Properties

Label 104.2.m.a.83.1
Level $104$
Weight $2$
Character 104.83
Analytic conductor $0.830$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,2,Mod(83,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.83");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{26})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 83.1
Root \(-2.54951 + 2.54951i\) of defining polynomial
Character \(\chi\) \(=\) 104.83
Dual form 104.2.m.a.99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} -1.00000 q^{3} -2.00000i q^{4} +(-2.54951 - 2.54951i) q^{5} +(1.00000 - 1.00000i) q^{6} +(2.54951 - 2.54951i) q^{7} +(2.00000 + 2.00000i) q^{8} -2.00000 q^{9} +O(q^{10})\) \(q+(-1.00000 + 1.00000i) q^{2} -1.00000 q^{3} -2.00000i q^{4} +(-2.54951 - 2.54951i) q^{5} +(1.00000 - 1.00000i) q^{6} +(2.54951 - 2.54951i) q^{7} +(2.00000 + 2.00000i) q^{8} -2.00000 q^{9} +5.09902 q^{10} +(1.00000 + 1.00000i) q^{11} +2.00000i q^{12} +(-2.54951 - 2.54951i) q^{13} +5.09902i q^{14} +(2.54951 + 2.54951i) q^{15} -4.00000 q^{16} -3.00000i q^{17} +(2.00000 - 2.00000i) q^{18} +(2.00000 - 2.00000i) q^{19} +(-5.09902 + 5.09902i) q^{20} +(-2.54951 + 2.54951i) q^{21} -2.00000 q^{22} -5.09902 q^{23} +(-2.00000 - 2.00000i) q^{24} +8.00000i q^{25} +5.09902 q^{26} +5.00000 q^{27} +(-5.09902 - 5.09902i) q^{28} +5.09902i q^{29} -5.09902 q^{30} +(5.09902 + 5.09902i) q^{31} +(4.00000 - 4.00000i) q^{32} +(-1.00000 - 1.00000i) q^{33} +(3.00000 + 3.00000i) q^{34} -13.0000 q^{35} +4.00000i q^{36} +(2.54951 - 2.54951i) q^{37} +4.00000i q^{38} +(2.54951 + 2.54951i) q^{39} -10.1980i q^{40} +(6.00000 - 6.00000i) q^{41} -5.09902i q^{42} -1.00000i q^{43} +(2.00000 - 2.00000i) q^{44} +(5.09902 + 5.09902i) q^{45} +(5.09902 - 5.09902i) q^{46} +(2.54951 - 2.54951i) q^{47} +4.00000 q^{48} -6.00000i q^{49} +(-8.00000 - 8.00000i) q^{50} +3.00000i q^{51} +(-5.09902 + 5.09902i) q^{52} -5.09902i q^{53} +(-5.00000 + 5.00000i) q^{54} -5.09902i q^{55} +10.1980 q^{56} +(-2.00000 + 2.00000i) q^{57} +(-5.09902 - 5.09902i) q^{58} +(8.00000 + 8.00000i) q^{59} +(5.09902 - 5.09902i) q^{60} -10.1980 q^{62} +(-5.09902 + 5.09902i) q^{63} +8.00000i q^{64} +13.0000i q^{65} +2.00000 q^{66} +(3.00000 - 3.00000i) q^{67} -6.00000 q^{68} +5.09902 q^{69} +(13.0000 - 13.0000i) q^{70} +(-7.64853 - 7.64853i) q^{71} +(-4.00000 - 4.00000i) q^{72} +(-6.00000 - 6.00000i) q^{73} +5.09902i q^{74} -8.00000i q^{75} +(-4.00000 - 4.00000i) q^{76} +5.09902 q^{77} -5.09902 q^{78} +5.09902i q^{79} +(10.1980 + 10.1980i) q^{80} +1.00000 q^{81} +12.0000i q^{82} +(5.00000 - 5.00000i) q^{83} +(5.09902 + 5.09902i) q^{84} +(-7.64853 + 7.64853i) q^{85} +(1.00000 + 1.00000i) q^{86} -5.09902i q^{87} +4.00000i q^{88} +(-2.00000 - 2.00000i) q^{89} -10.1980 q^{90} -13.0000 q^{91} +10.1980i q^{92} +(-5.09902 - 5.09902i) q^{93} +5.09902i q^{94} -10.1980 q^{95} +(-4.00000 + 4.00000i) q^{96} +(-7.00000 + 7.00000i) q^{97} +(6.00000 + 6.00000i) q^{98} +(-2.00000 - 2.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 4 q^{3} + 4 q^{6} + 8 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} - 4 q^{3} + 4 q^{6} + 8 q^{8} - 8 q^{9} + 4 q^{11} - 16 q^{16} + 8 q^{18} + 8 q^{19} - 8 q^{22} - 8 q^{24} + 20 q^{27} + 16 q^{32} - 4 q^{33} + 12 q^{34} - 52 q^{35} + 24 q^{41} + 8 q^{44} + 16 q^{48} - 32 q^{50} - 20 q^{54} - 8 q^{57} + 32 q^{59} + 8 q^{66} + 12 q^{67} - 24 q^{68} + 52 q^{70} - 16 q^{72} - 24 q^{73} - 16 q^{76} + 4 q^{81} + 20 q^{83} + 4 q^{86} - 8 q^{89} - 52 q^{91} - 16 q^{96} - 28 q^{97} + 24 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.707107 + 0.707107i
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 2.00000i 1.00000i
\(5\) −2.54951 2.54951i −1.14018 1.14018i −0.988418 0.151758i \(-0.951507\pi\)
−0.151758 0.988418i \(-0.548493\pi\)
\(6\) 1.00000 1.00000i 0.408248 0.408248i
\(7\) 2.54951 2.54951i 0.963624 0.963624i −0.0357371 0.999361i \(-0.511378\pi\)
0.999361 + 0.0357371i \(0.0113779\pi\)
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) −2.00000 −0.666667
\(10\) 5.09902 1.61245
\(11\) 1.00000 + 1.00000i 0.301511 + 0.301511i 0.841605 0.540094i \(-0.181611\pi\)
−0.540094 + 0.841605i \(0.681611\pi\)
\(12\) 2.00000i 0.577350i
\(13\) −2.54951 2.54951i −0.707107 0.707107i
\(14\) 5.09902i 1.36277i
\(15\) 2.54951 + 2.54951i 0.658281 + 0.658281i
\(16\) −4.00000 −1.00000
\(17\) 3.00000i 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) 2.00000 2.00000i 0.471405 0.471405i
\(19\) 2.00000 2.00000i 0.458831 0.458831i −0.439440 0.898272i \(-0.644823\pi\)
0.898272 + 0.439440i \(0.144823\pi\)
\(20\) −5.09902 + 5.09902i −1.14018 + 1.14018i
\(21\) −2.54951 + 2.54951i −0.556349 + 0.556349i
\(22\) −2.00000 −0.426401
\(23\) −5.09902 −1.06322 −0.531610 0.846990i \(-0.678413\pi\)
−0.531610 + 0.846990i \(0.678413\pi\)
\(24\) −2.00000 2.00000i −0.408248 0.408248i
\(25\) 8.00000i 1.60000i
\(26\) 5.09902 1.00000
\(27\) 5.00000 0.962250
\(28\) −5.09902 5.09902i −0.963624 0.963624i
\(29\) 5.09902i 0.946864i 0.880830 + 0.473432i \(0.156985\pi\)
−0.880830 + 0.473432i \(0.843015\pi\)
\(30\) −5.09902 −0.930949
\(31\) 5.09902 + 5.09902i 0.915811 + 0.915811i 0.996721 0.0809104i \(-0.0257828\pi\)
−0.0809104 + 0.996721i \(0.525783\pi\)
