Properties

Label 104.2.s.a.69.1
Level $104$
Weight $2$
Character 104.69
Analytic conductor $0.830$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,2,Mod(69,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 69.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 104.69
Dual form 104.2.s.a.101.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +(-2.36603 - 1.36603i) q^{3} +2.00000i q^{4} -0.267949 q^{5} +(1.00000 + 3.73205i) q^{6} +(-3.00000 + 1.73205i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.23205 + 3.86603i) q^{9} +(0.267949 + 0.267949i) q^{10} +(-1.00000 + 1.73205i) q^{11} +(2.73205 - 4.73205i) q^{12} +(-2.59808 + 2.50000i) q^{13} +(4.73205 + 1.26795i) q^{14} +(0.633975 + 0.366025i) q^{15} -4.00000 q^{16} +(-3.23205 - 5.59808i) q^{17} +(1.63397 - 6.09808i) q^{18} +(-2.36603 - 4.09808i) q^{19} -0.535898i q^{20} +9.46410 q^{21} +(2.73205 - 0.732051i) q^{22} +(1.09808 - 1.90192i) q^{23} +(-7.46410 + 2.00000i) q^{24} -4.92820 q^{25} +(5.09808 + 0.0980762i) q^{26} -4.00000i q^{27} +(-3.46410 - 6.00000i) q^{28} +(2.59808 + 1.50000i) q^{29} +(-0.267949 - 1.00000i) q^{30} +1.26795i q^{31} +(4.00000 + 4.00000i) q^{32} +(4.73205 - 2.73205i) q^{33} +(-2.36603 + 8.83013i) q^{34} +(0.803848 - 0.464102i) q^{35} +(-7.73205 + 4.46410i) q^{36} +(-3.86603 + 6.69615i) q^{37} +(-1.73205 + 6.46410i) q^{38} +(9.56218 - 2.36603i) q^{39} +(-0.535898 + 0.535898i) q^{40} +(-1.03590 - 0.598076i) q^{41} +(-9.46410 - 9.46410i) q^{42} +(8.19615 - 4.73205i) q^{43} +(-3.46410 - 2.00000i) q^{44} +(-0.598076 - 1.03590i) q^{45} +(-3.00000 + 0.803848i) q^{46} +3.26795i q^{47} +(9.46410 + 5.46410i) q^{48} +(2.50000 - 4.33013i) q^{49} +(4.92820 + 4.92820i) q^{50} +17.6603i q^{51} +(-5.00000 - 5.19615i) q^{52} -9.92820i q^{53} +(-4.00000 + 4.00000i) q^{54} +(0.267949 - 0.464102i) q^{55} +(-2.53590 + 9.46410i) q^{56} +12.9282i q^{57} +(-1.09808 - 4.09808i) q^{58} +(-3.73205 - 6.46410i) q^{59} +(-0.732051 + 1.26795i) q^{60} +(0.866025 - 0.500000i) q^{61} +(1.26795 - 1.26795i) q^{62} +(-13.3923 - 7.73205i) q^{63} -8.00000i q^{64} +(0.696152 - 0.669873i) q^{65} +(-7.46410 - 2.00000i) q^{66} +(-5.36603 + 9.29423i) q^{67} +(11.1962 - 6.46410i) q^{68} +(-5.19615 + 3.00000i) q^{69} +(-1.26795 - 0.339746i) q^{70} +(-11.0263 + 6.36603i) q^{71} +(12.1962 + 3.26795i) q^{72} +1.73205i q^{73} +(10.5622 - 2.83013i) q^{74} +(11.6603 + 6.73205i) q^{75} +(8.19615 - 4.73205i) q^{76} -6.92820i q^{77} +(-11.9282 - 7.19615i) q^{78} +10.3923 q^{79} +1.07180 q^{80} +(1.23205 - 2.13397i) q^{81} +(0.437822 + 1.63397i) q^{82} +5.46410 q^{83} +18.9282i q^{84} +(0.866025 + 1.50000i) q^{85} +(-12.9282 - 3.46410i) q^{86} +(-4.09808 - 7.09808i) q^{87} +(1.46410 + 5.46410i) q^{88} +(-0.464102 - 0.267949i) q^{89} +(-0.437822 + 1.63397i) q^{90} +(3.46410 - 12.0000i) q^{91} +(3.80385 + 2.19615i) q^{92} +(1.73205 - 3.00000i) q^{93} +(3.26795 - 3.26795i) q^{94} +(0.633975 + 1.09808i) q^{95} +(-4.00000 - 14.9282i) q^{96} +(5.19615 - 3.00000i) q^{97} +(-6.83013 + 1.83013i) q^{98} -8.92820 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 6 q^{3} - 8 q^{5} + 4 q^{6} - 12 q^{7} + 8 q^{8} + 2 q^{9} + 8 q^{10} - 4 q^{11} + 4 q^{12} + 12 q^{14} + 6 q^{15} - 16 q^{16} - 6 q^{17} + 10 q^{18} - 6 q^{19} + 24 q^{21} + 4 q^{22} - 6 q^{23}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.707107 0.707107i
\(3\) −2.36603 1.36603i −1.36603 0.788675i −0.375608 0.926779i \(-0.622566\pi\)
−0.990418 + 0.138104i \(0.955899\pi\)
\(4\) 2.00000i 1.00000i
\(5\) −0.267949 −0.119831 −0.0599153 0.998203i \(-0.519083\pi\)
−0.0599153 + 0.998203i \(0.519083\pi\)
\(6\) 1.00000 + 3.73205i 0.408248 + 1.52360i
\(7\) −3.00000 + 1.73205i −1.13389 + 0.654654i −0.944911 0.327327i \(-0.893852\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) 2.23205 + 3.86603i 0.744017 + 1.28868i
\(10\) 0.267949 + 0.267949i 0.0847330 + 0.0847330i
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) 2.73205 4.73205i 0.788675 1.36603i
\(13\) −2.59808 + 2.50000i −0.720577 + 0.693375i
\(14\) 4.73205 + 1.26795i 1.26469 + 0.338874i
\(15\) 0.633975 + 0.366025i 0.163692 + 0.0945074i
\(16\) −4.00000 −1.00000
\(17\) −3.23205 5.59808i −0.783887 1.35773i −0.929661 0.368415i \(-0.879901\pi\)
0.145774 0.989318i \(-0.453433\pi\)
\(18\) 1.63397 6.09808i 0.385132 1.43733i
\(19\) −2.36603 4.09808i −0.542803 0.940163i −0.998742 0.0501517i \(-0.984030\pi\)
0.455938 0.890011i \(-0.349304\pi\)
\(20\) 0.535898i 0.119831i
\(21\) 9.46410 2.06524
\(22\) 2.73205 0.732051i 0.582475 0.156074i
\(23\) 1.09808 1.90192i 0.228965 0.396579i −0.728537 0.685007i \(-0.759799\pi\)
0.957502 + 0.288428i \(0.0931326\pi\)
\(24\) −7.46410 + 2.00000i −1.52360 + 0.408248i
\(25\) −4.92820 −0.985641
\(26\) 5.09808 + 0.0980762i 0.999815 + 0.0192343i
\(27\) 4.00000i 0.769800i
\(28\) −3.46410 6.00000i −0.654654 1.13389i
\(29\) 2.59808 + 1.50000i 0.482451 + 0.278543i 0.721437 0.692480i \(-0.243482\pi\)
−0.238987 + 0.971023i \(0.576815\pi\)
\(30\) −0.267949 1.00000i −0.0489206 0.182574i
\(31\) 1.26795i 0.227730i 0.993496 + 0.113865i \(0.0363232\pi\)
−0.993496 + 0.113865i \(0.963677\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 4.73205 2.73205i 0.823744 0.475589i
\(34\) −2.36603 + 8.83013i −0.405770 + 1.51435i
\(35\) 0.803848 0.464102i 0.135875 0.0784475i
\(36\) −7.73205 + 4.46410i −1.28868 + 0.744017i
\(37\) −3.86603 + 6.69615i −0.635571 + 1.10084i 0.350823 + 0.936442i \(0.385902\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) −1.73205 + 6.46410i −0.280976 + 1.04862i
\(39\) 9.56218 2.36603i 1.53117 0.378867i
\(40\) −0.535898 + 0.535898i −0.0847330 + 0.0847330i
\(41\) −1.03590 0.598076i −0.161780 0.0934038i 0.416924 0.908941i \(-0.363108\pi\)
−0.578704 + 0.815538i \(0.696441\pi\)
\(42\) −9.46410 9.46410i −1.46034 1.46034i
