Properties

Label 104.2.m.a
Level $104$
Weight $2$
Character orbit 104.m
Analytic conductor $0.830$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [104,2,Mod(83,104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(104, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("104.83"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{26})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{2} - q^{3} + 2 \beta_{2} q^{4} - \beta_{3} q^{5} + (\beta_{2} + 1) q^{6} - \beta_1 q^{7} + ( - 2 \beta_{2} + 2) q^{8} - 2 q^{9} + (\beta_{3} - \beta_1) q^{10} + ( - \beta_{2} + 1) q^{11}+ \cdots + (2 \beta_{2} - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 4 q^{3} + 4 q^{6} + 8 q^{8} - 8 q^{9} + 4 q^{11} - 16 q^{16} + 8 q^{18} + 8 q^{19} - 8 q^{22} - 8 q^{24} + 20 q^{27} + 16 q^{32} - 4 q^{33} + 12 q^{34} - 52 q^{35} + 24 q^{41} + 8 q^{44}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 169 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 13 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 13\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 13\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(\beta_{2}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
83.1
−2.54951 + 2.54951i
2.54951 2.54951i
−2.54951 2.54951i
2.54951 + 2.54951i
−1.00000 + 1.00000i −1.00000 2.00000i −2.54951 2.54951i 1.00000 1.00000i 2.54951 2.54951i 2.00000 + 2.00000i −2.00000 5.09902
83.2 −1.00000 + 1.00000i −1.00000 2.00000i 2.54951 + 2.54951i 1.00000 1.00000i −2.54951 + 2.54951i 2.00000 + 2.00000i −2.00000 −5.09902
99.1 −1.00000 1.00000i −1.00000 2.00000i −2.54951 + 2.54951i 1.00000 + 1.00000i 2.54951 + 2.54951i 2.00000 2.00000i −2.00000 5.09902
99.2 −1.00000 1.00000i −1.00000 2.00000i 2.54951 2.54951i 1.00000 + 1.00000i −2.54951 2.54951i 2.00000 2.00000i −2.00000 −5.09902
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
13.d odd 4 1 inner
104.m even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 104.2.m.a 4
3.b odd 2 1 936.2.w.g 4
4.b odd 2 1 416.2.u.a 4
8.b even 2 1 416.2.u.a 4
8.d odd 2 1 inner 104.2.m.a 4
13.d odd 4 1 inner 104.2.m.a 4
24.f even 2 1 936.2.w.g 4
39.f even 4 1 936.2.w.g 4
52.f even 4 1 416.2.u.a 4
104.j odd 4 1 416.2.u.a 4
104.m even 4 1 inner 104.2.m.a 4
312.w odd 4 1 936.2.w.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.m.a 4 1.a even 1 1 trivial
104.2.m.a 4 8.d odd 2 1 inner
104.2.m.a 4 13.d odd 4 1 inner
104.2.m.a 4 104.m even 4 1 inner
416.2.u.a 4 4.b odd 2 1
416.2.u.a 4 8.b even 2 1
416.2.u.a 4 52.f even 4 1
416.2.u.a 4 104.j odd 4 1
936.2.w.g 4 3.b odd 2 1
936.2.w.g 4 24.f even 2 1
936.2.w.g 4 39.f even 4 1
936.2.w.g 4 312.w odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(104, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 169 \) Copy content Toggle raw display
$7$ \( T^{4} + 169 \) Copy content Toggle raw display
$11$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 169 \) Copy content Toggle raw display
$17$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 4 T + 8)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 26)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 26)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 2704 \) Copy content Toggle raw display
$37$ \( T^{4} + 169 \) Copy content Toggle raw display
$41$ \( (T^{2} - 12 T + 72)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 169 \) Copy content Toggle raw display
$53$ \( (T^{2} + 26)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 16 T + 128)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 13689 \) Copy content Toggle raw display
$73$ \( (T^{2} + 12 T + 72)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 26)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 10 T + 50)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 4 T + 8)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 14 T + 98)^{2} \) Copy content Toggle raw display
show more
show less