\(32\) 4.00000 4.00000i 0.707107 0.707107i
\(33\) −1.00000 1.00000i −0.174078 0.174078i
\(34\) 3.00000 + 3.00000i 0.514496 + 0.514496i
\(35\) −13.0000 −2.19740
\(36\) 4.00000i 0.666667i
\(37\) 2.54951 2.54951i 0.419137 0.419137i −0.465769 0.884906i \(-0.654222\pi\)
0.884906 + 0.465769i \(0.154222\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 2.54951 + 2.54951i 0.408248 + 0.408248i
\(40\) 10.1980i 1.61245i
\(41\) 6.00000 6.00000i 0.937043 0.937043i −0.0610897 0.998132i \(-0.519458\pi\)
0.998132 + 0.0610897i \(0.0194576\pi\)
\(42\) 5.09902i 0.786796i
\(43\) 1.00000i 0.152499i −0.997089 0.0762493i \(-0.975706\pi\)
0.997089 0.0762493i \(-0.0242945\pi\)
\(44\) 2.00000 2.00000i 0.301511 0.301511i
\(45\) 5.09902 + 5.09902i 0.760117 + 0.760117i
\(46\) 5.09902 5.09902i 0.751809 0.751809i
\(47\) 2.54951 2.54951i 0.371884 0.371884i −0.496279 0.868163i \(-0.665301\pi\)
0.868163 + 0.496279i \(0.165301\pi\)
\(48\) 4.00000 0.577350
\(49\) 6.00000i 0.857143i
\(50\) −8.00000 8.00000i −1.13137 1.13137i
\(51\) 3.00000i 0.420084i
\(52\) −5.09902 + 5.09902i −0.707107 + 0.707107i
\(53\) 5.09902i 0.700404i −0.936674 0.350202i \(-0.886113\pi\)
0.936674 0.350202i \(-0.113887\pi\)
\(54\) −5.00000 + 5.00000i −0.680414 + 0.680414i
\(55\) 5.09902i 0.687552i
\(56\) 10.1980 1.36277
\(57\) −2.00000 + 2.00000i −0.264906 + 0.264906i
\(58\) −5.09902 5.09902i −0.669534 0.669534i
\(59\) 8.00000 + 8.00000i 1.04151 + 1.04151i 0.999100 + 0.0424110i \(0.0135039\pi\)
0.0424110 + 0.999100i \(0.486496\pi\)
\(60\) 5.09902 5.09902i 0.658281 0.658281i
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −10.1980 −1.29515
\(63\) −5.09902 + 5.09902i −0.642416 + 0.642416i
\(64\) 8.00000i 1.00000i
\(65\) 13.0000i 1.61245i
\(66\) 2.00000 0.246183
\(67\) 3.00000 3.00000i 0.366508 0.366508i −0.499694 0.866202i \(-0.666554\pi\)
0.866202 + 0.499694i \(0.166554\pi\)
\(68\) −6.00000 −0.727607
\(69\) 5.09902 0.613850
\(70\) 13.0000 13.0000i 1.55380 1.55380i
\(71\) −7.64853 7.64853i −0.907713 0.907713i 0.0883739 0.996087i \(-0.471833\pi\)
−0.996087 + 0.0883739i \(0.971833\pi\)
\(72\) −4.00000 4.00000i −0.471405 0.471405i
\(73\) −6.00000 6.00000i −0.702247 0.702247i 0.262646 0.964892i \(-0.415405\pi\)
−0.964892 + 0.262646i \(0.915405\pi\)
\(74\) 5.09902i 0.592749i
\(75\) 8.00000i 0.923760i
\(76\) −4.00000 4.00000i −0.458831 0.458831i
\(77\) 5.09902 0.581087
\(78\) −5.09902 −0.577350
\(79\) 5.09902i 0.573685i 0.957978 + 0.286842i \(0.0926056\pi\)
−0.957978 + 0.286842i \(0.907394\pi\)
\(80\) 10.1980 + 10.1980i 1.14018 + 1.14018i
\(81\) 1.00000 0.111111
\(82\) 12.0000i 1.32518i
\(83\) 5.00000 5.00000i 0.548821 0.548821i −0.377279 0.926100i \(-0.623140\pi\)
0.926100 + 0.377279i \(0.123140\pi\)
\(84\) 5.09902 + 5.09902i 0.556349 + 0.556349i
\(85\) −7.64853 + 7.64853i −0.829599 + 0.829599i
\(86\) 1.00000 + 1.00000i 0.107833 + 0.107833i
\(87\) 5.09902i 0.546672i
\(88\) 4.00000i 0.426401i
\(89\) −2.00000 2.00000i −0.212000 0.212000i 0.593117 0.805116i \(-0.297897\pi\)
−0.805116 + 0.593117i \(0.797897\pi\)
\(90\) −10.1980 −1.07497
\(91\) −13.0000 −1.36277
\(92\) 10.1980i 1.06322i
\(93\) −5.09902 5.09902i −0.528744 0.528744i
\(94\) 5.09902i 0.525924i
\(95\) −10.1980 −1.04630
\(96\) −4.00000 + 4.00000i −0.408248 + 0.408248i
\(97\) −7.00000 + 7.00000i −0.710742 + 0.710742i −0.966691 0.255948i \(-0.917612\pi\)
0.255948 + 0.966691i \(0.417612\pi\)
\(98\) 6.00000 + 6.00000i 0.606092 + 0.606092i
\(99\) −2.00000 2.00000i −0.201008 0.201008i
\(100\) 16.0000 1.60000
\(101\) 10.1980 1.01474 0.507371 0.861727i \(-0.330617\pi\)
0.507371 + 0.861727i \(0.330617\pi\)
\(102\) −3.00000 3.00000i −0.297044 0.297044i
\(103\) −5.09902 −0.502421 −0.251211 0.967932i \(-0.580829\pi\)
−0.251211 + 0.967932i \(0.580829\pi\)
\(104\) 10.1980i 1.00000i
\(105\) 13.0000 1.26867
\(106\) 5.09902 + 5.09902i 0.495261 + 0.495261i
\(107\) −2.00000 −0.193347 −0.0966736 0.995316i \(-0.530820\pi\)
−0.0966736 + 0.995316i \(0.530820\pi\)
\(108\) 10.0000i 0.962250i
\(109\) 2.54951 + 2.54951i 0.244199 + 0.244199i 0.818585 0.574386i \(-0.194759\pi\)
−0.574386 + 0.818585i \(0.694759\pi\)
\(110\) 5.09902 + 5.09902i 0.486172 + 0.486172i
\(111\) −2.54951 + 2.54951i −0.241989 + 0.241989i
\(112\) −10.1980 + 10.1980i −0.963624 + 0.963624i
\(113\) 4.00000 0.376288 0.188144 0.982141i \(-0.439753\pi\)
0.188144 + 0.982141i \(0.439753\pi\)
\(114\) 4.00000i 0.374634i
\(115\) 13.0000 + 13.0000i 1.21226 + 1.21226i
\(116\) 10.1980 0.946864
\(117\) 5.09902 + 5.09902i 0.471405 + 0.471405i
\(118\) −16.0000 −1.47292
\(119\) −7.64853 7.64853i −0.701140 0.701140i
\(120\) 10.1980i 0.930949i
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) −6.00000 + 6.00000i −0.541002 + 0.541002i
\(124\) 10.1980 10.1980i 0.915811 0.915811i
\(125\) 7.64853 7.64853i 0.684105 0.684105i
\(126\) 10.1980i 0.908514i
\(127\) 15.2971 1.35739 0.678697 0.734418i \(-0.262545\pi\)
0.678697 + 0.734418i \(0.262545\pi\)
\(128\) −8.00000 8.00000i −0.707107 0.707107i
\(129\) 1.00000i 0.0880451i
\(130\) −13.0000 13.0000i −1.14018 1.14018i
\(131\) 7.00000 0.611593 0.305796 0.952097i \(-0.401077\pi\)
0.305796 + 0.952097i \(0.401077\pi\)
\(132\) −2.00000 + 2.00000i −0.174078 + 0.174078i