\(43\) 8.19615 4.73205i 1.24990 0.721631i 0.278812 0.960346i \(-0.410059\pi\)
0.971090 + 0.238715i \(0.0767261\pi\)
\(44\) −3.46410 2.00000i −0.522233 0.301511i
\(45\) −0.598076 1.03590i −0.0891559 0.154423i
\(46\) −3.00000 + 0.803848i −0.442326 + 0.118521i
\(47\) 3.26795i 0.476679i 0.971182 + 0.238340i \(0.0766032\pi\)
−0.971182 + 0.238340i \(0.923397\pi\)
\(48\) 9.46410 + 5.46410i 1.36603 + 0.788675i
\(49\) 2.50000 4.33013i 0.357143 0.618590i
\(50\) 4.92820 + 4.92820i 0.696953 + 0.696953i
\(51\) 17.6603i 2.47293i
\(52\) −5.00000 5.19615i −0.693375 0.720577i
\(53\) 9.92820i 1.36374i −0.731472 0.681872i \(-0.761166\pi\)
0.731472 0.681872i \(-0.238834\pi\)
\(54\) −4.00000 + 4.00000i −0.544331 + 0.544331i
\(55\) 0.267949 0.464102i 0.0361303 0.0625794i
\(56\) −2.53590 + 9.46410i −0.338874 + 1.26469i
\(57\) 12.9282i 1.71238i
\(58\) −1.09808 4.09808i −0.144184 0.538104i
\(59\) −3.73205 6.46410i −0.485872 0.841554i 0.513997 0.857792i \(-0.328164\pi\)
−0.999868 + 0.0162379i \(0.994831\pi\)
\(60\) −0.732051 + 1.26795i −0.0945074 + 0.163692i
\(61\) 0.866025 0.500000i 0.110883 0.0640184i −0.443533 0.896258i \(-0.646275\pi\)
0.554416 + 0.832240i \(0.312942\pi\)
\(62\) 1.26795 1.26795i 0.161030 0.161030i
\(63\) −13.3923 7.73205i −1.68727 0.974147i
\(64\) 8.00000i 1.00000i
\(65\) 0.696152 0.669873i 0.0863471 0.0830875i
\(66\) −7.46410 2.00000i −0.918767 0.246183i
\(67\) −5.36603 + 9.29423i −0.655564 + 1.13547i 0.326188 + 0.945305i \(0.394236\pi\)
−0.981752 + 0.190166i \(0.939097\pi\)
\(68\) 11.1962 6.46410i 1.35773 0.783887i
\(69\) −5.19615 + 3.00000i −0.625543 + 0.361158i
\(70\) −1.26795 0.339746i −0.151549 0.0406074i
\(71\) −11.0263 + 6.36603i −1.30858 + 0.755508i −0.981859 0.189613i \(-0.939277\pi\)
−0.326720 + 0.945121i \(0.605943\pi\)
\(72\) 12.1962 + 3.26795i 1.43733 + 0.385132i
\(73\) 1.73205i 0.202721i 0.994850 + 0.101361i \(0.0323196\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) 10.5622 2.83013i 1.22783 0.328996i
\(75\) 11.6603 + 6.73205i 1.34641 + 0.777350i
\(76\) 8.19615 4.73205i 0.940163 0.542803i
\(77\) 6.92820i 0.789542i
\(78\) −11.9282 7.19615i −1.35060 0.814804i
\(79\) 10.3923 1.16923 0.584613 0.811312i \(-0.301246\pi\)
0.584613 + 0.811312i \(0.301246\pi\)
\(80\) 1.07180 0.119831
\(81\) 1.23205 2.13397i 0.136895 0.237108i
\(82\) 0.437822 + 1.63397i 0.0483494 + 0.180442i
\(83\) 5.46410 0.599763 0.299882 0.953976i \(-0.403053\pi\)
0.299882 + 0.953976i \(0.403053\pi\)
\(84\) 18.9282i 2.06524i
\(85\) 0.866025 + 1.50000i 0.0939336 + 0.162698i
\(86\) −12.9282 3.46410i −1.39408 0.373544i
\(87\) −4.09808 7.09808i −0.439360 0.760994i
\(88\) 1.46410 + 5.46410i 0.156074 + 0.582475i
\(89\) −0.464102 0.267949i −0.0491947 0.0284026i 0.475201 0.879877i \(-0.342375\pi\)
−0.524396 + 0.851475i \(0.675709\pi\)
\(90\) −0.437822 + 1.63397i −0.0461505 + 0.172236i
\(91\) 3.46410 12.0000i 0.363137 1.25794i
\(92\) 3.80385 + 2.19615i 0.396579 + 0.228965i
\(93\) 1.73205 3.00000i 0.179605 0.311086i
\(94\) 3.26795 3.26795i 0.337063 0.337063i
\(95\) 0.633975 + 1.09808i 0.0650444 + 0.112660i
\(96\) −4.00000 14.9282i −0.408248 1.52360i
\(97\) 5.19615 3.00000i 0.527589 0.304604i −0.212445 0.977173i \(-0.568143\pi\)
0.740034 + 0.672569i \(0.234809\pi\)
\(98\) −6.83013 + 1.83013i −0.689947 + 0.184871i
\(99\) −8.92820 −0.897318
\(100\) 9.85641i 0.985641i
\(101\) −15.9904 9.23205i −1.59110 0.918623i −0.993118 0.117115i \(-0.962635\pi\)
−0.597984 0.801508i \(-0.704031\pi\)
\(102\) 17.6603 17.6603i 1.74863 1.74863i
\(103\) −4.19615 −0.413459 −0.206730 0.978398i \(-0.566282\pi\)
−0.206730 + 0.978398i \(0.566282\pi\)
\(104\) −0.196152 + 10.1962i −0.0192343 + 0.999815i
\(105\) −2.53590 −0.247478
\(106\) −9.92820 + 9.92820i −0.964312 + 0.964312i
\(107\) 0.294229 + 0.169873i 0.0284442 + 0.0164222i 0.514155 0.857697i \(-0.328106\pi\)
−0.485710 + 0.874120i \(0.661439\pi\)
\(108\) 8.00000 0.769800
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) −0.732051 + 0.196152i −0.0697983 + 0.0187024i
\(111\) 18.2942 10.5622i 1.73641 1.00252i
\(112\) 12.0000 6.92820i 1.13389 0.654654i
\(113\) 1.50000 + 2.59808i 0.141108 + 0.244406i 0.927914 0.372794i \(-0.121600\pi\)
−0.786806 + 0.617200i \(0.788267\pi\)
\(114\) 12.9282 12.9282i 1.21084 1.21084i
\(115\) −0.294229 + 0.509619i −0.0274370 + 0.0475222i
\(116\) −3.00000 + 5.19615i −0.278543 + 0.482451i
\(117\) −15.4641 4.46410i −1.42966 0.412706i
\(118\) −2.73205 + 10.1962i −0.251506 + 0.938632i
\(119\) 19.3923 + 11.1962i 1.77769 + 1.02635i
\(120\) 2.00000 0.535898i 0.182574 0.0489206i
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) −1.36603 0.366025i −0.123674 0.0331384i
\(123\) 1.63397 + 2.83013i 0.147331 + 0.255184i
\(124\) −2.53590 −0.227730
\(125\) 2.66025 0.237940
\(126\) 5.66025 + 21.1244i 0.504256 + 1.88191i
\(127\) −8.83013 + 15.2942i −0.783547 + 1.35714i 0.146316 + 0.989238i \(0.453258\pi\)
−0.929863 + 0.367905i \(0.880075\pi\)
\(128\) −8.00000 + 8.00000i −0.707107 + 0.707107i
\(129\) −25.8564 −2.27653
\(130\) −1.36603 0.0262794i −0.119808 0.00230486i
\(131\) 7.26795i 0.635004i 0.948258 + 0.317502i \(0.102844\pi\)
−0.948258 + 0.317502i \(0.897156\pi\)
\(132\) 5.46410 + 9.46410i 0.475589 + 0.823744i
\(133\) 14.1962 + 8.19615i 1.23096 + 0.710697i
\(134\) 14.6603 3.92820i 1.26645 0.339345i
\(135\) 1.07180i 0.0922456i
\(136\) −17.6603 4.73205i −1.51435 0.405770i
\(137\) −15.2321 + 8.79423i −1.30136 + 0.751342i −0.980638 0.195831i \(-0.937260\pi\)
−0.320724 + 0.947173i \(0.603926\pi\)
\(138\) 8.19615 + 2.19615i 0.697703 + 0.186949i
\(139\) 2.19615 1.26795i 0.186275 0.107546i −0.403962 0.914776i \(-0.632367\pi\)
0.590238 + 0.807230i \(0.299034\pi\)
\(140\) 0.928203 + 1.60770i 0.0784475 + 0.135875i
\(141\) 4.46410 7.73205i 0.375945 0.651156i
\(142\) 17.3923 + 4.66025i 1.45953 + 0.391080i
