Properties

Label 104.2.e.b.77.2
Level $104$
Weight $2$
Character 104.77
Analytic conductor $0.830$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,2,Mod(77,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 77.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 104.77
Dual form 104.2.e.b.77.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +1.00000i q^{3} +2.00000i q^{4} -1.00000 q^{5} +(-1.00000 + 1.00000i) q^{6} -3.00000i q^{7} +(-2.00000 + 2.00000i) q^{8} +2.00000 q^{9} +O(q^{10})\) \(q+(1.00000 + 1.00000i) q^{2} +1.00000i q^{3} +2.00000i q^{4} -1.00000 q^{5} +(-1.00000 + 1.00000i) q^{6} -3.00000i q^{7} +(-2.00000 + 2.00000i) q^{8} +2.00000 q^{9} +(-1.00000 - 1.00000i) q^{10} -2.00000 q^{11} -2.00000 q^{12} +(3.00000 - 2.00000i) q^{13} +(3.00000 - 3.00000i) q^{14} -1.00000i q^{15} -4.00000 q^{16} +3.00000 q^{17} +(2.00000 + 2.00000i) q^{18} -2.00000i q^{20} +3.00000 q^{21} +(-2.00000 - 2.00000i) q^{22} -6.00000 q^{23} +(-2.00000 - 2.00000i) q^{24} -4.00000 q^{25} +(5.00000 + 1.00000i) q^{26} +5.00000i q^{27} +6.00000 q^{28} -6.00000i q^{29} +(1.00000 - 1.00000i) q^{30} +(-4.00000 - 4.00000i) q^{32} -2.00000i q^{33} +(3.00000 + 3.00000i) q^{34} +3.00000i q^{35} +4.00000i q^{36} -3.00000 q^{37} +(2.00000 + 3.00000i) q^{39} +(2.00000 - 2.00000i) q^{40} +10.0000i q^{41} +(3.00000 + 3.00000i) q^{42} -9.00000i q^{43} -4.00000i q^{44} -2.00000 q^{45} +(-6.00000 - 6.00000i) q^{46} +7.00000i q^{47} -4.00000i q^{48} -2.00000 q^{49} +(-4.00000 - 4.00000i) q^{50} +3.00000i q^{51} +(4.00000 + 6.00000i) q^{52} +6.00000i q^{53} +(-5.00000 + 5.00000i) q^{54} +2.00000 q^{55} +(6.00000 + 6.00000i) q^{56} +(6.00000 - 6.00000i) q^{58} -10.0000 q^{59} +2.00000 q^{60} +10.0000i q^{61} -6.00000i q^{63} -8.00000i q^{64} +(-3.00000 + 2.00000i) q^{65} +(2.00000 - 2.00000i) q^{66} +12.0000 q^{67} +6.00000i q^{68} -6.00000i q^{69} +(-3.00000 + 3.00000i) q^{70} +5.00000i q^{71} +(-4.00000 + 4.00000i) q^{72} -6.00000i q^{73} +(-3.00000 - 3.00000i) q^{74} -4.00000i q^{75} +6.00000i q^{77} +(-1.00000 + 5.00000i) q^{78} +4.00000 q^{80} +1.00000 q^{81} +(-10.0000 + 10.0000i) q^{82} +16.0000 q^{83} +6.00000i q^{84} -3.00000 q^{85} +(9.00000 - 9.00000i) q^{86} +6.00000 q^{87} +(4.00000 - 4.00000i) q^{88} -4.00000i q^{89} +(-2.00000 - 2.00000i) q^{90} +(-6.00000 - 9.00000i) q^{91} -12.0000i q^{92} +(-7.00000 + 7.00000i) q^{94} +(4.00000 - 4.00000i) q^{96} -18.0000i q^{97} +(-2.00000 - 2.00000i) q^{98} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{5} - 2 q^{6} - 4 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 2 q^{5} - 2 q^{6} - 4 q^{8} + 4 q^{9} - 2 q^{10} - 4 q^{11} - 4 q^{12} + 6 q^{13} + 6 q^{14} - 8 q^{16} + 6 q^{17} + 4 q^{18} + 6 q^{21} - 4 q^{22} - 12 q^{23} - 4 q^{24} - 8 q^{25} + 10 q^{26} + 12 q^{28} + 2 q^{30} - 8 q^{32} + 6 q^{34} - 6 q^{37} + 4 q^{39} + 4 q^{40} + 6 q^{42} - 4 q^{45} - 12 q^{46} - 4 q^{49} - 8 q^{50} + 8 q^{52} - 10 q^{54} + 4 q^{55} + 12 q^{56} + 12 q^{58} - 20 q^{59} + 4 q^{60} - 6 q^{65} + 4 q^{66} + 24 q^{67} - 6 q^{70} - 8 q^{72} - 6 q^{74} - 2 q^{78} + 8 q^{80} + 2 q^{81} - 20 q^{82} + 32 q^{83} - 6 q^{85} + 18 q^{86} + 12 q^{87} + 8 q^{88} - 4 q^{90} - 12 q^{91} - 14 q^{94} + 8 q^{96} - 4 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.707107 + 0.707107i