\(133\) 10.1980i 0.884282i
\(134\) 6.00000i 0.518321i
\(135\) −12.7475 12.7475i −1.09713 1.09713i
\(136\) 6.00000 6.00000i 0.514496 0.514496i
\(137\) −5.00000 5.00000i −0.427179 0.427179i 0.460487 0.887666i \(-0.347675\pi\)
−0.887666 + 0.460487i \(0.847675\pi\)
\(138\) −5.09902 + 5.09902i −0.434057 + 0.434057i
\(139\) −15.0000 −1.27228 −0.636142 0.771572i \(-0.719471\pi\)
−0.636142 + 0.771572i \(0.719471\pi\)
\(140\) 26.0000i 2.19740i
\(141\) −2.54951 + 2.54951i −0.214707 + 0.214707i
\(142\) 15.2971 1.28370
\(143\) 5.09902i 0.426401i
\(144\) 8.00000 0.666667
\(145\) 13.0000 13.0000i 1.07959 1.07959i
\(146\) 12.0000 0.993127
\(147\) 6.00000i 0.494872i
\(148\) −5.09902 5.09902i −0.419137 0.419137i
\(149\) −10.1980 10.1980i −0.835456 0.835456i 0.152801 0.988257i \(-0.451171\pi\)
−0.988257 + 0.152801i \(0.951171\pi\)
\(150\) 8.00000 + 8.00000i 0.653197 + 0.653197i
\(151\) −7.64853 + 7.64853i −0.622428 + 0.622428i −0.946152 0.323723i \(-0.895065\pi\)
0.323723 + 0.946152i \(0.395065\pi\)
\(152\) 8.00000 0.648886
\(153\) 6.00000i 0.485071i
\(154\) −5.09902 + 5.09902i −0.410891 + 0.410891i
\(155\) 26.0000i 2.08837i
\(156\) 5.09902 5.09902i 0.408248 0.408248i
\(157\) 10.1980i 0.813892i 0.913452 + 0.406946i \(0.133406\pi\)
−0.913452 + 0.406946i \(0.866594\pi\)
\(158\) −5.09902 5.09902i −0.405656 0.405656i
\(159\) 5.09902i 0.404379i
\(160\) −20.3961 −1.61245
\(161\) −13.0000 + 13.0000i −1.02454 + 1.02454i
\(162\) −1.00000 + 1.00000i −0.0785674 + 0.0785674i
\(163\) 9.00000 + 9.00000i 0.704934 + 0.704934i 0.965465 0.260531i \(-0.0838976\pi\)
−0.260531 + 0.965465i \(0.583898\pi\)
\(164\) −12.0000 12.0000i −0.937043 0.937043i
\(165\) 5.09902i 0.396958i
\(166\) 10.0000i 0.776151i
\(167\) 15.2971 15.2971i 1.18372 1.18372i 0.204949 0.978773i \(-0.434297\pi\)
0.978773 0.204949i \(-0.0657030\pi\)
\(168\) −10.1980 −0.786796
\(169\) 13.0000i 1.00000i
\(170\) 15.2971i 1.17323i
\(171\) −4.00000 + 4.00000i −0.305888 + 0.305888i
\(172\) −2.00000 −0.152499
\(173\) −5.09902 −0.387671 −0.193836 0.981034i \(-0.562093\pi\)
−0.193836 + 0.981034i \(0.562093\pi\)
\(174\) 5.09902 + 5.09902i 0.386556 + 0.386556i
\(175\) 20.3961 + 20.3961i 1.54180 + 1.54180i
\(176\) −4.00000 4.00000i −0.301511 0.301511i
\(177\) −8.00000 8.00000i −0.601317 0.601317i
\(178\) 4.00000 0.299813
\(179\) 9.00000i 0.672692i −0.941739 0.336346i \(-0.890809\pi\)
0.941739 0.336346i \(-0.109191\pi\)
\(180\) 10.1980 10.1980i 0.760117 0.760117i
\(181\) −15.2971 −1.13702 −0.568511 0.822676i \(-0.692480\pi\)
−0.568511 + 0.822676i \(0.692480\pi\)
\(182\) 13.0000 13.0000i 0.963624 0.963624i
\(183\) 0 0
\(184\) −10.1980 10.1980i −0.751809 0.751809i
\(185\) −13.0000 −0.955779
\(186\) 10.1980 0.747757
\(187\) 3.00000 3.00000i 0.219382 0.219382i
\(188\) −5.09902 5.09902i −0.371884 0.371884i
\(189\) 12.7475 12.7475i 0.927248 0.927248i
\(190\) 10.1980 10.1980i 0.739844 0.739844i
\(191\) 25.4951i 1.84476i 0.386283 + 0.922380i \(0.373759\pi\)
−0.386283 + 0.922380i \(0.626241\pi\)
\(192\) 8.00000i 0.577350i
\(193\) 9.00000 + 9.00000i 0.647834 + 0.647834i 0.952469 0.304635i \(-0.0985345\pi\)
−0.304635 + 0.952469i \(0.598534\pi\)
\(194\) 14.0000i 1.00514i
\(195\) 13.0000i 0.930949i
\(196\) −12.0000 −0.857143
\(197\) 12.7475 + 12.7475i 0.908225 + 0.908225i 0.996129 0.0879037i \(-0.0280168\pi\)
−0.0879037 + 0.996129i \(0.528017\pi\)
\(198\) 4.00000 0.284268
\(199\) 25.4951 1.80730 0.903650 0.428272i \(-0.140878\pi\)
0.903650 + 0.428272i \(0.140878\pi\)
\(200\) −16.0000 + 16.0000i −1.13137 + 1.13137i
\(201\) −3.00000 + 3.00000i −0.211604 + 0.211604i
\(202\) −10.1980 + 10.1980i −0.717532 + 0.717532i
\(203\) 13.0000 + 13.0000i 0.912421 + 0.912421i
\(204\) 6.00000 0.420084
\(205\) −30.5941 −2.13679
\(206\) 5.09902 5.09902i 0.355266 0.355266i
\(207\) 10.1980 0.708813
\(208\) 10.1980 + 10.1980i 0.707107 + 0.707107i
\(209\) 4.00000 0.276686
\(210\) −13.0000 + 13.0000i −0.897085 + 0.897085i
\(211\) 7.00000 0.481900 0.240950 0.970538i \(-0.422541\pi\)
0.240950 + 0.970538i \(0.422541\pi\)
\(212\) −10.1980 −0.700404
\(213\) 7.64853 + 7.64853i 0.524069 + 0.524069i
\(214\) 2.00000 2.00000i 0.136717 0.136717i
\(215\) −2.54951 + 2.54951i −0.173875 + 0.173875i
\(216\) 10.0000 + 10.0000i 0.680414 + 0.680414i
\(217\) 26.0000 1.76500
\(218\) −5.09902 −0.345349
\(219\) 6.00000 + 6.00000i 0.405442 + 0.405442i
\(220\) −10.1980 −0.687552
\(221\) −7.64853 + 7.64853i −0.514496 + 0.514496i
\(222\) 5.09902i 0.342224i
\(223\) 7.64853 + 7.64853i 0.512183 + 0.512183i 0.915195 0.403012i \(-0.132037\pi\)
−0.403012 + 0.915195i \(0.632037\pi\)
\(224\) 20.3961i 1.36277i
\(225\) 16.0000i 1.06667i
\(226\) −4.00000 + 4.00000i −0.266076 + 0.266076i
\(227\) −12.0000 + 12.0000i −0.796468 + 0.796468i −0.982537 0.186069i \(-0.940425\pi\)
0.186069 + 0.982537i \(0.440425\pi\)
\(228\) 4.00000 + 4.00000i 0.264906 + 0.264906i
\(229\) −2.54951 + 2.54951i −0.168476 + 0.168476i −0.786309 0.617833i \(-0.788011\pi\)
0.617833 + 0.786309i \(0.288011\pi\)
\(230\) −26.0000 −1.71439
\(231\) −5.09902 −0.335491
\(232\) −10.1980 + 10.1980i −0.669534 + 0.669534i
\(233\) 11.0000i 0.720634i −0.932830 0.360317i \(-0.882669\pi\)