\(143\) −1.73205 7.00000i −0.144841 0.585369i
\(144\) −8.92820 15.4641i −0.744017 1.28868i
\(145\) −0.696152 0.401924i −0.0578123 0.0333780i
\(146\) 1.73205 1.73205i 0.143346 0.143346i
\(147\) −11.8301 + 6.83013i −0.975732 + 0.563339i
\(148\) −13.3923 7.73205i −1.10084 0.635571i
\(149\) 4.13397 + 7.16025i 0.338668 + 0.586591i 0.984183 0.177157i \(-0.0566902\pi\)
−0.645514 + 0.763748i \(0.723357\pi\)
\(150\) −4.92820 18.3923i −0.402386 1.50173i
\(151\) 8.19615i 0.666993i −0.942751 0.333497i \(-0.891771\pi\)
0.942751 0.333497i \(-0.108229\pi\)
\(152\) −12.9282 3.46410i −1.04862 0.280976i
\(153\) 14.4282 24.9904i 1.16645 2.02035i
\(154\) −6.92820 + 6.92820i −0.558291 + 0.558291i
\(155\) 0.339746i 0.0272891i
\(156\) 4.73205 + 19.1244i 0.378867 + 1.53117i
\(157\) 9.92820i 0.792357i 0.918174 + 0.396178i \(0.129664\pi\)
−0.918174 + 0.396178i \(0.870336\pi\)
\(158\) −10.3923 10.3923i −0.826767 0.826767i
\(159\) −13.5622 + 23.4904i −1.07555 + 1.86291i
\(160\) −1.07180 1.07180i −0.0847330 0.0847330i
\(161\) 7.60770i 0.599570i
\(162\) −3.36603 + 0.901924i −0.264460 + 0.0708618i
\(163\) −2.19615 3.80385i −0.172016 0.297940i 0.767109 0.641517i \(-0.221695\pi\)
−0.939125 + 0.343577i \(0.888361\pi\)
\(164\) 1.19615 2.07180i 0.0934038 0.161780i
\(165\) −1.26795 + 0.732051i −0.0987097 + 0.0569901i
\(166\) −5.46410 5.46410i −0.424097 0.424097i
\(167\) −7.73205 4.46410i −0.598324 0.345443i 0.170058 0.985434i \(-0.445605\pi\)
−0.768382 + 0.639992i \(0.778938\pi\)
\(168\) 18.9282 18.9282i 1.46034 1.46034i
\(169\) 0.500000 12.9904i 0.0384615 0.999260i
\(170\) 0.633975 2.36603i 0.0486236 0.181466i
\(171\) 10.5622 18.2942i 0.807710 1.39899i
\(172\) 9.46410 + 16.3923i 0.721631 + 1.24990i
\(173\) −4.39230 + 2.53590i −0.333941 + 0.192801i −0.657589 0.753377i \(-0.728424\pi\)
0.323649 + 0.946177i \(0.395090\pi\)
\(174\) −3.00000 + 11.1962i −0.227429 + 0.848778i
\(175\) 14.7846 8.53590i 1.11761 0.645253i
\(176\) 4.00000 6.92820i 0.301511 0.522233i
\(177\) 20.3923i 1.53278i
\(178\) 0.196152 + 0.732051i 0.0147022 + 0.0548695i
\(179\) −12.0000 6.92820i −0.896922 0.517838i −0.0207218 0.999785i \(-0.506596\pi\)
−0.876200 + 0.481947i \(0.839930\pi\)
\(180\) 2.07180 1.19615i 0.154423 0.0891559i
\(181\) 11.5359i 0.857457i 0.903433 + 0.428728i \(0.141038\pi\)
−0.903433 + 0.428728i \(0.858962\pi\)
\(182\) −15.4641 + 8.53590i −1.14628 + 0.632723i
\(183\) −2.73205 −0.201959
\(184\) −1.60770 6.00000i −0.118521 0.442326i
\(185\) 1.03590 1.79423i 0.0761608 0.131914i
\(186\) −4.73205 + 1.26795i −0.346971 + 0.0929705i
\(187\) 12.9282 0.945404
\(188\) −6.53590 −0.476679
\(189\) 6.92820 + 12.0000i 0.503953 + 0.872872i
\(190\) 0.464102 1.73205i 0.0336695 0.125656i
\(191\) −7.09808 12.2942i −0.513599 0.889579i −0.999876 0.0157743i \(-0.994979\pi\)
0.486277 0.873805i \(-0.338355\pi\)
\(192\) −10.9282 + 18.9282i −0.788675 + 1.36603i
\(193\) 21.6962 + 12.5263i 1.56172 + 0.901661i 0.997083 + 0.0763241i \(0.0243184\pi\)
0.564640 + 0.825337i \(0.309015\pi\)
\(194\) −8.19615 2.19615i −0.588449 0.157675i
\(195\) −2.56218 + 0.633975i −0.183481 + 0.0453999i
\(196\) 8.66025 + 5.00000i 0.618590 + 0.357143i
\(197\) 9.73205 16.8564i 0.693380 1.20097i −0.277344 0.960771i \(-0.589454\pi\)
0.970724 0.240199i \(-0.0772125\pi\)
\(198\) 8.92820 + 8.92820i 0.634500 + 0.634500i
\(199\) −4.56218 7.90192i −0.323404 0.560153i 0.657784 0.753207i \(-0.271494\pi\)
−0.981188 + 0.193054i \(0.938161\pi\)
\(200\) −9.85641 + 9.85641i −0.696953 + 0.696953i
\(201\) 25.3923 14.6603i 1.79104 1.03405i
\(202\) 6.75833 + 25.2224i 0.475514 + 1.77464i
\(203\) −10.3923 −0.729397
\(204\) −35.3205 −2.47293
\(205\) 0.277568 + 0.160254i 0.0193862 + 0.0111926i
\(206\) 4.19615 + 4.19615i 0.292360 + 0.292360i
\(207\) 9.80385 0.681415
\(208\) 10.3923 10.0000i 0.720577 0.693375i
\(209\) 9.46410 0.654646
\(210\) 2.53590 + 2.53590i 0.174994 + 0.174994i
\(211\) 2.24167 + 1.29423i 0.154323 + 0.0890984i 0.575173 0.818032i \(-0.304935\pi\)
−0.420850 + 0.907130i \(0.638268\pi\)
\(212\) 19.8564 1.36374
\(213\) 34.7846 2.38340
\(214\) −0.124356 0.464102i −0.00850078 0.0317253i
\(215\) −2.19615 + 1.26795i −0.149776 + 0.0864734i
\(216\) −8.00000 8.00000i −0.544331 0.544331i
\(217\) −2.19615 3.80385i −0.149085 0.258222i
\(218\) 6.00000 + 6.00000i 0.406371 + 0.406371i
\(219\) 2.36603 4.09808i 0.159881 0.276922i
\(220\) 0.928203 + 0.535898i 0.0625794 + 0.0361303i
\(221\) 22.3923 + 6.46410i 1.50627 + 0.434823i
\(222\) −28.8564 7.73205i −1.93672 0.518941i
\(223\) −16.9019 9.75833i −1.13184 0.653466i −0.187440 0.982276i \(-0.560019\pi\)
−0.944396 + 0.328810i \(0.893352\pi\)
\(224\) −18.9282 5.07180i −1.26469 0.338874i
\(225\) −11.0000 19.0526i −0.733333 1.27017i
\(226\) 1.09808 4.09808i 0.0730429 0.272600i
\(227\) 6.02628 + 10.4378i 0.399978 + 0.692783i 0.993723 0.111871i \(-0.0356844\pi\)
−0.593745 + 0.804654i \(0.702351\pi\)
\(228\) −25.8564 −1.71238
\(229\) 0.928203 0.0613374 0.0306687 0.999530i \(-0.490236\pi\)
0.0306687 + 0.999530i \(0.490236\pi\)
\(230\) 0.803848 0.215390i 0.0530041 0.0142024i
\(231\) −9.46410 + 16.3923i −0.622692 + 1.07853i
\(232\) 8.19615 2.19615i 0.538104 0.144184i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 11.0000 + 19.9282i 0.719092 + 1.30275i
\(235\) 0.875644i 0.0571207i
\(236\) 12.9282 7.46410i 0.841554 0.485872i
\(237\) −24.5885 14.1962i −1.59719 0.922139i
\(238\) −8.19615 30.5885i −0.531278 1.98276i
\(239\) 2.39230i 0.154745i 0.997002 + 0.0773727i \(0.0246531\pi\)
−0.997002 + 0.0773727i \(0.975347\pi\)
\(240\) −2.53590 1.46410i −0.163692 0.0945074i
\(241\) −0.696152 + 0.401924i −0.0448431 + 0.0258902i −0.522254 0.852790i \(-0.674909\pi\)
0.477411 + 0.878680i \(0.341575\pi\)
\(242\) 2.56218 9.56218i 0.164703 0.614680i
\(243\) −16.2224 + 9.36603i −1.04067 + 0.600831i
