.191827\pi\)
−0.0789612 + 0.996878i \(0.525160\pi\)
\(432\) 16.0000i 0.769800i
\(433\) −10.5000 18.1865i −0.504598 0.873989i −0.999986 0.00531724i \(-0.998307\pi\)
0.495388 0.868672i \(-0.335026\pi\)
\(434\) −22.3923 6.00000i −1.07487 0.288009i
\(435\) −4.09808 7.09808i −0.196488 0.340327i
\(436\) 12.0000i 0.574696i
\(437\) 10.3923 0.497131
\(438\) 0.464102 + 1.73205i 0.0221756 + 0.0827606i
\(439\) −7.80385 + 13.5167i −0.372457 + 0.645115i −0.989943 0.141467i \(-0.954818\pi\)
0.617486 + 0.786582i \(0.288151\pi\)
\(440\) 20.3923 5.46410i 0.972165 0.260491i
\(441\) −12.3205 −0.586691
\(442\) −2.07180 + 1.14359i −0.0985453 + 0.0543952i
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) −3.12436 5.41154i −0.148275 0.256820i
\(445\) −24.1244 13.9282i −1.14360 0.660260i
\(446\) 34.8564 9.33975i 1.65050 0.442250i
\(447\) 8.58846i 0.406220i
\(448\) −13.8564 24.0000i −0.654654 1.13389i
\(449\) 18.4641 10.6603i 0.871375 0.503088i 0.00356996 0.999994i \(-0.498864\pi\)
0.867805 + 0.496905i \(0.165530\pi\)
\(450\) 30.0526 + 8.05256i 1.41669 + 0.379601i
\(451\) 15.9282 9.19615i 0.750030 0.433030i
\(452\) 5.19615 3.00000i 0.244406 0.141108i
\(453\) −0.803848 + 1.39230i −0.0377681 + 0.0654162i
\(454\) 35.5885 + 9.53590i 1.67025 + 0.447542i
\(455\) 12.9282 44.7846i 0.606084 2.09953i
\(456\) −1.85641 + 1.85641i −0.0869342 + 0.0869342i
\(457\) 6.69615 + 3.86603i 0.313233 + 0.180845i 0.648372 0.761324i \(-0.275450\pi\)
−0.335139 + 0.942169i \(0.608783\pi\)
\(458\) 12.9282 12.9282i 0.604095 0.604095i
\(459\) −1.60770 + 0.928203i −0.0750408 + 0.0433248i
\(460\) −52.9808 30.5885i −2.47024 1.42619i
\(461\) 14.3301 + 24.8205i 0.667421 + 1.15601i 0.978623 + 0.205663i \(0.0659350\pi\)
−0.311202 + 0.950344i \(0.600732\pi\)
\(462\) −1.85641 6.92820i −0.0863678 0.322329i
\(463\) 16.3923i 0.761815i 0.924613 + 0.380908i \(0.124388\pi\)
−0.924613 + 0.380908i \(0.875612\pi\)
\(464\) 10.3923 + 6.00000i 0.482451 + 0.278543i
\(465\) 6.46410 11.1962i 0.299766 0.519209i
\(466\) 0 0
\(467\) 20.5359i 0.950288i 0.879908 + 0.475144i \(0.157604\pi\)
−0.879908 + 0.475144i \(0.842396\pi\)
\(468\) −4.92820 + 17.0718i −0.227806 + 0.789144i
\(469\) 25.1769i 1.16256i
\(470\) −25.1244 25.1244i −1.15890 1.15890i
\(471\) 1.43782 2.49038i 0.0662513 0.114751i
\(472\) 0.392305 1.46410i 0.0180573 0.0673907i
\(473\) 5.07180i 0.233201i
\(474\) −10.3923 + 2.78461i −0.477334 + 0.127901i
\(475\) −5.66025 9.80385i −0.259710 0.449831i
\(476\) −1.60770 + 2.78461i −0.0736886 + 0.127632i
\(477\) −8.38269 + 4.83975i −0.383817 + 0.221597i
\(478\) −18.3923 18.3923i −0.841244 0.841244i