\(3\) 1.00000i 0.577350i 0.957427 + 0.288675i \(0.0932147\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) 2.00000i 1.00000i
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) −1.00000 + 1.00000i −0.408248 + 0.408248i
\(7\) 3.00000i 1.13389i −0.823754 0.566947i \(-0.808125\pi\)
0.823754 0.566947i \(-0.191875\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 2.00000 0.666667
\(10\) −1.00000 1.00000i −0.316228 0.316228i
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) −2.00000 −0.577350
\(13\) 3.00000 2.00000i 0.832050 0.554700i
\(14\) 3.00000 3.00000i 0.801784 0.801784i
\(15\) 1.00000i 0.258199i
\(16\) −4.00000 −1.00000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 2.00000 + 2.00000i 0.471405 + 0.471405i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 2.00000i 0.447214i
\(21\) 3.00000 0.654654
\(22\) −2.00000 2.00000i −0.426401 0.426401i
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) −2.00000 2.00000i −0.408248 0.408248i
\(25\) −4.00000 −0.800000
\(26\) 5.00000 + 1.00000i 0.980581 + 0.196116i
\(27\) 5.00000i 0.962250i
\(28\) 6.00000 1.13389
\(29\) 6.00000i 1.11417i −0.830455 0.557086i \(-0.811919\pi\)
0.830455 0.557086i \(-0.188081\pi\)
\(30\) 1.00000 1.00000i 0.182574 0.182574i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 2.00000i 0.348155i
\(34\) 3.00000 + 3.00000i 0.514496 + 0.514496i
\(35\) 3.00000i 0.507093i
\(36\) 4.00000i 0.666667i
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) 0 0
\(39\) 2.00000 + 3.00000i 0.320256 + 0.480384i
\(40\) 2.00000 2.00000i 0.316228 0.316228i
\(41\) 10.0000i 1.56174i 0.624695 + 0.780869i \(0.285223\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 3.00000 + 3.00000i 0.462910 + 0.462910i
\(43\) 9.00000i 1.37249i −0.727372 0.686244i \(-0.759258\pi\)
0.727372 0.686244i \(-0.240742\pi\)
\(44\) 4.00000i 0.603023i
\(45\) −2.00000 −0.298142
\(46\) −6.00000 6.00000i −0.884652 0.884652i
\(47\) 7.00000i 1.02105i 0.859861 + 0.510527i \(0.170550\pi\)
−0.859861 + 0.510527i \(0.829450\pi\)
\(48\) 4.00000i 0.577350i
\(49\) −2.00000 −0.285714
\(50\) −4.00000 4.00000i −0.565685 0.565685i
\(51\) 3.00000i 0.420084i
\(52\) 4.00000 + 6.00000i 0.554700 + 0.832050i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) −5.00000 + 5.00000i −0.680414 + 0.680414i
\(55\) 2.00000 0.269680
\(56\) 6.00000 + 6.00000i 0.801784 + 0.801784i
\(57\) 0 0
\(58\) 6.00000 6.00000i 0.787839 0.787839i
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 2.00000 0.258199
\(61\) 10.0000i 1.28037i 0.768221 + 0.640184i \(0.221142\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 0 0
\(63\) 6.00000i 0.755929i
\(64\) 8.00000i 1.00000i
\(65\) −3.00000 + 2.00000i −0.372104 + 0.248069i
\(66\) 2.00000 2.00000i 0.246183 0.246183i
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 6.00000i 0.727607i