\(244\) 1.00000 + 1.73205i 0.0640184 + 0.110883i
\(245\) −0.669873 + 1.16025i −0.0427966 + 0.0741259i
\(246\) 1.19615 4.46410i 0.0762639 0.284621i
\(247\) 16.3923 + 4.73205i 1.04302 + 0.301093i
\(248\) 2.53590 + 2.53590i 0.161030 + 0.161030i
\(249\) −12.9282 7.46410i −0.819292 0.473018i
\(250\) −2.66025 2.66025i −0.168249 0.168249i
\(251\) 1.90192 1.09808i 0.120048 0.0693100i −0.438773 0.898598i \(-0.644587\pi\)
0.558822 + 0.829288i \(0.311254\pi\)
\(252\) 15.4641 26.7846i 0.974147 1.68727i
\(253\) 2.19615 + 3.80385i 0.138071 + 0.239146i
\(254\) 24.1244 6.46410i 1.51370 0.405594i
\(255\) 4.73205i 0.296333i
\(256\) 16.0000 1.00000
\(257\) 2.42820 4.20577i 0.151467 0.262349i −0.780300 0.625406i \(-0.784934\pi\)
0.931767 + 0.363057i \(0.118267\pi\)
\(258\) 25.8564 + 25.8564i 1.60975 + 1.60975i
\(259\) 26.7846i 1.66431i
\(260\) 1.33975 + 1.39230i 0.0830875 + 0.0863471i
\(261\) 13.3923i 0.828963i
\(262\) 7.26795 7.26795i 0.449015 0.449015i
\(263\) 2.19615 3.80385i 0.135421 0.234555i −0.790337 0.612672i \(-0.790095\pi\)
0.925758 + 0.378116i \(0.123428\pi\)
\(264\) 4.00000 14.9282i 0.246183 0.918767i
\(265\) 2.66025i 0.163418i
\(266\) −6.00000 22.3923i −0.367884 1.37296i
\(267\) 0.732051 + 1.26795i 0.0448008 + 0.0775972i
\(268\) −18.5885 10.7321i −1.13547 0.655564i
\(269\) 2.19615 1.26795i 0.133902 0.0773082i −0.431553 0.902088i \(-0.642034\pi\)
0.565455 + 0.824779i \(0.308701\pi\)
\(270\) 1.07180 1.07180i 0.0652275 0.0652275i
\(271\) −15.0000 8.66025i −0.911185 0.526073i −0.0303728 0.999539i \(-0.509669\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(272\) 12.9282 + 22.3923i 0.783887 + 1.35773i
\(273\) −24.5885 + 23.6603i −1.48816 + 1.43198i
\(274\) 24.0263 + 6.43782i 1.45148 + 0.388923i
\(275\) 4.92820 8.53590i 0.297182 0.514734i
\(276\) −6.00000 10.3923i −0.361158 0.625543i
\(277\) −17.5981 + 10.1603i −1.05737 + 0.610471i −0.924702 0.380691i \(-0.875686\pi\)
−0.132663 + 0.991161i \(0.542353\pi\)
\(278\) −3.46410 0.928203i −0.207763 0.0556699i
\(279\) −4.90192 + 2.83013i −0.293471 + 0.169435i
\(280\) 0.679492 2.53590i 0.0406074 0.151549i
\(281\) 6.66025i 0.397317i −0.980069 0.198659i \(-0.936341\pi\)
0.980069 0.198659i \(-0.0636585\pi\)
\(282\) −12.1962 + 3.26795i −0.726270 + 0.194604i
\(283\) −9.33975 5.39230i −0.555190 0.320539i 0.196022 0.980599i \(-0.437197\pi\)
−0.751213 + 0.660060i \(0.770531\pi\)
\(284\) −12.7321 22.0526i −0.755508 1.30858i
\(285\) 3.46410i 0.205196i
\(286\) −5.26795 + 8.73205i −0.311500 + 0.516337i
\(287\) 4.14359 0.244589
\(288\) −6.53590 + 24.3923i −0.385132 + 1.43733i
\(289\) −12.3923 + 21.4641i −0.728959 + 1.26259i
\(290\) 0.294229 + 1.09808i 0.0172777 + 0.0644813i
\(291\) −16.3923 −0.960934
\(292\) −3.46410 −0.202721
\(293\) −6.59808 11.4282i −0.385464 0.667643i 0.606370 0.795183i \(-0.292625\pi\)
−0.991833 + 0.127540i \(0.959292\pi\)
\(294\) 18.6603 + 5.00000i 1.08829 + 0.291606i
\(295\) 1.00000 + 1.73205i 0.0582223 + 0.100844i
\(296\) 5.66025 + 21.1244i 0.328996 + 1.22783i
\(297\) 6.92820 + 4.00000i 0.402015 + 0.232104i
\(298\) 3.02628 11.2942i 0.175308 0.654257i
\(299\) 1.90192 + 7.68653i 0.109991 + 0.444524i
\(300\) −13.4641 + 23.3205i −0.777350 + 1.34641i
\(301\) −16.3923 + 28.3923i −0.944837 + 1.63651i
\(302\) −8.19615 + 8.19615i −0.471636 + 0.471636i
\(303\) 25.2224 + 43.6865i 1.44899 + 2.50973i
\(304\) 9.46410 + 16.3923i 0.542803 + 0.940163i
\(305\) −0.232051 + 0.133975i −0.0132872 + 0.00767136i
\(306\) −39.4186 + 10.5622i −2.25341 + 0.603800i
\(307\) 8.19615 0.467779 0.233890 0.972263i \(-0.424855\pi\)
0.233890 + 0.972263i \(0.424855\pi\)
\(308\) 13.8564 0.789542
\(309\) 9.92820 + 5.73205i 0.564796 + 0.326085i
\(310\) −0.339746 + 0.339746i −0.0192963 + 0.0192963i
\(311\) 12.5885 0.713826 0.356913 0.934138i \(-0.383829\pi\)
0.356913 + 0.934138i \(0.383829\pi\)
\(312\) 14.3923 23.8564i 0.814804 1.35060i
\(313\) −9.46410 −0.534943 −0.267471 0.963566i \(-0.586188\pi\)
−0.267471 + 0.963566i \(0.586188\pi\)
\(314\) 9.92820 9.92820i 0.560281 0.560281i
\(315\) 3.58846 + 2.07180i 0.202187 + 0.116733i
\(316\) 20.7846i 1.16923i
\(317\) −14.8038 −0.831467 −0.415733 0.909486i \(-0.636475\pi\)
−0.415733 + 0.909486i \(0.636475\pi\)
\(318\) 37.0526 9.92820i 2.07780 0.556746i
\(319\) −5.19615 + 3.00000i −0.290929 + 0.167968i
\(320\) 2.14359i 0.119831i
\(321\) −0.464102 0.803848i −0.0259036 0.0448664i
\(322\) 7.60770 7.60770i 0.423960 0.423960i
\(323\) −15.2942 + 26.4904i −0.850994 + 1.47396i
\(324\) 4.26795 + 2.46410i 0.237108 + 0.136895i
\(325\) 12.8038 12.3205i 0.710230 0.683419i
\(326\) −1.60770 + 6.00000i −0.0890420 + 0.332309i
\(327\) 14.1962 + 8.19615i 0.785049 + 0.453248i
\(328\) −3.26795 + 0.875644i −0.180442 + 0.0483494i
\(329\) −5.66025 9.80385i −0.312060 0.540504i
\(330\) 2.00000 + 0.535898i 0.110096 + 0.0295002i
\(331\) −6.00000 10.3923i −0.329790 0.571213i 0.652680 0.757634i \(-0.273645\pi\)
−0.982470 + 0.186421i \(0.940311\pi\)
\(332\) 10.9282i 0.599763i
\(333\) −34.5167 −1.89150
\(334\) 3.26795 + 12.1962i 0.178814 + 0.667344i
\(335\) 1.43782 2.49038i 0.0785566 0.136064i
\(336\) −37.8564 −2.06524
\(337\) 15.2487 0.830650 0.415325 0.909673i \(-0.363668\pi\)
0.415325 + 0.909673i \(0.363668\pi\)
\(338\) −13.4904 + 12.4904i −0.733780 + 0.679387i
\(339\) 8.19615i 0.445154i
\(340\) −3.00000 + 1.73205i −0.162698 + 0.0939336i
\(341\) −2.19615 1.26795i −0.118928 0.0686633i
\(342\) −28.8564 + 7.73205i −1.56038 + 0.418101i
\(343\) 6.92820i 0.374088i
\(344\) 6.92820 25.8564i 0.373544 1.39408i
\(345\) 1.39230 0.803848i 0.0749592 0.0432777i
\(346\) 6.92820 + 1.85641i 0.372463 + 0.0998010i
\(347\) −4.09808 + 2.36603i −0.219996 + 0.127015i −0.605949 0.795504i \(-0.707206\pi\)
0.385952 + 0.922519i \(0.373873\pi\)
\(348\) 14.1962 8.19615i 0.760994 0.439360i