\(479\) −25.3468 14.6340i −1.15812 0.668643i −0.207271 0.978284i \(-0.566458\pi\)
−0.950854 + 0.309640i \(0.899791\pi\)
\(480\) 14.9282 4.00000i 0.681376 0.182574i
\(481\) 3.69615 + 14.9378i 0.168530 + 0.681106i
\(482\) −4.09808 + 15.2942i −0.186662 + 0.696633i
\(483\) −10.3923 + 18.0000i −0.472866 + 0.819028i
\(484\) 12.1244 7.00000i 0.551107 0.318182i
\(485\) 19.3923 11.1962i 0.880559 0.508391i
\(486\) −5.58846 + 20.8564i −0.253498 + 0.946066i
\(487\) 20.1962 11.6603i 0.915175 0.528377i 0.0330824 0.999453i \(-0.489468\pi\)
0.882093 + 0.471076i \(0.156134\pi\)
\(488\) −2.73205 0.732051i −0.123674 0.0331384i
\(489\) 12.0000i 0.542659i
\(490\) −6.83013 25.4904i −0.308554 1.15154i
\(491\) 6.58846 + 3.80385i 0.297333 + 0.171665i 0.641244 0.767337i \(-0.278419\pi\)
−0.343911 + 0.939002i \(0.611752\pi\)
\(492\) 11.6603 6.73205i 0.525685 0.303504i
\(493\) 1.39230i 0.0627063i
\(494\) 5.66025 3.12436i 0.254667 0.140571i
\(495\) −18.3923 −0.826673
\(496\) 18.9282i 0.849901i
\(497\) −16.0526 + 27.8038i −0.720056 + 1.24717i
\(498\) −1.46410 + 0.392305i −0.0656080 + 0.0175796i
\(499\) −8.87564 −0.397328 −0.198664 0.980068i \(-0.563660\pi\)
−0.198664 + 0.980068i \(0.563660\pi\)
\(500\) 29.3205i 1.31125i
\(501\) 1.80385 + 3.12436i 0.0805900 + 0.139586i
\(502\) −3.00000 + 11.1962i −0.133897 + 0.499709i
\(503\) −4.39230 7.60770i −0.195843 0.339210i 0.751333 0.659923i \(-0.229411\pi\)
−0.947177 + 0.320712i \(0.896078\pi\)
\(504\) 6.24871 + 23.3205i 0.278340 + 1.03878i
\(505\) −37.2846 21.5263i −1.65914 0.957907i
\(506\) 22.3923 + 6.00000i 0.995459 + 0.266733i
\(507\) −5.07180 + 8.05256i −0.225246 + 0.357627i
\(508\) 0.588457 + 0.339746i 0.0261086 + 0.0150738i
\(509\) −3.93782 + 6.82051i −0.174541 + 0.302314i −0.940002 0.341168i \(-0.889177\pi\)
0.765461 + 0.643482i \(0.222511\pi\)
\(510\) −1.26795 1.26795i −0.0561457 0.0561457i
\(511\) −3.00000 5.19615i −0.132712 0.229864i
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) 4.39230 2.53590i 0.193925 0.111963i
\(514\) −8.36603 31.2224i −0.369010 1.37716i
\(515\) −23.1244 −1.01898
\(516\) 3.71281i 0.163447i
\(517\) 11.6603 + 6.73205i 0.512817 + 0.296075i
\(518\) 14.7846 + 14.7846i 0.649598 + 0.649598i
\(519\) −13.8564 −0.608229
\(520\) −38.0526 0.732051i −1.66872 0.0321026i
\(521\) 9.24871 0.405193 0.202597 0.979262i \(-0.435062\pi\)
0.202597 + 0.979262i \(0.435062\pi\)
\(522\) −7.39230 7.39230i −0.323552 0.323552i
\(523\) 0.803848 + 0.464102i 0.0351498 + 0.0202937i 0.517472 0.855700i \(-0.326873\pi\)
−0.482322 + 0.875994i \(0.660207\pi\)
\(524\) −21.4641 −0.937664
\(525\) 22.6410 0.988135
\(526\) −6.00000 22.3923i −0.261612 0.976351i
\(527\) 1.90192 1.09808i 0.0828491 0.0478330i