0.932830 0.360317i \(-0.117331\pi\)
\(234\) −10.1980 −0.666667
\(235\) −13.0000 −0.848026
\(236\) 16.0000 16.0000i 1.04151 1.04151i
\(237\) 5.09902i 0.331217i
\(238\) 15.2971 0.991561
\(239\) 2.54951 + 2.54951i 0.164914 + 0.164914i 0.784740 0.619826i \(-0.212797\pi\)
−0.619826 + 0.784740i \(0.712797\pi\)
\(240\) −10.1980 10.1980i −0.658281 0.658281i
\(241\) −14.0000 14.0000i −0.901819 0.901819i 0.0937742 0.995593i \(-0.470107\pi\)
−0.995593 + 0.0937742i \(0.970107\pi\)
\(242\) 9.00000 + 9.00000i 0.578542 + 0.578542i
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) −15.2971 + 15.2971i −0.977293 + 0.977293i
\(246\) 12.0000i 0.765092i
\(247\) −10.1980 −0.648886
\(248\) 20.3961i 1.29515i
\(249\) −5.00000 + 5.00000i −0.316862 + 0.316862i
\(250\) 15.2971i 0.967471i
\(251\) 10.0000i 0.631194i 0.948893 + 0.315597i \(0.102205\pi\)
−0.948893 + 0.315597i \(0.897795\pi\)
\(252\) 10.1980 + 10.1980i 0.642416 + 0.642416i
\(253\) −5.09902 5.09902i −0.320573 0.320573i
\(254\) −15.2971 + 15.2971i −0.959823 + 0.959823i
\(255\) 7.64853 7.64853i 0.478969 0.478969i
\(256\) 16.0000 1.00000
\(257\) 3.00000i 0.187135i −0.995613 0.0935674i \(-0.970173\pi\)
0.995613 0.0935674i \(-0.0298271\pi\)
\(258\) −1.00000 1.00000i −0.0622573 0.0622573i
\(259\) 13.0000i 0.807781i
\(260\) 26.0000 1.61245
\(261\) 10.1980i 0.631243i
\(262\) −7.00000 + 7.00000i −0.432461 + 0.432461i
\(263\) 20.3961i 1.25768i 0.777536 + 0.628838i \(0.216469\pi\)
−0.777536 + 0.628838i \(0.783531\pi\)
\(264\) 4.00000i 0.246183i
\(265\) −13.0000 + 13.0000i −0.798584 + 0.798584i
\(266\) 10.1980 + 10.1980i 0.625282 + 0.625282i
\(267\) 2.00000 + 2.00000i 0.122398 + 0.122398i
\(268\) −6.00000 6.00000i −0.366508 0.366508i
\(269\) 20.3961i 1.24357i −0.783188 0.621785i \(-0.786408\pi\)
0.783188 0.621785i \(-0.213592\pi\)
\(270\) 25.4951 1.55158
\(271\) −7.64853 + 7.64853i −0.464615 + 0.464615i −0.900165 0.435550i \(-0.856554\pi\)
0.435550 + 0.900165i \(0.356554\pi\)
\(272\) 12.0000i 0.727607i
\(273\) 13.0000 0.786796
\(274\) 10.0000 0.604122
\(275\) −8.00000 + 8.00000i −0.482418 + 0.482418i
\(276\) 10.1980i 0.613850i
\(277\) −10.1980 −0.612741 −0.306370 0.951912i \(-0.599115\pi\)
−0.306370 + 0.951912i \(0.599115\pi\)
\(278\) 15.0000 15.0000i 0.899640 0.899640i
\(279\) −10.1980 10.1980i −0.610541 0.610541i
\(280\) −26.0000 26.0000i −1.55380 1.55380i
\(281\) 16.0000 + 16.0000i 0.954480 + 0.954480i 0.999008 0.0445282i \(-0.0141784\pi\)
−0.0445282 + 0.999008i \(0.514178\pi\)
\(282\) 5.09902i 0.303642i
\(283\) 16.0000i 0.951101i −0.879688 0.475551i \(-0.842249\pi\)
0.879688 0.475551i \(-0.157751\pi\)
\(284\) −15.2971 + 15.2971i −0.907713 + 0.907713i
\(285\) 10.1980 0.604080
\(286\) 5.09902 + 5.09902i 0.301511 + 0.301511i
\(287\) 30.5941i 1.80591i
\(288\) −8.00000 + 8.00000i −0.471405 + 0.471405i
\(289\) 8.00000 0.470588
\(290\) 26.0000i 1.52677i
\(291\) 7.00000 7.00000i 0.410347 0.410347i
\(292\) −12.0000 + 12.0000i −0.702247 + 0.702247i
\(293\) 12.7475 12.7475i 0.744720 0.744720i −0.228763 0.973482i \(-0.573468\pi\)
0.973482 + 0.228763i \(0.0734679\pi\)
\(294\) −6.00000 6.00000i −0.349927 0.349927i
\(295\) 40.7922i 2.37501i
\(296\) 10.1980 0.592749
\(297\) 5.00000 + 5.00000i 0.290129 + 0.290129i
\(298\) 20.3961 1.18151
\(299\) 13.0000 + 13.0000i 0.751809 + 0.751809i
\(300\) −16.0000 −0.923760
\(301\) −2.54951 2.54951i −0.146951 0.146951i
\(302\) 15.2971i 0.880247i
\(303\) −10.1980 −0.585862
\(304\) −8.00000 + 8.00000i −0.458831 + 0.458831i
\(305\) 0 0
\(306\) −6.00000 6.00000i −0.342997 0.342997i
\(307\) −10.0000 10.0000i −0.570730 0.570730i 0.361602 0.932332i \(-0.382230\pi\)
−0.932332 + 0.361602i \(0.882230\pi\)
\(308\) 10.1980i 0.581087i
\(309\) 5.09902 0.290073
\(310\) 26.0000 + 26.0000i 1.47670 + 1.47670i
\(311\) 10.1980 0.578278 0.289139 0.957287i \(-0.406631\pi\)
0.289139 + 0.957287i \(0.406631\pi\)
\(312\) 10.1980i 0.577350i
\(313\) −31.0000 −1.75222 −0.876112 0.482108i \(-0.839871\pi\)
−0.876112 + 0.482108i \(0.839871\pi\)
\(314\) −10.1980 10.1980i −0.575509 0.575509i
\(315\) 26.0000 1.46493
\(316\) 10.1980 0.573685
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) −5.09902 5.09902i −0.285939 0.285939i
\(319\) −5.09902 + 5.09902i −0.285490 + 0.285490i
\(320\) 20.3961 20.3961i 1.14018 1.14018i
\(321\) 2.00000 0.111629
\(322\) 26.0000i 1.44892i
\(323\) −6.00000 6.00000i −0.333849 0.333849i
\(324\) 2.00000i 0.111111i
\(325\) 20.3961 20.3961i 1.13137 1.13137i
\(326\) −18.0000 −0.996928
\(327\) −2.54951 2.54951i −0.140988 0.140988i
\(328\) 24.0000 1.32518
\(329\) 13.0000i 0.716713i
\(330\) −5.09902 5.09902i −0.280692 0.280692i
\(331\) 21.0000 21.0000i 1.15426 1.15426i 0.168576 0.985689i \(-0.446083\pi\)
0.985689 0.168576i \(-0.0539168\pi\)
\(332\) −10.0000 10.0000i −0.548821 0.548821i
\(333\) −5.09902 + 5.09902i −0.279425 + 0.279425i
\(334\) 30.5941i 1.67404i
\(335\) −15.2971 −0.835768
\(336\) 10.1980 10.1980i 0.556349 0.556349i
\(337\) 17.0000i 0.926049i 0.886345 + 0.463025i \(0.153236\pi\)
−0.886345 + 0.463025i \(0.846764\pi\)
\(338\) −13.0000 13.0000i −0.707107 0.707107i
\(339\) −4.00000 −0.217250
\(340\) 15.2971 + 15.2971i 0.829599 + 0.829599i
\(341\) 10.1980i 0.552255i