\(349\) 14.6603 25.3923i 0.784745 1.35922i −0.144406 0.989519i \(-0.546127\pi\)
0.929151 0.369700i \(-0.120540\pi\)
\(350\) −23.3205 6.24871i −1.24653 0.334008i
\(351\) 10.0000 + 10.3923i 0.533761 + 0.554700i
\(352\) −10.9282 + 2.92820i −0.582475 + 0.156074i
\(353\) 18.8205 + 10.8660i 1.00171 + 0.578340i 0.908755 0.417330i \(-0.137034\pi\)
0.0929594 + 0.995670i \(0.470367\pi\)
\(354\) 20.3923 20.3923i 1.08384 1.08384i
\(355\) 2.95448 1.70577i 0.156808 0.0905329i
\(356\) 0.535898 0.928203i 0.0284026 0.0491947i
\(357\) −30.5885 52.9808i −1.61891 2.80404i
\(358\) 5.07180 + 18.9282i 0.268053 + 1.00039i
\(359\) 26.9282i 1.42122i −0.703588 0.710608i \(-0.748420\pi\)
0.703588 0.710608i \(-0.251580\pi\)
\(360\) −3.26795 0.875644i −0.172236 0.0461505i
\(361\) −1.69615 + 2.93782i −0.0892712 + 0.154622i
\(362\) 11.5359 11.5359i 0.606313 0.606313i
\(363\) 19.1244i 1.00377i
\(364\) 24.0000 + 6.92820i 1.25794 + 0.363137i
\(365\) 0.464102i 0.0242922i
\(366\) 2.73205 + 2.73205i 0.142807 + 0.142807i
\(367\) 8.90192 15.4186i 0.464677 0.804844i −0.534510 0.845162i \(-0.679504\pi\)
0.999187 + 0.0403184i \(0.0128372\pi\)
\(368\) −4.39230 + 7.60770i −0.228965 + 0.396579i
\(369\) 5.33975i 0.277976i
\(370\) −2.83013 + 0.758330i −0.147131 + 0.0394237i
\(371\) 17.1962 + 29.7846i 0.892780 + 1.54634i
\(372\) 6.00000 + 3.46410i 0.311086 + 0.179605i
\(373\) −13.6699 + 7.89230i −0.707799 + 0.408648i −0.810246 0.586090i \(-0.800666\pi\)
0.102446 + 0.994739i \(0.467333\pi\)
\(374\) −12.9282 12.9282i −0.668501 0.668501i
\(375\) −6.29423 3.63397i −0.325033 0.187658i
\(376\) 6.53590 + 6.53590i 0.337063 + 0.337063i
\(377\) −10.5000 + 2.59808i −0.540778 + 0.133808i
\(378\) 5.07180 18.9282i 0.260865 0.973562i
\(379\) −8.02628 + 13.9019i −0.412282 + 0.714094i −0.995139 0.0984811i \(-0.968602\pi\)
0.582857 + 0.812575i \(0.301935\pi\)
\(380\) −2.19615 + 1.26795i −0.112660 + 0.0650444i
\(381\) 41.7846 24.1244i 2.14069 1.23593i
\(382\) −5.19615 + 19.3923i −0.265858 + 0.992197i
\(383\) −17.3205 + 10.0000i −0.885037 + 0.510976i −0.872316 0.488943i \(-0.837383\pi\)
−0.0127209 + 0.999919i \(0.504049\pi\)
\(384\) 29.8564 8.00000i 1.52360 0.408248i
\(385\) 1.85641i 0.0946112i
\(386\) −9.16987 34.2224i −0.466734 1.74188i
\(387\) 36.5885 + 21.1244i 1.85990 + 1.07381i
\(388\) 6.00000 + 10.3923i 0.304604 + 0.527589i
\(389\) 36.7128i 1.86141i 0.365766 + 0.930707i \(0.380807\pi\)
−0.365766 + 0.930707i \(0.619193\pi\)
\(390\) 3.19615 + 1.92820i 0.161843 + 0.0976384i
\(391\) −14.1962 −0.717930
\(392\) −3.66025 13.6603i −0.184871 0.689947i
\(393\) 9.92820 17.1962i 0.500812 0.867431i
\(394\) −26.5885 + 7.12436i −1.33951 + 0.358920i
\(395\) −2.78461 −0.140109
\(396\) 17.8564i 0.897318i
\(397\) −12.1244 21.0000i −0.608504 1.05396i −0.991487 0.130204i \(-0.958437\pi\)
0.382983 0.923755i \(-0.374897\pi\)
\(398\) −3.33975 + 12.4641i −0.167406 + 0.624769i
\(399\) −22.3923 38.7846i −1.12102 1.94166i
\(400\) 19.7128 0.985641
\(401\) −5.42820 3.13397i −0.271072 0.156503i 0.358303 0.933605i \(-0.383355\pi\)
−0.629374 + 0.777102i \(0.716689\pi\)
\(402\) −40.0526 10.7321i −1.99764 0.535266i
\(403\) −3.16987 3.29423i −0.157903 0.164097i
\(404\) 18.4641 31.9808i 0.918623 1.59110i
\(405\) −0.330127 + 0.571797i −0.0164041 + 0.0284128i
\(406\) 10.3923 + 10.3923i 0.515761 + 0.515761i
\(407\) −7.73205 13.3923i −0.383264 0.663832i
\(408\) 35.3205 + 35.3205i 1.74863 + 1.74863i
\(409\) −9.69615 + 5.59808i −0.479444 + 0.276807i −0.720185 0.693782i \(-0.755943\pi\)
0.240741 + 0.970589i \(0.422610\pi\)
\(410\) −0.117314 0.437822i −0.00579373 0.0216225i
\(411\) 48.0526 2.37026
\(412\) 8.39230i 0.413459i
\(413\) 22.3923 + 12.9282i 1.10185 + 0.636155i
\(414\) −9.80385 9.80385i −0.481833 0.481833i
\(415\) −1.46410 −0.0718699
\(416\) −20.3923 0.392305i −0.999815 0.0192343i
\(417\) −6.92820 −0.339276
\(418\) −9.46410 9.46410i −0.462904 0.462904i
\(419\) 22.0981 + 12.7583i 1.07956 + 0.623285i 0.930778 0.365585i \(-0.119131\pi\)
0.148784 + 0.988870i \(0.452464\pi\)
\(420\) 5.07180i 0.247478i
\(421\) 5.87564 0.286361 0.143181 0.989697i \(-0.454267\pi\)
0.143181 + 0.989697i \(0.454267\pi\)
\(422\) −0.947441 3.53590i −0.0461207 0.172125i
\(423\) −12.6340 + 7.29423i −0.614285 + 0.354658i
\(424\) −19.8564 19.8564i −0.964312 0.964312i
\(425\) 15.9282 + 27.5885i 0.772631 + 1.33824i
\(426\) −34.7846 34.7846i −1.68532 1.68532i
\(427\) −1.73205 + 3.00000i −0.0838198 + 0.145180i
\(428\) −0.339746 + 0.588457i −0.0164222 + 0.0284442i
\(429\) −5.46410 + 18.9282i −0.263809 + 0.913862i
\(430\) 3.46410 + 0.928203i 0.167054 + 0.0447619i
\(431\) 8.53590 + 4.92820i 0.411160 + 0.237383i 0.691288 0.722579i \(-0.257044\pi\)
−0.280128 + 0.959963i \(0.590377\pi\)
\(432\) 16.0000i 0.769800i
\(433\) −10.5000 18.1865i −0.504598 0.873989i −0.999986 0.00531724i \(-0.998307\pi\)
0.495388 0.868672i \(-0.335026\pi\)
\(434\) −1.60770 + 6.00000i −0.0771718 + 0.288009i
\(435\) 1.09808 + 1.90192i 0.0526487 + 0.0911903i
\(436\) 12.0000i 0.574696i
\(437\) −10.3923 −0.497131
\(438\) −6.46410 + 1.73205i −0.308867 + 0.0827606i
\(439\) −18.1962 + 31.5167i −0.868455 + 1.50421i −0.00487976 + 0.999988i \(0.501553\pi\)
−0.863575 + 0.504220i \(0.831780\pi\)
\(440\) −0.392305 1.46410i −0.0187024 0.0697983i
\(441\) 22.3205 1.06288
\(442\) −15.9282 28.8564i −0.757627 1.37256i
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 21.1244 + 36.5885i 1.00252 + 1.73641i
\(445\) 0.124356 + 0.0717968i 0.00589502 + 0.00340349i
\(446\) 7.14359 + 26.6603i 0.338259 + 1.26240i
\(447\) 22.5885i 1.06840i
\(448\) 13.8564 + 24.0000i 0.654654 + 1.13389i
\(449\) 11.5359 6.66025i 0.544413 0.314317i −0.202453 0.979292i \(-0.564891\pi\)
0.746865 + 0.664975i \(0.231558\pi\)
\(450\) −8.05256 + 30.0526i −0.379601 + 1.41669i
\(451\) 2.07180 1.19615i 0.0975571 0.0563246i