\(528\) −5.07180 + 2.92820i −0.220722 + 0.127434i
\(529\) −22.0885 38.2583i −0.960368 1.66341i
\(530\) −14.6603 14.6603i −0.636801 0.636801i
\(531\) −0.660254 + 1.14359i −0.0286526 + 0.0496277i
\(532\) 4.39230 7.60770i 0.190431 0.329835i
\(533\) −32.1865 + 7.96410i −1.39415 + 0.344964i
\(534\) 7.46410 + 2.00000i 0.323003 + 0.0865485i
\(535\) 57.0788 + 32.9545i 2.46773 + 1.42475i
\(536\) −19.8564 + 5.32051i −0.857666 + 0.229811i
\(537\) 5.07180 + 8.78461i 0.218864 + 0.379084i
\(538\) 3.46410 12.9282i 0.149348 0.557374i
\(539\) 5.00000 + 8.66025i 0.215365 + 0.373024i
\(540\) −29.8564 −1.28482
\(541\) −35.4449 −1.52389 −0.761947 0.647640i \(-0.775756\pi\)
−0.761947 + 0.647640i \(0.775756\pi\)
\(542\) 23.6603 6.33975i 1.01629 0.272315i
\(543\) −6.75833 + 11.7058i −0.290028 + 0.502343i
\(544\) 2.53590 + 0.679492i 0.108726 + 0.0291330i
\(545\) 22.3923 0.959181
\(546\) −0.248711 + 12.9282i −0.0106439 + 0.553276i
\(547\) 18.5885i 0.794785i −0.917649 0.397393i \(-0.869915\pi\)
0.917649 0.397393i \(-0.130085\pi\)
\(548\) 13.5885 + 23.5359i 0.580470 + 1.00540i
\(549\) 2.13397 + 1.23205i 0.0910758 + 0.0525826i
\(550\) −6.53590 24.3923i −0.278692 1.04009i
\(551\) 3.80385i 0.162049i
\(552\) 16.3923 + 4.39230i 0.697703 + 0.186949i
\(553\) 31.1769 18.0000i 1.32578 0.765438i
\(554\) 5.24167 19.5622i 0.222697 0.831117i
\(555\) −10.0981 + 5.83013i −0.428639 + 0.247475i
\(556\) 9.46410 + 16.3923i 0.401367 + 0.695189i
\(557\) 2.40192 4.16025i 0.101773 0.176276i −0.810642 0.585542i \(-0.800882\pi\)
0.912415 + 0.409266i \(0.134215\pi\)
\(558\) 4.26795 15.9282i 0.180677 0.674295i
\(559\) −2.53590 + 8.78461i −0.107257 + 0.371549i
\(560\) −44.7846 + 25.8564i −1.89250 + 1.09263i
\(561\) 0.588457 + 0.339746i 0.0248447 + 0.0143441i
\(562\) 10.6603 + 10.6603i 0.449676 + 0.449676i
\(563\) −13.9808 + 8.07180i −0.589219 + 0.340186i −0.764789 0.644281i \(-0.777157\pi\)
0.175570 + 0.984467i \(0.443823\pi\)
\(564\) 8.53590 + 4.92820i 0.359426 + 0.207515i
\(565\) −5.59808 9.69615i −0.235513 0.407920i
\(566\) 42.0526 11.2679i 1.76760 0.473627i
\(567\) 15.4641i 0.649431i
\(568\) 25.3205 + 6.78461i 1.06242 + 0.284676i
\(569\) 12.0000 20.7846i 0.503066 0.871336i −0.496928 0.867792i \(-0.665539\pi\)
0.999994 0.00354413i \(-0.00112814\pi\)
\(570\) 3.46410 + 3.46410i 0.145095 + 0.145095i
\(571\) 2.39230i 0.100115i 0.998746 + 0.0500574i \(0.0159404\pi\)
−0.998746 + 0.0500574i \(0.984060\pi\)
\(572\) 14.0000 3.46410i 0.585369 0.144841i
\(573\) 2.78461i 0.116329i
\(574\) −31.8564 + 31.8564i −1.32966 + 1.32966i
\(575\) −36.5885 + 63.3731i −1.52584 + 2.64284i
\(576\) 17.0718 9.85641i 0.711325 0.410684i
