Properties

Label 104.2.s.a
Level $104$
Weight $2$
Character orbit 104.s
Analytic conductor $0.830$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,2,Mod(69,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{12}^{3} - 1) q^{2} + ( - \zeta_{12}^{2} + \zeta_{12} - 1) q^{3} - 2 \zeta_{12}^{3} q^{4} + (\zeta_{12}^{3} - 2 \zeta_{12} - 2) q^{5} + ( - 2 \zeta_{12}^{3} + 2 \zeta_{12}^{2}) q^{6} + (2 \zeta_{12}^{2} - 4) q^{7} + (2 \zeta_{12}^{3} + 2) q^{8} + ( - 2 \zeta_{12}^{3} + \cdots - 2 \zeta_{12}) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{12}^{3} - 1) q^{2} + ( - \zeta_{12}^{2} + \zeta_{12} - 1) q^{3} - 2 \zeta_{12}^{3} q^{4} + (\zeta_{12}^{3} - 2 \zeta_{12} - 2) q^{5} + ( - 2 \zeta_{12}^{3} + 2 \zeta_{12}^{2}) q^{6} + (2 \zeta_{12}^{2} - 4) q^{7} + (2 \zeta_{12}^{3} + 2) q^{8} + ( - 2 \zeta_{12}^{3} + \cdots - 2 \zeta_{12}) q^{9} + \cdots + ( - 4 \zeta_{12}^{3} + 8 \zeta_{12} - 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 6 q^{3} - 8 q^{5} + 4 q^{6} - 12 q^{7} + 8 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} - 6 q^{3} - 8 q^{5} + 4 q^{6} - 12 q^{7} + 8 q^{8} + 2 q^{9} + 8 q^{10} - 4 q^{11} + 4 q^{12} + 12 q^{14} + 6 q^{15} - 16 q^{16} - 6 q^{17} + 10 q^{18} - 6 q^{19} + 24 q^{21} + 4 q^{22} - 6 q^{23} - 16 q^{24} + 8 q^{25} + 10 q^{26} - 8 q^{30} + 16 q^{32} + 12 q^{33} - 6 q^{34} + 24 q^{35} - 24 q^{36} - 12 q^{37} + 14 q^{39} - 16 q^{40} - 18 q^{41} - 24 q^{42} + 12 q^{43} + 8 q^{45} - 12 q^{46} + 24 q^{48} + 10 q^{49} - 8 q^{50} - 20 q^{52} - 16 q^{54} + 8 q^{55} - 24 q^{56} + 6 q^{58} - 8 q^{59} + 4 q^{60} + 12 q^{62} - 12 q^{63} - 18 q^{65} - 16 q^{66} - 18 q^{67} + 24 q^{68} - 12 q^{70} - 6 q^{71} + 28 q^{72} + 18 q^{74} + 12 q^{75} + 12 q^{76} - 20 q^{78} + 32 q^{80} - 2 q^{81} + 26 q^{82} + 8 q^{83} - 24 q^{86} - 6 q^{87} - 8 q^{88} + 12 q^{89} - 26 q^{90} + 36 q^{92} + 20 q^{94} + 6 q^{95} - 16 q^{96} - 10 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(\zeta_{12}^{2}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
69.1
−0.866025 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−1.00000 1.00000i −2.36603 1.36603i 2.00000i −0.267949 1.00000 + 3.73205i −3.00000 + 1.73205i 2.00000 2.00000i 2.23205 + 3.86603i 0.267949 + 0.267949i
69.2 −1.00000 + 1.00000i −0.633975 0.366025i 2.00000i −3.73205 1.00000 0.267949i −3.00000 + 1.73205i 2.00000 + 2.00000i −1.23205 2.13397i 3.73205 3.73205i
101.1 −1.00000 1.00000i −0.633975 + 0.366025i 2.00000i −3.73205 1.00000 + 0.267949i −3.00000 1.73205i 2.00000 2.00000i −1.23205 + 2.13397i 3.73205 + 3.73205i
101.2 −1.00000 + 1.00000i −2.36603 + 1.36603i 2.00000i −0.267949 1.00000 3.73205i −3.00000 1.73205i 2.00000 + 2.00000i 2.23205 3.86603i 0.267949 0.267949i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 104.2.s.a 4
3.b odd 2 1 936.2.dg.b 4
4.b odd 2 1 416.2.ba.b 4
8.b even 2 1 104.2.s.b yes 4
8.d odd 2 1 416.2.ba.a 4
13.e even 6 1 104.2.s.b yes 4
24.h odd 2 1 936.2.dg.a 4
39.h odd 6 1 936.2.dg.a 4
52.i odd 6 1 416.2.ba.a 4
104.p odd 6 1 416.2.ba.b 4
104.s even 6 1 inner 104.2.s.a 4
312.bg odd 6 1 936.2.dg.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.s.a 4 1.a even 1 1 trivial
104.2.s.a 4 104.s even 6 1 inner
104.2.s.b yes 4 8.b even 2 1
104.2.s.b yes 4 13.e even 6 1
416.2.ba.a 4 8.d odd 2 1
416.2.ba.a 4 52.i odd 6 1
416.2.ba.b 4 4.b odd 2 1
416.2.ba.b 4 104.p odd 6 1
936.2.dg.a 4 24.h odd 2 1
936.2.dg.a 4 39.h odd 6 1
936.2.dg.b 4 3.b odd 2 1
936.2.dg.b 4 312.bg odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 6T_{3}^{3} + 14T_{3}^{2} + 12T_{3} + 4 \) acting on \(S_{2}^{\mathrm{new}}(104, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 6 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( (T^{2} + 4 T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 6 T + 12)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{4} + 6 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$19$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$23$ \( T^{4} + 6 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$29$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$31$ \( T^{4} + 24T^{2} + 36 \) Copy content Toggle raw display
$37$ \( T^{4} + 12 T^{3} + \cdots + 1089 \) Copy content Toggle raw display
$41$ \( T^{4} + 18 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$43$ \( T^{4} - 12 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$47$ \( T^{4} + 56T^{2} + 484 \) Copy content Toggle raw display
$53$ \( T^{4} + 114T^{2} + 1521 \) Copy content Toggle raw display
$59$ \( T^{4} + 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$61$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$67$ \( T^{4} + 18 T^{3} + \cdots + 6084 \) Copy content Toggle raw display
$71$ \( T^{4} + 6 T^{3} + \cdots + 13924 \) Copy content Toggle raw display
$73$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 108)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 4 T - 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 12 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$97$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
show more
show less