\(69\) 6.00000i 0.722315i
\(70\) −3.00000 + 3.00000i −0.358569 + 0.358569i
\(71\) 5.00000i 0.593391i 0.954972 + 0.296695i \(0.0958846\pi\)
−0.954972 + 0.296695i \(0.904115\pi\)
\(72\) −4.00000 + 4.00000i −0.471405 + 0.471405i
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) −3.00000 3.00000i −0.348743 0.348743i
\(75\) 4.00000i 0.461880i
\(76\) 0 0
\(77\) 6.00000i 0.683763i
\(78\) −1.00000 + 5.00000i −0.113228 + 0.566139i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 4.00000 0.447214
\(81\) 1.00000 0.111111
\(82\) −10.0000 + 10.0000i −1.10432 + 1.10432i
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 6.00000i 0.654654i
\(85\) −3.00000 −0.325396
\(86\) 9.00000 9.00000i 0.970495 0.970495i
\(87\) 6.00000 0.643268
\(88\) 4.00000 4.00000i 0.426401 0.426401i
\(89\) 4.00000i 0.423999i −0.977270 0.212000i \(-0.932002\pi\)
0.977270 0.212000i \(-0.0679975\pi\)
\(90\) −2.00000 2.00000i −0.210819 0.210819i
\(91\) −6.00000 9.00000i −0.628971 0.943456i
\(92\) 12.0000i 1.25109i
\(93\) 0 0
\(94\) −7.00000 + 7.00000i −0.721995 + 0.721995i
\(95\) 0 0
\(96\) 4.00000 4.00000i 0.408248 0.408248i
\(97\) 18.0000i 1.82762i −0.406138 0.913812i \(-0.633125\pi\)
0.406138 0.913812i \(-0.366875\pi\)
\(98\) −2.00000 2.00000i −0.202031 0.202031i
\(99\) −4.00000 −0.402015
\(100\) 8.00000i 0.800000i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −3.00000 + 3.00000i −0.297044 + 0.297044i
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) −2.00000 + 10.0000i −0.196116 + 0.980581i
\(105\) −3.00000 −0.292770
\(106\) −6.00000 + 6.00000i −0.582772 + 0.582772i
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) −10.0000 −0.962250
\(109\) −15.0000 −1.43674 −0.718370 0.695662i \(-0.755111\pi\)
−0.718370 + 0.695662i \(0.755111\pi\)
\(110\) 2.00000 + 2.00000i 0.190693 + 0.190693i
\(111\) 3.00000i 0.284747i
\(112\) 12.0000i 1.13389i
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 6.00000 0.559503
\(116\) 12.0000 1.11417
\(117\) 6.00000 4.00000i 0.554700 0.369800i
\(118\) −10.0000 10.0000i −0.920575 0.920575i
\(119\) 9.00000i 0.825029i
\(120\) 2.00000 + 2.00000i 0.182574 + 0.182574i
\(121\) −7.00000 −0.636364
\(122\) −10.0000 + 10.0000i −0.905357 + 0.905357i
\(123\) −10.0000 −0.901670
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 6.00000 6.00000i 0.534522 0.534522i
\(127\) 18.0000 1.59724 0.798621 0.601834i \(-0.205563\pi\)
0.798621 + 0.601834i \(0.205563\pi\)
\(128\) 8.00000 8.00000i 0.707107 0.707107i
\(129\) 9.00000 0.792406
\(130\) −5.00000 1.00000i −0.438529 0.0877058i
\(131\) 15.0000i 1.31056i 0.755388 + 0.655278i \(0.227449\pi\)
−0.755388 + 0.655278i \(0.772551\pi\)
\(132\) 4.00000 0.348155
\(133\) 0 0
\(134\) 12.0000 + 12.0000i 1.03664 + 1.03664i
\(135\) 5.00000i 0.430331i
\(136\) −6.00000 + 6.00000i −0.514496 + 0.514496i
\(137\) 2.00000i 0.170872i 0.996344 + 0.0854358i \(0.0272282\pi\)
−0.996344 + 0.0854358i \(0.972772\pi\)
\(138\) 6.00000 6.00000i 0.510754 0.510754i
\(139\) 9.00000i 0.763370i 0.924292 + 0.381685i \(0.124656\pi\)
−0.924292 + 0.381685i \(0.875344\pi\)