\(342\) 8.00000i 0.432590i
\(343\) 2.54951 + 2.54951i 0.137661 + 0.137661i
\(344\) 2.00000 2.00000i 0.107833 0.107833i
\(345\) −13.0000 13.0000i −0.699896 0.699896i
\(346\) 5.09902 5.09902i 0.274125 0.274125i
\(347\) −7.00000 −0.375780 −0.187890 0.982190i \(-0.560165\pi\)
−0.187890 + 0.982190i \(0.560165\pi\)
\(348\) −10.1980 −0.546672
\(349\) 22.9456 22.9456i 1.22825 1.22825i 0.263624 0.964626i \(-0.415082\pi\)
0.964626 0.263624i \(-0.0849177\pi\)
\(350\) −40.7922 −2.18043
\(351\) −12.7475 12.7475i −0.680414 0.680414i
\(352\) 8.00000 0.426401
\(353\) 5.00000 5.00000i 0.266123 0.266123i −0.561413 0.827536i \(-0.689742\pi\)
0.827536 + 0.561413i \(0.189742\pi\)
\(354\) 16.0000 0.850390
\(355\) 39.0000i 2.06991i
\(356\) −4.00000 + 4.00000i −0.212000 + 0.212000i
\(357\) 7.64853 + 7.64853i 0.404803 + 0.404803i
\(358\) 9.00000 + 9.00000i 0.475665 + 0.475665i
\(359\) −15.2971 + 15.2971i −0.807348 + 0.807348i −0.984232 0.176884i \(-0.943398\pi\)
0.176884 + 0.984232i \(0.443398\pi\)
\(360\) 20.3961i 1.07497i
\(361\) 11.0000i 0.578947i
\(362\) 15.2971 15.2971i 0.803996 0.803996i
\(363\) 9.00000i 0.472377i
\(364\) 26.0000i 1.36277i
\(365\) 30.5941i 1.60137i
\(366\) 0 0
\(367\) 15.2971i 0.798500i −0.916842 0.399250i \(-0.869271\pi\)
0.916842 0.399250i \(-0.130729\pi\)
\(368\) 20.3961 1.06322
\(369\) −12.0000 + 12.0000i −0.624695 + 0.624695i
\(370\) 13.0000 13.0000i 0.675838 0.675838i
\(371\) −13.0000 13.0000i −0.674926 0.674926i
\(372\) −10.1980 + 10.1980i −0.528744 + 0.528744i
\(373\) 20.3961i 1.05607i 0.849223 + 0.528034i \(0.177071\pi\)
−0.849223 + 0.528034i \(0.822929\pi\)
\(374\) 6.00000i 0.310253i
\(375\) −7.64853 + 7.64853i −0.394968 + 0.394968i
\(376\) 10.1980 0.525924
\(377\) 13.0000 13.0000i 0.669534 0.669534i
\(378\) 25.4951i 1.31133i
\(379\) −23.0000 + 23.0000i −1.18143 + 1.18143i −0.202057 + 0.979374i \(0.564763\pi\)
−0.979374 + 0.202057i \(0.935237\pi\)
\(380\) 20.3961i 1.04630i
\(381\) −15.2971 −0.783692
\(382\) −25.4951 25.4951i −1.30444 1.30444i
\(383\) 7.64853 + 7.64853i 0.390822 + 0.390822i 0.874980 0.484159i \(-0.160874\pi\)
−0.484159 + 0.874980i \(0.660874\pi\)
\(384\) 8.00000 + 8.00000i 0.408248 + 0.408248i
\(385\) −13.0000 13.0000i −0.662541 0.662541i
\(386\) −18.0000 −0.916176
\(387\) 2.00000i 0.101666i
\(388\) 14.0000 + 14.0000i 0.710742 + 0.710742i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 13.0000 + 13.0000i 0.658281 + 0.658281i
\(391\) 15.2971i 0.773606i
\(392\) 12.0000 12.0000i 0.606092 0.606092i
\(393\) −7.00000 −0.353103
\(394\) −25.4951 −1.28442
\(395\) 13.0000 13.0000i 0.654101 0.654101i
\(396\) −4.00000 + 4.00000i −0.201008 + 0.201008i
\(397\) −10.1980 + 10.1980i −0.511825 + 0.511825i −0.915085 0.403260i \(-0.867877\pi\)
0.403260 + 0.915085i \(0.367877\pi\)
\(398\) −25.4951 + 25.4951i −1.27795 + 1.27795i
\(399\) 10.1980i 0.510541i
\(400\) 32.0000i 1.60000i
\(401\) 1.00000 + 1.00000i 0.0499376 + 0.0499376i 0.731635 0.681697i \(-0.238758\pi\)
−0.681697 + 0.731635i \(0.738758\pi\)
\(402\) 6.00000i 0.299253i
\(403\) 26.0000i 1.29515i
\(404\) 20.3961i 1.01474i
\(405\) −2.54951 2.54951i −0.126686 0.126686i
\(406\) −26.0000 −1.29036
\(407\) 5.09902 0.252749
\(408\) −6.00000 + 6.00000i −0.297044 + 0.297044i
\(409\) 27.0000 27.0000i 1.33506 1.33506i 0.434292 0.900772i \(-0.356999\pi\)
0.900772 0.434292i \(-0.143001\pi\)
\(410\) 30.5941 30.5941i 1.51094 1.51094i
\(411\) 5.00000 + 5.00000i 0.246632 + 0.246632i
\(412\) 10.1980i 0.502421i
\(413\) 40.7922 2.00725
\(414\) −10.1980 + 10.1980i −0.501206 + 0.501206i
\(415\) −25.4951 −1.25151
\(416\) −20.3961 −1.00000
\(417\) 15.0000 0.734553
\(418\) −4.00000 + 4.00000i −0.195646 + 0.195646i
\(419\) 5.00000 0.244266 0.122133 0.992514i \(-0.461027\pi\)
0.122133 + 0.992514i \(0.461027\pi\)
\(420\) 26.0000i 1.26867i
\(421\) −7.64853 7.64853i −0.372767 0.372767i 0.495717 0.868484i \(-0.334905\pi\)
−0.868484 + 0.495717i \(0.834905\pi\)
\(422\) −7.00000 + 7.00000i −0.340755 + 0.340755i
\(423\) −5.09902 + 5.09902i −0.247923 + 0.247923i
\(424\) 10.1980 10.1980i 0.495261 0.495261i
\(425\) 24.0000 1.16417
\(426\) −15.2971 −0.741145
\(427\) 0 0
\(428\) 4.00000i 0.193347i
\(429\) 5.09902i 0.246183i
\(430\) 5.09902i 0.245897i
\(431\) −7.64853 7.64853i −0.368417 0.368417i 0.498483 0.866900i \(-0.333891\pi\)
−0.866900 + 0.498483i \(0.833891\pi\)
\(432\) −20.0000 −0.962250
\(433\) 19.0000i 0.913082i 0.889702 + 0.456541i \(0.150912\pi\)
−0.889702 + 0.456541i \(0.849088\pi\)
\(434\) −26.0000 + 26.0000i −1.24804 + 1.24804i
\(435\) −13.0000 + 13.0000i −0.623302 + 0.623302i
\(436\) 5.09902 5.09902i 0.244199 0.244199i
\(437\) −10.1980 + 10.1980i −0.487838 + 0.487838i
\(438\) −12.0000 −0.573382
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 10.1980 10.1980i 0.486172 0.486172i
\(441\) 12.0000i 0.571429i
\(442\) 15.2971i 0.727607i
\(443\) −31.0000 −1.47285 −0.736427 0.676517i \(-0.763489\pi\)
−0.736427 + 0.676517i \(0.763489\pi\)
\(444\) 5.09902 + 5.09902i 0.241989 + 0.241989i
\(445\) 10.1980i 0.483433i
\(446\) −15.2971 −0.724337
\(447\) 10.1980 + 10.1980i 0.482351 + 0.482351i
\(448\) 20.3961 + 20.3961i 0.963624 + 0.963624i
\(449\) 3.00000 + 3.00000i 0.141579 + 0.141579i 0.774344 0.632765i \(-0.218080\pi\)