\(452\) −5.19615 + 3.00000i −0.244406 + 0.141108i
\(453\) −11.1962 + 19.3923i −0.526041 + 0.911130i
\(454\) 4.41154 16.4641i 0.207044 0.772699i
\(455\) −0.928203 + 3.21539i −0.0435148 + 0.150740i
\(456\) 25.8564 + 25.8564i 1.21084 + 1.21084i
\(457\) −3.69615 2.13397i −0.172899 0.0998231i 0.411053 0.911611i \(-0.365161\pi\)
−0.583952 + 0.811788i \(0.698494\pi\)
\(458\) −0.928203 0.928203i −0.0433721 0.0433721i
\(459\) −22.3923 + 12.9282i −1.04518 + 0.603437i
\(460\) −1.01924 0.588457i −0.0475222 0.0274370i
\(461\) 5.66987 + 9.82051i 0.264072 + 0.457387i 0.967320 0.253558i \(-0.0816009\pi\)
−0.703248 + 0.710945i \(0.748268\pi\)
\(462\) 25.8564 6.92820i 1.20295 0.322329i
\(463\) 4.39230i 0.204128i 0.994778 + 0.102064i \(0.0325446\pi\)
−0.994778 + 0.102064i \(0.967455\pi\)
\(464\) −10.3923 6.00000i −0.482451 0.278543i
\(465\) −0.464102 + 0.803848i −0.0215222 + 0.0372775i
\(466\) 0 0
\(467\) 27.4641i 1.27089i −0.772147 0.635444i \(-0.780817\pi\)
0.772147 0.635444i \(-0.219183\pi\)
\(468\) 8.92820 30.9282i 0.412706 1.42966i
\(469\) 37.1769i 1.71667i
\(470\) −0.875644 + 0.875644i −0.0403905 + 0.0403905i
\(471\) 13.5622 23.4904i 0.624912 1.08238i
\(472\) −20.3923 5.46410i −0.938632 0.251506i
\(473\) 18.9282i 0.870320i
\(474\) 10.3923 + 38.7846i 0.477334 + 1.78144i
\(475\) 11.6603 + 20.1962i 0.535009 + 0.926663i
\(476\) −22.3923 + 38.7846i −1.02635 + 1.77769i
\(477\) 38.3827 22.1603i 1.75742 1.01465i
\(478\) 2.39230 2.39230i 0.109421 0.109421i
\(479\) 28.3468 + 16.3660i 1.29520 + 0.747783i 0.979571 0.201100i \(-0.0644518\pi\)
0.315627 + 0.948883i \(0.397785\pi\)
\(480\) 1.07180 + 4.00000i 0.0489206 + 0.182574i
\(481\) −6.69615 27.0622i −0.305318 1.23393i
\(482\) 1.09808 + 0.294229i 0.0500160 + 0.0134017i
\(483\) 10.3923 18.0000i 0.472866 0.819028i
\(484\) −12.1244 + 7.00000i −0.551107 + 0.318182i
\(485\) −1.39230 + 0.803848i −0.0632213 + 0.0365008i
\(486\) 25.5885 + 6.85641i 1.16072 + 0.311013i
\(487\) 9.80385 5.66025i 0.444255 0.256491i −0.261146 0.965299i \(-0.584100\pi\)
0.705401 + 0.708809i \(0.250767\pi\)
\(488\) 0.732051 2.73205i 0.0331384 0.123674i
\(489\) 12.0000i 0.542659i
\(490\) 1.83013 0.490381i 0.0826767 0.0221532i
\(491\) −24.5885 14.1962i −1.10966 0.640663i −0.170920 0.985285i \(-0.554674\pi\)
−0.938742 + 0.344622i \(0.888007\pi\)
\(492\) −5.66025 + 3.26795i −0.255184 + 0.147331i
\(493\) 19.3923i 0.873385i
\(494\) −11.6603 21.1244i −0.524620 0.950430i
\(495\) 2.39230 0.107526
\(496\) 5.07180i 0.227730i
\(497\) 22.0526 38.1962i 0.989192 1.71333i
\(498\) 5.46410 + 20.3923i 0.244852 + 0.913801i
\(499\) −33.1244 −1.48285 −0.741425 0.671036i \(-0.765850\pi\)
−0.741425 + 0.671036i \(0.765850\pi\)
\(500\) 5.32051i 0.237940i
\(501\) 12.1962 + 21.1244i 0.544884 + 0.943767i
\(502\) −3.00000 0.803848i −0.133897 0.0358775i
\(503\) 16.3923 + 28.3923i 0.730897 + 1.26595i 0.956500 + 0.291731i \(0.0942312\pi\)
−0.225604 + 0.974219i \(0.572435\pi\)
\(504\) −42.2487 + 11.3205i −1.88191 + 0.504256i
\(505\) 4.28461 + 2.47372i 0.190663 + 0.110079i
\(506\) 1.60770 6.00000i 0.0714708 0.266733i
\(507\) −18.9282 + 30.0526i −0.840631 + 1.33468i
\(508\) −30.5885 17.6603i −1.35714 0.783547i
\(509\) −16.0622 + 27.8205i −0.711944 + 1.23312i 0.252183 + 0.967680i \(0.418851\pi\)
−0.964127 + 0.265443i \(0.914482\pi\)
\(510\) −4.73205 + 4.73205i −0.209539 + 0.209539i
\(511\) −3.00000 5.19615i −0.132712 0.229864i
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) −16.3923 + 9.46410i −0.723738 + 0.417850i
\(514\) −6.63397 + 1.77757i −0.292612 + 0.0784052i
\(515\) 1.12436 0.0495450
\(516\) 51.7128i 2.27653i
\(517\) −5.66025 3.26795i −0.248938 0.143724i
\(518\) −26.7846 + 26.7846i −1.17685 + 1.17685i
\(519\) 13.8564 0.608229
\(520\) 0.0525589 2.73205i 0.00230486 0.119808i
\(521\) −39.2487 −1.71952 −0.859759 0.510701i \(-0.829386\pi\)
−0.859759 + 0.510701i \(0.829386\pi\)
\(522\) 13.3923 13.3923i 0.586165 0.586165i
\(523\) 11.1962 + 6.46410i 0.489574 + 0.282655i 0.724398 0.689382i \(-0.242118\pi\)
−0.234824 + 0.972038i \(0.575451\pi\)
\(524\) −14.5359 −0.635004
\(525\) −46.6410 −2.03558
\(526\) −6.00000 + 1.60770i −0.261612 + 0.0700988i
\(527\) 7.09808 4.09808i 0.309197 0.178515i
\(528\) −18.9282 + 10.9282i −0.823744 + 0.475589i
\(529\) 9.08846 + 15.7417i 0.395150 + 0.684420i
\(530\) 2.66025 2.66025i 0.115554 0.115554i
\(531\) 16.6603 28.8564i 0.722993 1.25226i
\(532\) −16.3923 + 28.3923i −0.710697 + 1.23096i
\(533\) 4.18653 1.03590i 0.181339 0.0448697i
\(534\) 0.535898 2.00000i 0.0231906 0.0865485i
\(535\) −0.0788383 0.0455173i −0.00340848 0.00196789i
\(536\) 7.85641 + 29.3205i 0.339345 + 1.26645i
\(537\) 18.9282 + 32.7846i 0.816812 + 1.41476i
\(538\) −3.46410 0.928203i −0.149348 0.0400177i
\(539\) 5.00000 + 8.66025i 0.215365 + 0.373024i
\(540\) −2.14359 −0.0922456
\(541\) 23.4449 1.00797 0.503987 0.863711i \(-0.331866\pi\)
0.503987 + 0.863711i \(0.331866\pi\)
\(542\) 6.33975 + 23.6603i 0.272315 + 1.01629i
\(543\) 15.7583 27.2942i 0.676255 1.17131i
\(544\) 9.46410 35.3205i 0.405770 1.51435i
\(545\) 1.60770 0.0688661
\(546\) 48.2487 + 0.928203i 2.06485 + 0.0397234i
\(547\) 12.5885i 0.538244i −0.963106 0.269122i \(-0.913267\pi\)
0.963106 0.269122i \(-0.0867334\pi\)
\(548\) −17.5885 30.4641i −0.751342 1.30136i
\(549\) 3.86603 + 2.23205i 0.164998 + 0.0952616i
\(550\) −13.4641 + 3.60770i −0.574111 + 0.153833i
\(551\) 14.1962i 0.604776i
\(552\) −4.39230 + 16.3923i −0.186949 + 0.697703i
\(553\) −31.1769 + 18.0000i −1.32578 + 0.765438i
\(554\) 27.7583 + 7.43782i 1.17934 + 0.316003i
\(555\) −4.90192 + 2.83013i −0.208075 + 0.120132i
\(556\) 2.53590 + 4.39230i 0.107546 + 0.186275i
\(557\) 7.59808 13.1603i 0.321941 0.557618i −0.658948 0.752189i \(-0.728998\pi\)
0.980888 + 0.194571i \(0.0623315\pi\)
\(558\) 7.73205 + 2.07180i 0.327324 + 0.0877062i