\(577\) 34.2679i 1.42659i 0.700862 + 0.713297i \(0.252799\pi\)
−0.700862 + 0.713297i \(0.747201\pi\)
\(578\) 6.14359 + 22.9282i 0.255540 + 0.953688i
\(579\) −4.77757 8.27499i −0.198549 0.343897i
\(580\) 11.1962 19.3923i 0.464895 0.805222i
\(581\) 4.39230 2.53590i 0.182224 0.105207i
\(582\) −4.39230 + 4.39230i −0.182067 + 0.182067i
\(583\) 6.80385 + 3.92820i 0.281787 + 0.162690i
\(584\) −3.46410 + 3.46410i −0.143346 + 0.143346i
\(585\) 31.8564 + 9.19615i 1.31710 + 0.380214i
\(586\) 3.83013 + 1.02628i 0.158221 + 0.0423952i
\(587\) 22.5885 39.1244i 0.932325 1.61483i 0.152990 0.988228i \(-0.451110\pi\)
0.779335 0.626607i \(-0.215557\pi\)
\(588\) 3.66025 + 6.33975i 0.150946 + 0.261447i
\(589\) −5.19615 + 3.00000i −0.214104 + 0.123613i
\(590\) −2.73205 0.732051i −0.112477 0.0301381i
\(591\) −7.94744 + 4.58846i −0.326914 + 0.188744i
\(592\) 8.53590 14.7846i 0.350823 0.607644i
\(593\) 1.58846i 0.0652301i −0.999468 0.0326151i \(-0.989616\pi\)
0.999468 0.0326151i \(-0.0103835\pi\)
\(594\) 10.9282 2.92820i 0.448390 0.120146i
\(595\) 5.19615 + 3.00000i 0.213021 + 0.122988i
\(596\) 20.3205 11.7321i 0.832360 0.480564i
\(597\) 11.0718i 0.453138i
\(598\) −35.7846 21.5885i −1.46334 0.882818i
\(599\) −13.2679 −0.542114 −0.271057 0.962563i \(-0.587373\pi\)
−0.271057 + 0.962563i \(0.587373\pi\)
\(600\) −4.78461 17.8564i −0.195331 0.728985i
\(601\) −13.0359 + 22.5788i −0.531745 + 0.921010i 0.467568 + 0.883957i \(0.345130\pi\)
−0.999313 + 0.0370529i \(0.988203\pi\)
\(602\) 3.21539 + 12.0000i 0.131050 + 0.489083i
\(603\) 17.9090 0.729309
\(604\) −4.39230 −0.178720
\(605\) −13.0622 22.6244i −0.531053 0.919811i
\(606\) 11.5359 + 3.09103i 0.468614 + 0.125565i
\(607\) −1.29423 2.24167i −0.0525311 0.0909866i 0.838564 0.544803i \(-0.183396\pi\)
−0.891095 + 0.453816i \(0.850062\pi\)
\(608\) −6.92820 1.85641i −0.280976 0.0752872i
\(609\) −6.58846 3.80385i −0.266978 0.154140i
\(610\) −1.36603 + 5.09808i −0.0553088 + 0.206415i
\(611\) −16.8301 17.4904i −0.680874 0.707585i
\(612\) −1.98076 1.14359i −0.0800676 0.0462270i
\(613\) −20.2583 + 35.0885i −0.818226 + 1.41721i 0.0887617 + 0.996053i \(0.471709\pi\)
−0.906988 + 0.421157i \(0.861624\pi\)
\(614\) 2.19615 2.19615i 0.0886295 0.0886295i
\(615\) −12.5622 21.7583i −0.506556 0.877381i
\(616\) 13.8564 13.8564i 0.558291 0.558291i
\(617\) 15.3564 8.86603i 0.618226 0.356933i −0.157952 0.987447i \(-0.550489\pi\)
0.776178 + 0.630514i \(0.217156\pi\)
\(618\) 6.19615 1.66025i 0.249246 0.0667852i
\(619\) 24.2487 0.974638 0.487319 0.873224i \(-0.337975\pi\)
0.487319 + 0.873224i \(0.337975\pi\)
\(620\) 35.3205 1.41851
\(621\) −28.3923 16.3923i −1.13934 0.657801i
