Defining parameters
Level: | \( N \) | \(=\) | \( 104 = 2^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 104.m (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 104 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(28\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(104, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 32 | 0 |
Cusp forms | 24 | 24 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(104, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
104.2.m.a | $4$ | $0.830$ | \(\Q(i, \sqrt{26})\) | None | \(-4\) | \(-4\) | \(0\) | \(0\) | \(q+(-1-\beta _{2})q^{2}-q^{3}+2\beta _{2}q^{4}-\beta _{3}q^{5}+\cdots\) |
104.2.m.b | $20$ | $0.830$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(2\) | \(-4\) | \(0\) | \(0\) | \(q-\beta _{14}q^{2}-\beta _{5}q^{3}-\beta _{2}q^{4}+\beta _{10}q^{5}+\cdots\) |