−0.632765 + 0.774344i \(0.718080\pi\)
\(450\) 16.0000 + 16.0000i 0.754247 + 0.754247i
\(451\) 12.0000 0.565058
\(452\) 8.00000i 0.376288i
\(453\) 7.64853 7.64853i 0.359359 0.359359i
\(454\) 24.0000i 1.12638i
\(455\) 33.1436 + 33.1436i 1.55380 + 1.55380i
\(456\) −8.00000 −0.374634
\(457\) −2.00000 + 2.00000i −0.0935561 + 0.0935561i −0.752336 0.658780i \(-0.771073\pi\)
0.658780 + 0.752336i \(0.271073\pi\)
\(458\) 5.09902i 0.238262i
\(459\) 15.0000i 0.700140i
\(460\) 26.0000 26.0000i 1.21226 1.21226i
\(461\) 17.8466 + 17.8466i 0.831198 + 0.831198i 0.987681 0.156483i \(-0.0500157\pi\)
−0.156483 + 0.987681i \(0.550016\pi\)
\(462\) 5.09902 5.09902i 0.237228 0.237228i
\(463\) 25.4951 25.4951i 1.18486 1.18486i 0.206387 0.978470i \(-0.433829\pi\)
0.978470 0.206387i \(-0.0661707\pi\)
\(464\) 20.3961i 0.946864i
\(465\) 26.0000i 1.20572i
\(466\) 11.0000 + 11.0000i 0.509565 + 0.509565i
\(467\) 2.00000i 0.0925490i 0.998929 + 0.0462745i \(0.0147349\pi\)
−0.998929 + 0.0462745i \(0.985265\pi\)
\(468\) 10.1980 10.1980i 0.471405 0.471405i
\(469\) 15.2971i 0.706353i
\(470\) 13.0000 13.0000i 0.599645 0.599645i
\(471\) 10.1980i 0.469901i
\(472\) 32.0000i 1.47292i
\(473\) 1.00000 1.00000i 0.0459800 0.0459800i
\(474\) 5.09902 + 5.09902i 0.234206 + 0.234206i
\(475\) 16.0000 + 16.0000i 0.734130 + 0.734130i
\(476\) −15.2971 + 15.2971i −0.701140 + 0.701140i
\(477\) 10.1980i 0.466936i
\(478\) −5.09902 −0.233224
\(479\) −2.54951 + 2.54951i −0.116490 + 0.116490i −0.762949 0.646459i \(-0.776249\pi\)
0.646459 + 0.762949i \(0.276249\pi\)
\(480\) 20.3961 0.930949
\(481\) −13.0000 −0.592749
\(482\) 28.0000 1.27537
\(483\) 13.0000 13.0000i 0.591520 0.591520i
\(484\) −18.0000 −0.818182
\(485\) 35.6931 1.62074
\(486\) 16.0000 16.0000i 0.725775 0.725775i
\(487\) −25.4951 25.4951i −1.15529 1.15529i −0.985476 0.169818i \(-0.945682\pi\)
−0.169818 0.985476i \(-0.554318\pi\)
\(488\) 0 0
\(489\) −9.00000 9.00000i −0.406994 0.406994i
\(490\) 30.5941i 1.38210i
\(491\) 5.00000i 0.225647i 0.993615 + 0.112823i \(0.0359894\pi\)
−0.993615 + 0.112823i \(0.964011\pi\)
\(492\) 12.0000 + 12.0000i 0.541002 + 0.541002i
\(493\) 15.2971 0.688945
\(494\) 10.1980 10.1980i 0.458831 0.458831i
\(495\) 10.1980i 0.458368i
\(496\) −20.3961 20.3961i −0.915811 0.915811i
\(497\) −39.0000 −1.74939
\(498\) 10.0000i 0.448111i
\(499\) 2.00000 2.00000i 0.0895323 0.0895323i −0.660922 0.750454i \(-0.729835\pi\)
0.750454 + 0.660922i \(0.229835\pi\)
\(500\) −15.2971 15.2971i −0.684105 0.684105i
\(501\) −15.2971 + 15.2971i −0.683422 + 0.683422i
\(502\) −10.0000 10.0000i −0.446322 0.446322i
\(503\) 20.3961i 0.909416i 0.890641 + 0.454708i \(0.150256\pi\)
−0.890641 + 0.454708i \(0.849744\pi\)
\(504\) −20.3961 −0.908514
\(505\) −26.0000 26.0000i −1.15698 1.15698i
\(506\) 10.1980 0.453358
\(507\) 13.0000i 0.577350i
\(508\) 30.5941i 1.35739i
\(509\) −10.1980 10.1980i −0.452020 0.452020i 0.444004 0.896025i \(-0.353557\pi\)
−0.896025 + 0.444004i \(0.853557\pi\)
\(510\) 15.2971i 0.677365i
\(511\) −30.5941 −1.35340
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) 10.0000 10.0000i 0.441511 0.441511i
\(514\) 3.00000 + 3.00000i 0.132324 + 0.132324i
\(515\) 13.0000 + 13.0000i 0.572848 + 0.572848i
\(516\) 2.00000 0.0880451
\(517\) 5.09902 0.224255
\(518\) 13.0000 + 13.0000i 0.571187 + 0.571187i
\(519\) 5.09902 0.223822
\(520\) −26.0000 + 26.0000i −1.14018 + 1.14018i
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 10.1980 + 10.1980i 0.446356 + 0.446356i
\(523\) −6.00000 −0.262362 −0.131181 0.991358i \(-0.541877\pi\)
−0.131181 + 0.991358i \(0.541877\pi\)
\(524\) 14.0000i 0.611593i
\(525\) −20.3961 20.3961i −0.890158 0.890158i
\(526\) −20.3961 20.3961i −0.889311 0.889311i
\(527\) 15.2971 15.2971i 0.666350 0.666350i
\(528\) 4.00000 + 4.00000i 0.174078 + 0.174078i
\(529\) 3.00000 0.130435
\(530\) 26.0000i 1.12937i
\(531\) −16.0000 16.0000i −0.694341 0.694341i
\(532\) −20.3961 −0.884282
\(533\) −30.5941 −1.32518
\(534\) −4.00000 −0.173097
\(535\) 5.09902 + 5.09902i 0.220450 + 0.220450i
\(536\) 12.0000 0.518321
\(537\) 9.00000i 0.388379i
\(538\) 20.3961 + 20.3961i 0.879337 + 0.879337i
\(539\) 6.00000 6.00000i 0.258438 0.258438i
\(540\) −25.4951 + 25.4951i −1.09713 + 1.09713i
\(541\) 17.8466 17.8466i 0.767284 0.767284i −0.210344 0.977628i \(-0.567458\pi\)
0.977628 + 0.210344i \(0.0674583\pi\)
\(542\) 15.2971i 0.657065i
\(543\) 15.2971 0.656460
\(544\) −12.0000 12.0000i −0.514496 0.514496i
\(545\) 13.0000i 0.556859i
\(546\) −13.0000 + 13.0000i −0.556349 + 0.556349i
\(547\) 23.0000 0.983409 0.491704 0.870762i \(-0.336374\pi\)
0.491704 + 0.870762i \(0.336374\pi\)
\(548\) −10.0000 + 10.0000i −0.427179 + 0.427179i
\(549\) 0 0
\(550\) 16.0000i 0.682242i
\(551\) 10.1980 + 10.1980i 0.434451 + 0.434451i
\(552\) 10.1980 + 10.1980i 0.434057 + 0.434057i
\(553\) 13.0000 + 13.0000i 0.552816 + 0.552816i
\(554\) 10.1980 10.1980i 0.433273 0.433273i
\(555\) 13.0000 0.551819
\(556\) 30.0000i 1.27228i
\(557\) −22.9456 + 22.9456i −0.972236 + 0.972236i −0.999625 0.0273891i \(-0.991281\pi\)
0.0273891 + 0.999625i \(0.491281\pi\)
\(558\) 20.3961 0.863435
\(559\) −2.54951 + 2.54951i −0.107833 + 0.107833i