\(622\) 18.5885 18.5885i 0.745329 0.745329i
\(623\) −25.8564 −1.03592
\(624\) 10.2487 2.53590i 0.410277 0.101517i
\(625\) 10.0718 0.402872
\(626\) 2.53590 2.53590i 0.101355 0.101355i
\(627\) −1.60770 0.928203i −0.0642052 0.0370689i
\(628\) 7.85641 0.313505
\(629\) −1.98076 −0.0789782
\(630\) 43.5167 11.6603i 1.73375 0.464556i
\(631\) −14.7846 + 8.53590i −0.588566 + 0.339809i −0.764530 0.644588i \(-0.777029\pi\)
0.175964 + 0.984397i \(0.443696\pi\)
\(632\) −20.7846 20.7846i −0.826767 0.826767i
\(633\) −10.4641 18.1244i −0.415911 0.720378i
\(634\) 25.1962 25.1962i 1.00067 1.00067i
\(635\) 0.633975 1.09808i 0.0251585 0.0435758i
\(636\) 4.98076 + 2.87564i 0.197500 + 0.114027i
\(637\) −4.33013 17.5000i −0.171566 0.693375i
\(638\) −2.19615 + 8.19615i −0.0869465 + 0.324489i
\(639\) −19.7776 11.4186i −0.782389 0.451712i
\(640\) 29.8564 + 29.8564i 1.18018 + 1.18018i
\(641\) 7.03590 + 12.1865i 0.277901 + 0.481339i 0.970863 0.239635i \(-0.0770279\pi\)
−0.692962 + 0.720974i \(0.743695\pi\)
\(642\) −17.6603 4.73205i −0.696995 0.186759i
\(643\) 19.3923 + 33.5885i 0.764758 + 1.32460i 0.940375 + 0.340141i \(0.110475\pi\)
−0.175617 + 0.984459i \(0.556192\pi\)
\(644\) −56.7846 −2.23763
\(645\) −6.92820 −0.272798
\(646\) 0.215390 + 0.803848i 0.00847442 + 0.0316270i
\(647\) −14.8301 + 25.6865i −0.583032 + 1.00984i 0.412085 + 0.911145i \(0.364801\pi\)
−0.995118 + 0.0986965i \(0.968533\pi\)
\(648\) −12.1962 + 3.26795i −0.479110 + 0.128377i
\(649\) 1.07180 0.0420717
\(650\) −0.875644 + 45.5167i −0.0343456 + 1.78531i
\(651\) 12.0000i 0.470317i
\(652\) 28.3923 16.3923i 1.11193 0.641972i
\(653\) 31.1769 + 18.0000i 1.22005 + 0.704394i 0.964928 0.262515i \(-0.0845520\pi\)
0.255119 + 0.966910i \(0.417885\pi\)
\(654\) −6.00000 + 1.60770i −0.234619 + 0.0628659i
\(655\) 40.0526i 1.56498i
\(656\) 31.8564 + 18.3923i 1.24378 + 0.718099i
\(657\) 3.69615 2.13397i 0.144201 0.0832543i
\(658\) −31.8564 8.53590i −1.24189 0.332764i
\(659\) −26.7846 + 15.4641i −1.04338 + 0.602396i −0.920789 0.390061i \(-0.872454\pi\)
−0.122591 + 0.992457i \(0.539120\pi\)
\(660\) 5.46410 + 9.46410i 0.212690 + 0.368390i
\(661\) −6.06218 + 10.5000i −0.235791 + 0.408403i −0.959502 0.281701i \(-0.909102\pi\)
0.723711 + 0.690103i \(0.242435\pi\)
\(662\) 16.3923 + 4.39230i 0.637105 + 0.170712i
\(663\) −0.849365 0.882686i −0.0329866 0.0342807i
\(664\) −2.92820 2.92820i −0.113636 0.113636i
\(665\) −14.1962 8.19615i −0.550503 0.317833i
\(666\) −10.5167 + 10.5167i −0.407512 + 0.407512i
\(667\) 21.2942 12.2942i 0.824516 0.476034i
\(668\) −4.92820 + 8.53590i −0.190678 + 0.330264i
\(669\) 9.33975 + 16.1769i 0.361095 + 0.625436i
