Properties

Label 104.2.m
Level $104$
Weight $2$
Character orbit 104.m
Rep. character $\chi_{104}(83,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $24$
Newform subspaces $2$
Sturm bound $28$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.m (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(28\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(104, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 24 24 0
Eisenstein series 8 8 0

Trace form

\( 24 q - 2 q^{2} - 8 q^{3} + 4 q^{8} + 8 q^{9} - 4 q^{11} - 20 q^{14} + 4 q^{16} - 18 q^{18} - 4 q^{19} + 8 q^{20} - 16 q^{22} - 4 q^{24} - 34 q^{26} - 32 q^{27} + 12 q^{28} + 8 q^{32} - 16 q^{33} + 16 q^{34}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(104, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
104.2.m.a 104.m 104.m $4$ $0.830$ \(\Q(i, \sqrt{26})\) None 104.2.m.a \(-4\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-\beta _{2})q^{2}-q^{3}+2\beta _{2}q^{4}-\beta _{3}q^{5}+\cdots\)
104.2.m.b 104.m 104.m $20$ $0.830$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 104.2.m.b \(2\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{14}q^{2}-\beta _{5}q^{3}-\beta _{2}q^{4}+\beta _{10}q^{5}+\cdots\)