\(559\) −9.46410 + 32.7846i −0.400289 + 1.38664i
\(560\) −3.21539 + 1.85641i −0.135875 + 0.0784475i
\(561\) −30.5885 17.6603i −1.29145 0.745617i
\(562\) −6.66025 + 6.66025i −0.280946 + 0.280946i
\(563\) 37.9808 21.9282i 1.60070 0.924164i 0.609351 0.792901i \(-0.291430\pi\)
0.991348 0.131263i \(-0.0419031\pi\)
\(564\) 15.4641 + 8.92820i 0.651156 + 0.375945i
\(565\) −0.401924 0.696152i −0.0169091 0.0292874i
\(566\) 3.94744 + 14.7321i 0.165923 + 0.619234i
\(567\) 8.53590i 0.358474i
\(568\) −9.32051 + 34.7846i −0.391080 + 1.45953i
\(569\) 12.0000 20.7846i 0.503066 0.871336i −0.496928 0.867792i \(-0.665539\pi\)
0.999994 0.00354413i \(-0.00112814\pi\)
\(570\) −3.46410 + 3.46410i −0.145095 + 0.145095i
\(571\) 18.3923i 0.769694i 0.922980 + 0.384847i \(0.125746\pi\)
−0.922980 + 0.384847i \(0.874254\pi\)
\(572\) 14.0000 3.46410i 0.585369 0.144841i
\(573\) 38.7846i 1.62025i
\(574\) −4.14359 4.14359i −0.172950 0.172950i
\(575\) −5.41154 + 9.37307i −0.225677 + 0.390884i
\(576\) 30.9282 17.8564i 1.28868 0.744017i
\(577\) 37.7321i 1.57081i −0.618985 0.785403i \(-0.712456\pi\)
0.618985 0.785403i \(-0.287544\pi\)
\(578\) 33.8564 9.07180i 1.40824 0.377337i
\(579\) −34.2224 59.2750i −1.42224 2.46338i
\(580\) 0.803848 1.39230i 0.0333780 0.0578123i
\(581\) −16.3923 + 9.46410i −0.680067 + 0.392637i
\(582\) 16.3923 + 16.3923i 0.679483 + 0.679483i
\(583\) 17.1962 + 9.92820i 0.712192 + 0.411184i
\(584\) 3.46410 + 3.46410i 0.143346 + 0.143346i
\(585\) 4.14359 + 1.19615i 0.171317 + 0.0494548i
\(586\) −4.83013 + 18.0263i −0.199531 + 0.744659i
\(587\) −8.58846 + 14.8756i −0.354484 + 0.613984i −0.987029 0.160539i \(-0.948677\pi\)
0.632546 + 0.774523i \(0.282010\pi\)
\(588\) −13.6603 23.6603i −0.563339 0.975732i
\(589\) 5.19615 3.00000i 0.214104 0.123613i
\(590\) 0.732051 2.73205i 0.0301381 0.112477i
\(591\) −46.0526 + 26.5885i −1.89435 + 1.09370i
\(592\) 15.4641 26.7846i 0.635571 1.10084i
\(593\) 29.5885i 1.21505i −0.794300 0.607526i \(-0.792162\pi\)
0.794300 0.607526i \(-0.207838\pi\)
\(594\) −2.92820 10.9282i −0.120146 0.448390i
\(595\) −5.19615 3.00000i −0.213021 0.122988i
\(596\) −14.3205 + 8.26795i −0.586591 + 0.338668i
\(597\) 24.9282i 1.02024i
\(598\) 5.78461 9.58846i 0.236550 0.392101i
\(599\) −16.7321 −0.683653 −0.341827 0.939763i \(-0.611046\pi\)
−0.341827 + 0.939763i \(0.611046\pi\)
\(600\) 36.7846 9.85641i 1.50173 0.402386i
\(601\) −19.9641 + 34.5788i −0.814353 + 1.41050i 0.0954391 + 0.995435i \(0.469574\pi\)
−0.909792 + 0.415065i \(0.863759\pi\)
\(602\) 44.7846 12.0000i 1.82528 0.489083i
\(603\) −47.9090 −1.95100
\(604\) 16.3923 0.666993
\(605\) −0.937822 1.62436i −0.0381279 0.0660394i
\(606\) 18.4641 68.9090i 0.750053 2.79924i
\(607\) 14.2942 + 24.7583i 0.580185 + 1.00491i 0.995457 + 0.0952124i \(0.0303530\pi\)
−0.415272 + 0.909697i \(0.636314\pi\)
\(608\) 6.92820 25.8564i 0.280976 1.04862i
\(609\) 24.5885 + 14.1962i 0.996375 + 0.575257i
\(610\) 0.366025 + 0.0980762i 0.0148199 + 0.00397099i
\(611\) −8.16987 8.49038i −0.330518 0.343484i
\(612\) 49.9808 + 28.8564i 2.02035 + 1.16645i
\(613\) 2.25833 3.91154i 0.0912131 0.157986i −0.816809 0.576909i \(-0.804259\pi\)
0.908022 + 0.418923i \(0.137592\pi\)
\(614\) −8.19615 8.19615i −0.330770 0.330770i
\(615\) −0.437822 0.758330i −0.0176547 0.0305788i
\(616\) −13.8564 13.8564i −0.558291 0.558291i
\(617\) −12.3564 + 7.13397i −0.497450 + 0.287203i −0.727660 0.685938i \(-0.759392\pi\)
0.230210 + 0.973141i \(0.426059\pi\)
\(618\) −4.19615 15.6603i −0.168794 0.629948i
\(619\) −24.2487 −0.974638 −0.487319 0.873224i \(-0.662025\pi\)
−0.487319 + 0.873224i \(0.662025\pi\)
\(620\) 0.679492 0.0272891
\(621\) −7.60770 4.39230i −0.305286 0.176257i
\(622\) −12.5885 12.5885i −0.504751 0.504751i
\(623\) 1.85641 0.0743754
\(624\) −38.2487 + 9.46410i −1.53117 + 0.378867i
\(625\) 23.9282 0.957128
\(626\) 9.46410 + 9.46410i 0.378262 + 0.378262i
\(627\) −22.3923 12.9282i −0.894263 0.516303i
\(628\) −19.8564 −0.792357
\(629\) 49.9808 1.99286
\(630\) −1.51666 5.66025i −0.0604252 0.225510i
\(631\) 26.7846 15.4641i 1.06628 0.615616i 0.139116 0.990276i \(-0.455574\pi\)
0.927162 + 0.374660i \(0.122241\pi\)
\(632\) 20.7846 20.7846i 0.826767 0.826767i
\(633\) −3.53590 6.12436i −0.140539 0.243421i
\(634\) 14.8038 + 14.8038i 0.587936 + 0.587936i
\(635\) 2.36603 4.09808i 0.0938929 0.162627i
\(636\) −46.9808 27.1244i −1.86291 1.07555i
\(637\) 4.33013 + 17.5000i 0.171566 + 0.693375i
\(638\) 8.19615 + 2.19615i 0.324489 + 0.0869465i
\(639\) −49.2224 28.4186i −1.94721 1.12422i
\(640\) 2.14359 2.14359i 0.0847330 0.0847330i
\(641\) 13.9641 + 24.1865i 0.551549 + 0.955311i 0.998163 + 0.0605840i \(0.0192963\pi\)
−0.446614 + 0.894727i \(0.647370\pi\)
\(642\) −0.339746 + 1.26795i −0.0134087 + 0.0500420i
\(643\) −1.39230 2.41154i −0.0549071 0.0951020i 0.837265 0.546797i \(-0.184153\pi\)
−0.892173 + 0.451695i \(0.850820\pi\)
\(644\) −15.2154 −0.599570
\(645\) 6.92820 0.272798
\(646\) 41.7846 11.1962i 1.64399 0.440507i
\(647\) −6.16987 + 10.6865i −0.242563 + 0.420131i −0.961444 0.275002i \(-0.911321\pi\)
0.718881 + 0.695133i \(0.244655\pi\)
\(648\) −1.80385 6.73205i −0.0708618 0.264460i
\(649\) 14.9282 0.585983
\(650\) −25.1244 0.483340i −0.985458 0.0189581i
\(651\) 12.0000i 0.470317i
\(652\) 7.60770 4.39230i 0.297940 0.172016i
\(653\) −31.1769 18.0000i −1.22005 0.704394i −0.255119 0.966910i \(-0.582115\pi\)
−0.964928 + 0.262515i \(0.915448\pi\)
\(654\) −6.00000 22.3923i −0.234619 0.875608i
\(655\) 1.94744i 0.0760928i
\(656\) 4.14359 + 2.39230i 0.161780 + 0.0934038i
\(657\) −6.69615 + 3.86603i −0.261242 + 0.150828i
\(658\) −4.14359 + 15.4641i −0.161534 + 0.602853i
\(659\) 14.7846 8.53590i 0.575927 0.332511i −0.183586 0.983004i \(-0.558771\pi\)
0.759513 + 0.650492i \(0.225437\pi\)
\(660\) −1.46410 2.53590i −0.0569901 0.0987097i