\(670\) 9.92820 + 37.0526i 0.383560 + 1.43147i
\(671\) 2.00000i 0.0772091i
\(672\) 10.1436 10.1436i 0.391298 0.391298i
\(673\) 5.50000 9.52628i 0.212009 0.367211i −0.740334 0.672239i \(-0.765333\pi\)
0.952343 + 0.305028i \(0.0986659\pi\)
\(674\) 33.2487 33.2487i 1.28069 1.28069i
\(675\) 35.7128i 1.37459i
\(676\) −25.9808 1.00000i −0.999260 0.0384615i
\(677\) 7.85641i 0.301946i 0.988538 + 0.150973i \(0.0482407\pi\)
−0.988538 + 0.150973i \(0.951759\pi\)
\(678\) 2.19615 + 2.19615i 0.0843427 + 0.0843427i
\(679\) 10.3923 18.0000i 0.398820 0.690777i
\(680\) 1.26795 4.73205i 0.0486236 0.181466i
\(681\) 19.0718i 0.730833i
\(682\) −12.9282 + 3.46410i −0.495046 + 0.132647i
\(683\) −5.63397 9.75833i −0.215578 0.373392i 0.737873 0.674939i \(-0.235830\pi\)
−0.953451 + 0.301547i \(0.902497\pi\)
\(684\) 5.41154 + 3.12436i 0.206916 + 0.119463i
\(685\) 43.9186 25.3564i 1.67804 0.968818i
\(686\) 6.92820 + 6.92820i 0.264520 + 0.264520i
\(687\) 8.19615 + 4.73205i 0.312703 + 0.180539i
\(688\) 8.78461 5.07180i 0.334910 0.193360i
\(689\) −9.82051 10.2058i −0.374132 0.388809i
\(690\) 8.19615 30.5885i 0.312022 1.16448i
\(691\) −9.00000 + 15.5885i −0.342376 + 0.593013i −0.984873 0.173275i \(-0.944565\pi\)
0.642497 + 0.766288i \(0.277898\pi\)
\(692\) −18.9282 32.7846i −0.719542 1.24628i
\(693\) −14.7846 + 8.53590i −0.561621 + 0.324252i
\(694\) −0.464102 + 1.73205i −0.0176171 + 0.0657477i
\(695\) 30.5885 17.6603i 1.16029 0.669892i
\(696\) −1.60770 + 6.00000i −0.0609395 + 0.227429i
\(697\) 4.26795i 0.161660i
\(698\) −1.94744 7.26795i −0.0737117 0.275096i
\(699\) 0 0
\(700\) 30.9282 + 53.5692i 1.16898 + 2.02473i
\(701\) 8.78461i 0.331790i −0.986143 0.165895i \(-0.946949\pi\)
0.986143 0.165895i \(-0.0530513\pi\)
\(702\) −20.3923 0.392305i −0.769658 0.0148066i
\(703\) 5.41154 0.204100
\(704\) −13.8564 8.00000i −0.522233 0.301511i
\(705\) 9.19615 15.9282i 0.346347 0.599891i
\(706\) 24.9545 6.68653i 0.939174 0.251651i
\(707\) −39.9615 −1.50291
\(708\) 0.784610 0.0294874
\(709\) −20.5981 35.6769i −0.773577 1.33987i −0.935591 0.353086i \(-0.885132\pi\)
0.162014 0.986788i \(-0.448201\pi\)
\(710\) 12.6603 47.2487i 0.475131 1.77321i
\(711\) 12.8038 + 22.1769i 0.480182 + 0.831699i
\(712\) 5.46410 + 20.3923i 0.204776 + 0.764234i
\(713\) 33.5885 + 19.3923i 1.25790 + 0.726248i
\(714\) −1.60770 0.430781i −0.0601665 0.0161216i
\(715\) −6.46410 26.1244i −0.241744 0.976996i
\(716\) −13.8564 + 24.0000i −0.517838 + 0.896922i
\(717\) 6.73205 11.6603i 0.251413 0.435460i
\(718\) −13.0718 13.0718i −0.487835 0.487835i
\(719\) 16.8564 + 29.1962i 0.628638 + 1.08883i 0.987825 + 0.155567i \(0.0497206\pi\)