\(560\) 52.0000 2.19740
\(561\) −3.00000 + 3.00000i −0.126660 + 0.126660i
\(562\) −32.0000 −1.34984
\(563\) 9.00000i 0.379305i 0.981851 + 0.189652i \(0.0607361\pi\)
−0.981851 + 0.189652i \(0.939264\pi\)
\(564\) 5.09902 + 5.09902i 0.214707 + 0.214707i
\(565\) −10.1980 10.1980i −0.429035 0.429035i
\(566\) 16.0000 + 16.0000i 0.672530 + 0.672530i
\(567\) 2.54951 2.54951i 0.107069 0.107069i
\(568\) 30.5941i 1.28370i
\(569\) 31.0000i 1.29959i 0.760111 + 0.649794i \(0.225145\pi\)
−0.760111 + 0.649794i \(0.774855\pi\)
\(570\) −10.1980 + 10.1980i −0.427149 + 0.427149i
\(571\) 15.0000i 0.627730i 0.949468 + 0.313865i \(0.101624\pi\)
−0.949468 + 0.313865i \(0.898376\pi\)
\(572\) −10.1980 −0.426401
\(573\) 25.4951i 1.06507i
\(574\) 30.5941 + 30.5941i 1.27697 + 1.27697i
\(575\) 40.7922i 1.70115i
\(576\) 16.0000i 0.666667i
\(577\) 18.0000 18.0000i 0.749350 0.749350i −0.225007 0.974357i \(-0.572241\pi\)
0.974357 + 0.225007i \(0.0722406\pi\)
\(578\) −8.00000 + 8.00000i −0.332756 + 0.332756i
\(579\) −9.00000 9.00000i −0.374027 0.374027i
\(580\) −26.0000 26.0000i −1.07959 1.07959i
\(581\) 25.4951i 1.05771i
\(582\) 14.0000i 0.580319i
\(583\) 5.09902 5.09902i 0.211180 0.211180i
\(584\) 24.0000i 0.993127i
\(585\) 26.0000i 1.07497i
\(586\) 25.4951i 1.05319i
\(587\) −7.00000 + 7.00000i −0.288921 + 0.288921i −0.836653 0.547733i \(-0.815491\pi\)
0.547733 + 0.836653i \(0.315491\pi\)
\(588\) 12.0000 0.494872
\(589\) 20.3961 0.840406
\(590\) 40.7922 + 40.7922i 1.67939 + 1.67939i
\(591\) −12.7475 12.7475i −0.524364 0.524364i
\(592\) −10.1980 + 10.1980i −0.419137 + 0.419137i
\(593\) 29.0000 + 29.0000i 1.19089 + 1.19089i 0.976819 + 0.214069i \(0.0686716\pi\)
0.214069 + 0.976819i \(0.431328\pi\)
\(594\) −10.0000 −0.410305
\(595\) 39.0000i 1.59884i
\(596\) −20.3961 + 20.3961i −0.835456 + 0.835456i
\(597\) −25.4951 −1.04344
\(598\) −26.0000 −1.06322
\(599\) 30.5941i 1.25004i 0.780608 + 0.625021i \(0.214910\pi\)
−0.780608 + 0.625021i \(0.785090\pi\)
\(600\) 16.0000 16.0000i 0.653197 0.653197i
\(601\) 37.0000 1.50926 0.754631 0.656150i \(-0.227816\pi\)
0.754631 + 0.656150i \(0.227816\pi\)
\(602\) 5.09902 0.207821
\(603\) −6.00000 + 6.00000i −0.244339 + 0.244339i
\(604\) 15.2971 + 15.2971i 0.622428 + 0.622428i
\(605\) −22.9456 + 22.9456i −0.932871 + 0.932871i
\(606\) 10.1980 10.1980i 0.414267 0.414267i
\(607\) 10.1980i 0.413926i 0.978349 + 0.206963i \(0.0663579\pi\)
−0.978349 + 0.206963i \(0.933642\pi\)
\(608\) 16.0000i 0.648886i
\(609\) −13.0000 13.0000i −0.526787 0.526787i
\(610\) 0 0
\(611\) −13.0000 −0.525924
\(612\) 12.0000 0.485071
\(613\) −5.09902 5.09902i −0.205947 0.205947i 0.596595 0.802542i \(-0.296520\pi\)
−0.802542 + 0.596595i \(0.796520\pi\)
\(614\) 20.0000 0.807134
\(615\) 30.5941 1.23367
\(616\) 10.1980 + 10.1980i 0.410891 + 0.410891i
\(617\) −12.0000 + 12.0000i −0.483102 + 0.483102i −0.906121 0.423019i \(-0.860970\pi\)
0.423019 + 0.906121i \(0.360970\pi\)
\(618\) −5.09902 + 5.09902i −0.205113 + 0.205113i
\(619\) −22.0000 22.0000i −0.884255 0.884255i 0.109709 0.993964i \(-0.465008\pi\)
−0.993964 + 0.109709i \(0.965008\pi\)
\(620\) −52.0000 −2.08837
\(621\) −25.4951 −1.02308
\(622\) −10.1980 + 10.1980i −0.408904 + 0.408904i
\(623\) −10.1980 −0.408576
\(624\) −10.1980 10.1980i −0.408248 0.408248i
\(625\) 1.00000 0.0400000
\(626\) 31.0000 31.0000i 1.23901 1.23901i
\(627\) −4.00000 −0.159745
\(628\) 20.3961 0.813892
\(629\) −7.64853 7.64853i −0.304967 0.304967i
\(630\) −26.0000 + 26.0000i −1.03586 + 1.03586i
\(631\) 17.8466 17.8466i 0.710461 0.710461i −0.256171 0.966632i \(-0.582461\pi\)
0.966632 + 0.256171i \(0.0824610\pi\)
\(632\) −10.1980 + 10.1980i −0.405656 + 0.405656i
\(633\) −7.00000 −0.278225
\(634\) 0 0
\(635\) −39.0000 39.0000i −1.54767 1.54767i
\(636\) 10.1980 0.404379
\(637\) −15.2971 + 15.2971i −0.606092 + 0.606092i
\(638\) 10.1980i 0.403744i
\(639\) 15.2971 + 15.2971i 0.605142 + 0.605142i
\(640\) 40.7922i 1.61245i
\(641\) 40.0000i 1.57991i −0.613168 0.789953i \(-0.710105\pi\)
0.613168 0.789953i \(-0.289895\pi\)
\(642\) −2.00000 + 2.00000i −0.0789337 + 0.0789337i
\(643\) 15.0000 15.0000i 0.591542 0.591542i −0.346506 0.938048i \(-0.612632\pi\)
0.938048 + 0.346506i \(0.112632\pi\)
\(644\) 26.0000 + 26.0000i 1.02454 + 1.02454i
\(645\) 2.54951 2.54951i 0.100387 0.100387i
\(646\) 12.0000 0.472134
\(647\) −10.1980 −0.400926 −0.200463 0.979701i \(-0.564245\pi\)
−0.200463 + 0.979701i \(0.564245\pi\)
\(648\) 2.00000 + 2.00000i 0.0785674 + 0.0785674i
\(649\) 16.0000i 0.628055i
\(650\) 40.7922i 1.60000i
\(651\) −26.0000 −1.01902
\(652\) 18.0000 18.0000i 0.704934 0.704934i
\(653\) 30.5941i 1.19724i −0.801033 0.598620i \(-0.795716\pi\)
0.801033 0.598620i \(-0.204284\pi\)
\(654\) 5.09902 0.199387
\(655\) −17.8466 17.8466i −0.697323 0.697323i
\(656\) −24.0000 + 24.0000i −0.937043 + 0.937043i
\(657\) 12.0000 + 12.0000i 0.468165 + 0.468165i
\(658\) 13.0000 + 13.0000i 0.506793 + 0.506793i
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) 10.1980 0.396958
\(661\) 5.09902 5.09902i 0.198329 0.198329i −0.600954 0.799283i \(-0.705213\pi\)
0.799283 + 0.600954i \(0.205213\pi\)
\(662\) 42.0000i 1.63238i
\(663\) 7.64853 7.64853i 0.297044 0.297044i