\(661\) 6.06218 10.5000i 0.235791 0.408403i −0.723711 0.690103i \(-0.757565\pi\)
0.959502 + 0.281701i \(0.0908985\pi\)
\(662\) −4.39230 + 16.3923i −0.170712 + 0.637105i
\(663\) −44.1506 45.8827i −1.71467 1.78194i
\(664\) 10.9282 10.9282i 0.424097 0.424097i
\(665\) −3.80385 2.19615i −0.147507 0.0851631i
\(666\) 34.5167 + 34.5167i 1.33749 + 1.33749i
\(667\) 5.70577 3.29423i 0.220928 0.127553i
\(668\) 8.92820 15.4641i 0.345443 0.598324i
\(669\) 26.6603 + 46.1769i 1.03074 + 1.78530i
\(670\) −3.92820 + 1.05256i −0.151760 + 0.0406639i
\(671\) 2.00000i 0.0772091i
\(672\) 37.8564 + 37.8564i 1.46034 + 1.46034i
\(673\) 5.50000 9.52628i 0.212009 0.367211i −0.740334 0.672239i \(-0.765333\pi\)
0.952343 + 0.305028i \(0.0986659\pi\)
\(674\) −15.2487 15.2487i −0.587358 0.587358i
\(675\) 19.7128i 0.758747i
\(676\) 25.9808 + 1.00000i 0.999260 + 0.0384615i
\(677\) 19.8564i 0.763144i 0.924339 + 0.381572i \(0.124617\pi\)
−0.924339 + 0.381572i \(0.875383\pi\)
\(678\) −8.19615 + 8.19615i −0.314771 + 0.314771i
\(679\) −10.3923 + 18.0000i −0.398820 + 0.690777i
\(680\) 4.73205 + 1.26795i 0.181466 + 0.0486236i
\(681\) 32.9282i 1.26181i
\(682\) 0.928203 + 3.46410i 0.0355427 + 0.132647i
\(683\) −7.36603 12.7583i −0.281853 0.488184i 0.689988 0.723821i \(-0.257616\pi\)
−0.971841 + 0.235637i \(0.924282\pi\)
\(684\) 36.5885 + 21.1244i 1.39899 + 0.807710i
\(685\) 4.08142 2.35641i 0.155943 0.0900337i
\(686\) −6.92820 + 6.92820i −0.264520 + 0.264520i
\(687\) −2.19615 1.26795i −0.0837884 0.0483753i
\(688\) −32.7846 + 18.9282i −1.24990 + 0.721631i
\(689\) 24.8205 + 25.7942i 0.945586 + 0.982682i
\(690\) −2.19615 0.588457i −0.0836061 0.0224022i
\(691\) −9.00000 + 15.5885i −0.342376 + 0.593013i −0.984873 0.173275i \(-0.944565\pi\)
0.642497 + 0.766288i \(0.277898\pi\)
\(692\) −5.07180 8.78461i −0.192801 0.333941i
\(693\) 26.7846 15.4641i 1.01746 0.587433i
\(694\) 6.46410 + 1.73205i 0.245374 + 0.0657477i
\(695\) −0.588457 + 0.339746i −0.0223215 + 0.0128873i
\(696\) −22.3923 6.00000i −0.848778 0.227429i
\(697\) 7.73205i 0.292872i
\(698\) −40.0526 + 10.7321i −1.51601 + 0.406214i
\(699\) 0 0
\(700\) 17.0718 + 29.5692i 0.645253 + 1.11761i
\(701\) 32.7846i 1.23826i −0.785289 0.619129i \(-0.787486\pi\)
0.785289 0.619129i \(-0.212514\pi\)
\(702\) 0.392305 20.3923i 0.0148066 0.769658i
\(703\) 36.5885 1.37996
\(704\) 13.8564 + 8.00000i 0.522233 + 0.301511i
\(705\) −1.19615 + 2.07180i −0.0450497 + 0.0780284i
\(706\) −7.95448 29.6865i −0.299371 1.11727i
\(707\) 63.9615 2.40552
\(708\) −40.7846 −1.53278
\(709\) −15.4019 26.6769i −0.578431 1.00187i −0.995659 0.0930708i \(-0.970332\pi\)
0.417228 0.908802i \(-0.363002\pi\)
\(710\) −4.66025 1.24871i −0.174896 0.0468633i
\(711\) 23.1962 + 40.1769i 0.869924 + 1.50675i
\(712\) −1.46410 + 0.392305i −0.0548695 + 0.0147022i
\(713\) 2.41154 + 1.39230i 0.0903130 + 0.0521422i
\(714\) −22.3923 + 83.5692i −0.838011 + 3.12750i
\(715\) 0.464102 + 1.87564i 0.0173564 + 0.0701451i
\(716\) 13.8564 24.0000i 0.517838 0.896922i
\(717\) 3.26795 5.66025i 0.122044 0.211386i
\(718\) −26.9282 + 26.9282i −1.00495 + 1.00495i
\(719\) −10.8564 18.8038i −0.404876 0.701265i 0.589431 0.807818i \(-0.299352\pi\)
−0.994307 + 0.106553i \(0.966019\pi\)
\(720\) 2.39230 + 4.14359i 0.0891559 + 0.154423i
\(721\) 12.5885 7.26795i 0.468819 0.270673i
\(722\) 4.63397 1.24167i 0.172459 0.0462102i
\(723\) 2.19615 0.0816758
\(724\) −23.0718 −0.857457
\(725\) −12.8038 7.39230i −0.475523 0.274543i
\(726\) −19.1244 + 19.1244i −0.709771 + 0.709771i
\(727\) −34.3923 −1.27554 −0.637770 0.770227i \(-0.720143\pi\)
−0.637770 + 0.770227i \(0.720143\pi\)
\(728\) −17.0718 30.9282i −0.632723 1.14628i
\(729\) 43.7846 1.62165
\(730\) −0.464102 + 0.464102i −0.0171772 + 0.0171772i
\(731\) −52.9808 30.5885i −1.95956 1.13135i
\(732\) 5.46410i 0.201959i
\(733\) −43.0526 −1.59018 −0.795091 0.606490i \(-0.792577\pi\)
−0.795091 + 0.606490i \(0.792577\pi\)
\(734\) −24.3205 + 6.51666i −0.897686 + 0.240534i
\(735\) 3.16987 1.83013i 0.116923 0.0675053i
\(736\) 12.0000 3.21539i 0.442326 0.118521i
\(737\) −10.7321 18.5885i −0.395320 0.684715i
\(738\) −5.33975 + 5.33975i −0.196559 + 0.196559i
\(739\) −2.53590 + 4.39230i −0.0932845 + 0.161574i −0.908891 0.417033i \(-0.863070\pi\)
0.815607 + 0.578607i \(0.196403\pi\)
\(740\) 3.58846 + 2.07180i 0.131914 + 0.0761608i
\(741\) −32.3205 33.5885i −1.18732 1.23390i
\(742\) 12.5885 46.9808i 0.462137 1.72472i
\(743\) 1.26795 + 0.732051i 0.0465165 + 0.0268563i 0.523078 0.852285i \(-0.324784\pi\)
−0.476561 + 0.879141i \(0.658117\pi\)
\(744\) −2.53590 9.46410i −0.0929705 0.346971i
\(745\) −1.10770 1.91858i −0.0405828 0.0702915i
\(746\) 21.5622 + 5.77757i 0.789447 + 0.211532i
\(747\) 12.1962 + 21.1244i 0.446234 + 0.772900i
\(748\) 25.8564i 0.945404i
\(749\) −1.17691 −0.0430035
\(750\) 2.66025 + 9.92820i 0.0971387 + 0.362527i
\(751\) 7.80385 13.5167i 0.284766 0.493230i −0.687786 0.725913i \(-0.741417\pi\)
0.972553 + 0.232683i \(0.0747506\pi\)
\(752\) 13.0718i 0.476679i
\(753\) −6.00000 −0.218652
\(754\) 13.0981 + 7.90192i 0.477004 + 0.287771i
\(755\) 2.19615i 0.0799262i
\(756\) −24.0000 + 13.8564i −0.872872 + 0.503953i
\(757\) 35.6603 + 20.5885i 1.29609 + 0.748300i 0.979727 0.200337i \(-0.0642036\pi\)
0.316367 + 0.948637i \(0.397537\pi\)
\(758\) 21.9282 5.87564i 0.796468 0.213413i
\(759\) 12.0000i 0.435572i
\(760\) 3.46410 + 0.928203i 0.125656 + 0.0336695i
\(761\) 16.8564 9.73205i 0.611044 0.352787i −0.162330 0.986737i \(-0.551901\pi\)
0.773374 + 0.633950i \(0.218568\pi\)
\(762\) −65.9090 17.6603i −2.38763 0.639764i
\(763\) 18.0000 10.3923i 0.651644 0.376227i
\(764\) 24.5885 14.1962i 0.889579 0.513599i
\(765\) −3.86603 + 6.69615i −0.139776 + 0.242100i
\(766\) 27.3205 + 7.32051i 0.987130 + 0.264501i
\(767\) 25.8564 + 7.46410i 0.933621 + 0.269513i