−0.359187 + 0.933265i \(0.616946\pi\)
\(720\) −18.3923 31.8564i −0.685441 1.18722i
\(721\) −18.5885 + 10.7321i −0.692270 + 0.399682i
\(722\) 6.36603 + 23.7583i 0.236919 + 0.884193i
\(723\) −8.19615 −0.304818
\(724\) −36.9282 −1.37243
\(725\) −23.1962 13.3923i −0.861483 0.497378i
\(726\) 5.12436 + 5.12436i 0.190183 + 0.190183i
\(727\) −13.6077 −0.504681 −0.252341 0.967638i \(-0.581200\pi\)
−0.252341 + 0.967638i \(0.581200\pi\)
\(728\) −30.9282 + 17.0718i −1.14628 + 0.632723i
\(729\) 2.21539 0.0820515
\(730\) 6.46410 + 6.46410i 0.239247 + 0.239247i
\(731\) −1.01924 0.588457i −0.0376979 0.0217649i
\(732\) 1.46410i 0.0541148i
\(733\) −4.94744 −0.182738 −0.0913690 0.995817i \(-0.529124\pi\)
−0.0913690 + 0.995817i \(0.529124\pi\)
\(734\) 10.3205 + 38.5167i 0.380937 + 1.42168i
\(735\) 11.8301 6.83013i 0.436361 0.251933i
\(736\) 12.0000 + 44.7846i 0.442326 + 1.65078i
\(737\) −7.26795 12.5885i −0.267718 0.463702i
\(738\) −22.6603 22.6603i −0.834135 0.834135i
\(739\) −9.46410 + 16.3923i −0.348143 + 0.603001i −0.985920 0.167220i \(-0.946521\pi\)
0.637777 + 0.770221i \(0.279854\pi\)
\(740\) −27.5885 15.9282i −1.01417 0.585532i
\(741\) 2.32051 + 2.41154i 0.0852460 + 0.0885902i
\(742\) −18.5885 4.98076i −0.682404 0.182850i
\(743\) 4.73205 + 2.73205i 0.173602 + 0.100229i 0.584283 0.811550i \(-0.301376\pi\)
−0.410681 + 0.911779i \(0.634709\pi\)
\(744\) −9.46410 + 2.53590i −0.346971 + 0.0929705i
\(745\) −21.8923 37.9186i −0.802072 1.38923i
\(746\) 9.43782 35.2224i 0.345543 1.28958i
\(747\) 1.80385 + 3.12436i 0.0659993 + 0.114314i
\(748\) 1.85641i 0.0678769i
\(749\) 61.1769 2.23536
\(750\) −14.6603 + 3.92820i −0.535317 + 0.143438i
\(751\) 18.1962 31.5167i 0.663987 1.15006i −0.315572 0.948902i \(-0.602196\pi\)
0.979559 0.201158i \(-0.0644703\pi\)
\(752\) 26.9282i 0.981971i
\(753\) −6.00000 −0.218652
\(754\) 7.90192 13.0981i 0.287771 0.477004i
\(755\) 8.19615i 0.298289i
\(756\) −24.0000 + 13.8564i −0.872872 + 0.503953i
\(757\) 18.3397 + 10.5885i 0.666569 + 0.384844i 0.794776 0.606904i \(-0.207589\pi\)
−0.128206 + 0.991748i \(0.540922\pi\)
\(758\) 8.07180 + 30.1244i 0.293181 + 1.09417i
\(759\) 12.0000i 0.435572i
\(760\) −3.46410 + 12.9282i −0.125656 + 0.468955i
\(761\) −10.8564 + 6.26795i −0.393544 + 0.227213i −0.683695 0.729768i \(-0.739628\pi\)
0.290150 + 0.956981i \(0.406295\pi\)
\(762\) −0.0910347 + 0.339746i −0.00329784 + 0.0123077i
\(763\) 18.0000 10.3923i 0.651644 0.376227i
\(764\) −6.58846 + 3.80385i −0.238362 + 0.137618i
\(765\) −2.13397 + 3.69615i −0.0771540 + 0.133635i
\(766\) −7.32051 + 27.3205i −0.264501 + 0.987130i
\(767\) −1.85641 0.535898i −0.0670310 0.0193502i