\(664\) 20.0000 0.776151
\(665\) −26.0000 + 26.0000i −1.00824 + 1.00824i
\(666\) 10.1980i 0.395166i
\(667\) 26.0000i 1.00672i
\(668\) −30.5941 30.5941i −1.18372 1.18372i
\(669\) −7.64853 7.64853i −0.295709 0.295709i
\(670\) 15.2971 15.2971i 0.590977 0.590977i
\(671\) 0 0
\(672\) 20.3961i 0.786796i
\(673\) 21.0000i 0.809491i −0.914429 0.404745i \(-0.867360\pi\)
0.914429 0.404745i \(-0.132640\pi\)
\(674\) −17.0000 17.0000i −0.654816 0.654816i
\(675\) 40.0000i 1.53960i
\(676\) 26.0000 1.00000
\(677\) 15.2971i 0.587914i −0.955819 0.293957i \(-0.905028\pi\)
0.955819 0.293957i \(-0.0949722\pi\)
\(678\) 4.00000 4.00000i 0.153619 0.153619i
\(679\) 35.6931i 1.36978i
\(680\) −30.5941 −1.17323
\(681\) 12.0000 12.0000i 0.459841 0.459841i
\(682\) −10.1980 10.1980i −0.390503 0.390503i
\(683\) 29.0000 + 29.0000i 1.10965 + 1.10965i 0.993196 + 0.116459i \(0.0371542\pi\)
0.116459 + 0.993196i \(0.462846\pi\)
\(684\) 8.00000 + 8.00000i 0.305888 + 0.305888i
\(685\) 25.4951i 0.974118i
\(686\) −5.09902 −0.194681
\(687\) 2.54951 2.54951i 0.0972699 0.0972699i
\(688\) 4.00000i 0.152499i
\(689\) −13.0000 + 13.0000i −0.495261 + 0.495261i
\(690\) 26.0000 0.989803
\(691\) 6.00000 6.00000i 0.228251 0.228251i −0.583711 0.811962i \(-0.698400\pi\)
0.811962 + 0.583711i \(0.198400\pi\)
\(692\) 10.1980i 0.387671i
\(693\) −10.1980 −0.387391
\(694\) 7.00000 7.00000i 0.265716 0.265716i
\(695\) 38.2426 + 38.2426i 1.45063 + 1.45063i
\(696\) 10.1980 10.1980i 0.386556 0.386556i
\(697\) −18.0000 18.0000i −0.681799 0.681799i
\(698\) 45.8912i 1.73701i
\(699\) 11.0000i 0.416058i
\(700\) 40.7922 40.7922i 1.54180 1.54180i
\(701\) −15.2971 −0.577762 −0.288881 0.957365i \(-0.593283\pi\)
−0.288881 + 0.957365i \(0.593283\pi\)
\(702\) 25.4951 0.962250
\(703\) 10.1980i 0.384626i
\(704\) −8.00000 + 8.00000i −0.301511 + 0.301511i
\(705\) 13.0000 0.489608
\(706\) 10.0000i 0.376355i
\(707\) 26.0000 26.0000i 0.977831 0.977831i
\(708\) −16.0000 + 16.0000i −0.601317 + 0.601317i
\(709\) 10.1980 10.1980i 0.382995 0.382995i −0.489185 0.872180i \(-0.662706\pi\)
0.872180 + 0.489185i \(0.162706\pi\)
\(710\) −39.0000 39.0000i −1.46364 1.46364i
\(711\) 10.1980i 0.382456i
\(712\) 8.00000i 0.299813i
\(713\) −26.0000 26.0000i −0.973708 0.973708i
\(714\) −15.2971 −0.572478
\(715\) −13.0000 + 13.0000i −0.486172 + 0.486172i
\(716\) −18.0000 −0.672692
\(717\) −2.54951 2.54951i −0.0952132 0.0952132i
\(718\) 30.5941i 1.14176i
\(719\) −25.4951 −0.950807 −0.475403 0.879768i \(-0.657698\pi\)
−0.475403 + 0.879768i \(0.657698\pi\)
\(720\) −20.3961 20.3961i −0.760117 0.760117i
\(721\) −13.0000 + 13.0000i −0.484145 + 0.484145i
\(722\) −11.0000 11.0000i −0.409378 0.409378i
\(723\) 14.0000 + 14.0000i 0.520666 + 0.520666i
\(724\) 30.5941i 1.13702i
\(725\) −40.7922 −1.51498
\(726\) −9.00000 9.00000i −0.334021 0.334021i
\(727\) 15.2971 0.567336 0.283668 0.958922i \(-0.408449\pi\)
0.283668 + 0.958922i \(0.408449\pi\)
\(728\) −26.0000 26.0000i −0.963624 0.963624i
\(729\) 13.0000 0.481481
\(730\) −30.5941 30.5941i −1.13234 1.13234i
\(731\) −3.00000 −0.110959
\(732\) 0 0
\(733\) 33.1436 + 33.1436i 1.22419 + 1.22419i 0.966129 + 0.258058i \(0.0830827\pi\)
0.258058 + 0.966129i \(0.416917\pi\)
\(734\) 15.2971 + 15.2971i 0.564625 + 0.564625i
\(735\) 15.2971 15.2971i 0.564241 0.564241i
\(736\) −20.3961 + 20.3961i −0.751809 + 0.751809i
\(737\) 6.00000 0.221013
\(738\) 24.0000i 0.883452i
\(739\) −2.00000 2.00000i −0.0735712 0.0735712i 0.669364 0.742935i \(-0.266567\pi\)
−0.742935 + 0.669364i \(0.766567\pi\)
\(740\) 26.0000i 0.955779i
\(741\) 10.1980 0.374634
\(742\) 26.0000 0.954490
\(743\) 7.64853 + 7.64853i 0.280597 + 0.280597i 0.833347 0.552750i \(-0.186422\pi\)
−0.552750 + 0.833347i \(0.686422\pi\)
\(744\) 20.3961i 0.747757i
\(745\) 52.0000i 1.90513i
\(746\) −20.3961 20.3961i −0.746753 0.746753i
\(747\) −10.0000 + 10.0000i −0.365881 + 0.365881i
\(748\) −6.00000 6.00000i −0.219382 0.219382i
\(749\) −5.09902 + 5.09902i −0.186314 + 0.186314i
\(750\) 15.2971i 0.558570i
\(751\) 10.1980 0.372132 0.186066 0.982537i \(-0.440426\pi\)
0.186066 + 0.982537i \(0.440426\pi\)
\(752\) −10.1980 + 10.1980i −0.371884 + 0.371884i
\(753\) 10.0000i 0.364420i
\(754\) 26.0000i 0.946864i
\(755\) 39.0000 1.41936
\(756\) −25.4951 25.4951i −0.927248 0.927248i
\(757\) 35.6931i 1.29729i 0.761091 + 0.648645i \(0.224664\pi\)
−0.761091 + 0.648645i \(0.775336\pi\)
\(758\) 46.0000i 1.67080i
\(759\) 5.09902 + 5.09902i 0.185083 + 0.185083i
\(760\) −20.3961 20.3961i −0.739844 0.739844i
\(761\) −4.00000 4.00000i −0.145000 0.145000i 0.630880 0.775880i \(-0.282694\pi\)
−0.775880 + 0.630880i \(0.782694\pi\)
\(762\) 15.2971 15.2971i 0.554154 0.554154i
\(763\) 13.0000 0.470632
\(764\) 50.9902 1.84476
\(765\) 15.2971 15.2971i 0.553066 0.553066i
\(766\) −15.2971 −0.552705
\(767\) 40.7922i 1.47292i
\(768\) −16.0000 −0.577350
\(769\) −8.00000 + 8.00000i −0.288487 + 0.288487i −0.836482 0.547995i \(-0.815391\pi\)
0.547995 + 0.836482i \(0.315391\pi\)
\(770\) 26.0000 0.936975
\(771\) 3.00000i 0.108042i
\(772\) 18.0000 18.0000i 0.647834 0.647834i
\(773\) 7.64853 + 7.64853i 0.275098 + 0.275098i 0.831149 0.556050i \(-0.187684\pi\)
−0.556050 + 0.831149i