Properties

Label 104.2.e.c
Level $104$
Weight $2$
Character orbit 104.e
Analytic conductor $0.830$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,2,Mod(77,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4521217600.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} - 2x^{4} + 4x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{2} + (\beta_{5} + \beta_{2}) q^{3} - \beta_{5} q^{4} - \beta_{6} q^{5} + ( - \beta_{6} - \beta_{4} + \cdots - 2 \beta_1) q^{6}+ \cdots + (\beta_{5} - \beta_{2} - 3) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{4} q^{2} + (\beta_{5} + \beta_{2}) q^{3} - \beta_{5} q^{4} - \beta_{6} q^{5} + ( - \beta_{6} - \beta_{4} + \cdots - 2 \beta_1) q^{6}+ \cdots + ( - \beta_{6} + 9 \beta_{4} + 9 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} - 20 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{4} - 20 q^{9} - 6 q^{10} + 22 q^{12} - 18 q^{14} + 10 q^{16} - 20 q^{17} + 20 q^{22} + 32 q^{23} + 12 q^{25} - 14 q^{26} + 14 q^{30} - 36 q^{36} - 36 q^{38} + 8 q^{39} - 26 q^{40} + 22 q^{42} + 30 q^{48} + 20 q^{49} - 4 q^{52} - 64 q^{55} + 14 q^{56} + 40 q^{62} - 38 q^{64} + 12 q^{65} + 8 q^{66} + 46 q^{68} - 22 q^{74} - 22 q^{78} + 16 q^{79} - 16 q^{87} + 32 q^{88} + 56 q^{90} - 8 q^{92} - 18 q^{94} - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + x^{6} - 2x^{4} + 4x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} + \nu^{5} + 6\nu^{3} + 4\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} - \nu^{5} + 2\nu^{3} - 4\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} + \nu^{4} - 2\nu^{2} + 4 ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{7} + 3\nu^{5} - 2\nu^{3} - 12\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{6} + 3\nu^{4} + 2\nu^{2} - 8 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + \beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{7} + \beta_{5} + 1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{6} - \beta_{4} + \beta_{3} + 2\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -\beta_{7} + 3\beta_{5} + 2\beta_{2} - 5 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -2\beta_{6} - 5\beta_{4} + \beta_{3} - 6\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
77.1
1.29437 0.569745i
1.29437 + 0.569745i
0.273147 1.38758i
0.273147 + 1.38758i
−0.273147 1.38758i
−0.273147 + 1.38758i
−1.29437 0.569745i
−1.29437 + 0.569745i
−1.29437 0.569745i 2.94984i 1.35078 + 1.47492i 1.81616 −1.68066 + 3.81818i 1.13949i −0.908080 2.67869i −5.70156 −2.35078 1.03475i
77.2 −1.29437 + 0.569745i 2.94984i 1.35078 1.47492i 1.81616 −1.68066 3.81818i 1.13949i −0.908080 + 2.67869i −5.70156 −2.35078 + 1.03475i
77.3 −0.273147 1.38758i 1.51606i −1.85078 + 0.758030i −3.11473 −2.10366 + 0.414108i 2.77517i 1.55737 + 2.36106i 0.701562 0.850781 + 4.32196i
77.4 −0.273147 + 1.38758i 1.51606i −1.85078 0.758030i −3.11473 −2.10366 0.414108i 2.77517i 1.55737 2.36106i 0.701562 0.850781 4.32196i
77.5 0.273147 1.38758i 1.51606i −1.85078 0.758030i 3.11473 2.10366 + 0.414108i 2.77517i −1.55737 + 2.36106i 0.701562 0.850781 4.32196i
77.6 0.273147 + 1.38758i 1.51606i −1.85078 + 0.758030i 3.11473 2.10366 0.414108i 2.77517i −1.55737 2.36106i 0.701562 0.850781 + 4.32196i
77.7 1.29437 0.569745i 2.94984i 1.35078 1.47492i −1.81616 1.68066 + 3.81818i 1.13949i 0.908080 2.67869i −5.70156 −2.35078 + 1.03475i
77.8 1.29437 + 0.569745i 2.94984i 1.35078 + 1.47492i −1.81616 1.68066 3.81818i 1.13949i 0.908080 + 2.67869i −5.70156 −2.35078 1.03475i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 77.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner
13.b even 2 1 inner
104.e even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 104.2.e.c 8
3.b odd 2 1 936.2.m.f 8
4.b odd 2 1 416.2.e.c 8
8.b even 2 1 inner 104.2.e.c 8
8.d odd 2 1 416.2.e.c 8
12.b even 2 1 3744.2.m.g 8
13.b even 2 1 inner 104.2.e.c 8
24.f even 2 1 3744.2.m.g 8
24.h odd 2 1 936.2.m.f 8
39.d odd 2 1 936.2.m.f 8
52.b odd 2 1 416.2.e.c 8
104.e even 2 1 inner 104.2.e.c 8
104.h odd 2 1 416.2.e.c 8
156.h even 2 1 3744.2.m.g 8
312.b odd 2 1 936.2.m.f 8
312.h even 2 1 3744.2.m.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.e.c 8 1.a even 1 1 trivial
104.2.e.c 8 8.b even 2 1 inner
104.2.e.c 8 13.b even 2 1 inner
104.2.e.c 8 104.e even 2 1 inner
416.2.e.c 8 4.b odd 2 1
416.2.e.c 8 8.d odd 2 1
416.2.e.c 8 52.b odd 2 1
416.2.e.c 8 104.h odd 2 1
936.2.m.f 8 3.b odd 2 1
936.2.m.f 8 24.h odd 2 1
936.2.m.f 8 39.d odd 2 1
936.2.m.f 8 312.b odd 2 1
3744.2.m.g 8 12.b even 2 1
3744.2.m.g 8 24.f even 2 1
3744.2.m.g 8 156.h even 2 1
3744.2.m.g 8 312.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(104, [\chi])\):

\( T_{3}^{4} + 11T_{3}^{2} + 20 \) Copy content Toggle raw display
\( T_{5}^{4} - 13T_{5}^{2} + 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + T^{6} + \cdots + 16 \) Copy content Toggle raw display
$3$ \( (T^{4} + 11 T^{2} + 20)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} - 13 T^{2} + 32)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 9 T^{2} + 10)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 26 T^{2} + 128)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + 24 T^{6} + \cdots + 28561 \) Copy content Toggle raw display
$17$ \( (T^{2} + 5 T - 4)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} - 58 T^{2} + 800)^{2} \) Copy content Toggle raw display
$23$ \( (T - 4)^{8} \) Copy content Toggle raw display
$29$ \( (T^{4} + 76 T^{2} + 1280)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 90 T^{2} + 1000)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 29 T^{2} + 200)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} + 11 T^{2} + 20)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 9 T^{2} + 10)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 176 T^{2} + 5120)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 58 T^{2} + 800)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( (T^{4} - 202 T^{2} + 8192)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 185 T^{2} + 6250)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 296 T^{2} + 16000)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 4 T - 160)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 106 T^{2} + 800)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 296 T^{2} + 16000)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 184 T^{2} + 2560)^{2} \) Copy content Toggle raw display
show more
show less