\(140\) −6.00000 −0.507093
\(141\) −7.00000 −0.589506
\(142\) −5.00000 + 5.00000i −0.419591 + 0.419591i
\(143\) −6.00000 + 4.00000i −0.501745 + 0.334497i
\(144\) −8.00000 −0.666667
\(145\) 6.00000i 0.498273i
\(146\) 6.00000 6.00000i 0.496564 0.496564i
\(147\) 2.00000i 0.164957i
\(148\) 6.00000i 0.493197i
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 4.00000 4.00000i 0.326599 0.326599i
\(151\) 15.0000i 1.22068i 0.792139 + 0.610341i \(0.208968\pi\)
−0.792139 + 0.610341i \(0.791032\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) −6.00000 + 6.00000i −0.483494 + 0.483494i
\(155\) 0 0
\(156\) −6.00000 + 4.00000i −0.480384 + 0.320256i
\(157\) 18.0000i 1.43656i 0.695756 + 0.718278i \(0.255069\pi\)
−0.695756 + 0.718278i \(0.744931\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 4.00000 + 4.00000i 0.316228 + 0.316228i
\(161\) 18.0000i 1.41860i
\(162\) 1.00000 + 1.00000i 0.0785674 + 0.0785674i
\(163\) 6.00000 0.469956 0.234978 0.972001i \(-0.424498\pi\)
0.234978 + 0.972001i \(0.424498\pi\)
\(164\) −20.0000 −1.56174
\(165\) 2.00000i 0.155700i
\(166\) 16.0000 + 16.0000i 1.24184 + 1.24184i
\(167\) 8.00000i 0.619059i −0.950890 0.309529i \(-0.899829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) −6.00000 + 6.00000i −0.462910 + 0.462910i
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) −3.00000 3.00000i −0.230089 0.230089i
\(171\) 0 0
\(172\) 18.0000 1.37249
\(173\) 24.0000i 1.82469i −0.409426 0.912343i \(-0.634271\pi\)
0.409426 0.912343i \(-0.365729\pi\)
\(174\) 6.00000 + 6.00000i 0.454859 + 0.454859i
\(175\) 12.0000i 0.907115i
\(176\) 8.00000 0.603023
\(177\) 10.0000i 0.751646i
\(178\) 4.00000 4.00000i 0.299813 0.299813i
\(179\) 9.00000i 0.672692i 0.941739 + 0.336346i \(0.109191\pi\)
−0.941739 + 0.336346i \(0.890809\pi\)
\(180\) 4.00000i 0.298142i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 3.00000 15.0000i 0.222375 1.11187i
\(183\) −10.0000 −0.739221
\(184\) 12.0000 12.0000i 0.884652 0.884652i
\(185\) 3.00000 0.220564
\(186\) 0 0
\(187\) −6.00000 −0.438763
\(188\) −14.0000 −1.02105
\(189\) 15.0000 1.09109
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 8.00000 0.577350
\(193\) 24.0000i 1.72756i 0.503871 + 0.863779i \(0.331909\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 18.0000 18.0000i 1.29232 1.29232i
\(195\) −2.00000 3.00000i −0.143223 0.214834i
\(196\) 4.00000i 0.285714i
\(197\) −23.0000 −1.63868 −0.819341 0.573306i \(-0.805660\pi\)
−0.819341 + 0.573306i \(0.805660\pi\)
\(198\) −4.00000 4.00000i −0.284268 0.284268i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 8.00000 8.00000i 0.565685 0.565685i
\(201\) 12.0000i 0.846415i
\(202\) 0 0
\(203\) −18.0000 −1.26335
\(204\) −6.00000 −0.420084
\(205\) 10.0000i 0.698430i
\(206\) 4.00000 + 4.00000i 0.278693 + 0.278693i
\(207\) −12.0000 −0.834058
\(208\) −12.0000 + 8.00000i −0.832050 + 0.554700i
\(209\) 0 0
\(210\) −3.00000 3.00000i −0.207020 0.207020i
\(211\) 5.00000i 0.344214i −0.985078 0.172107i \(-0.944942\pi\)
0.985078 0.172107i \(-0.0550575\pi\)
\(212\) −12.0000 −0.824163
\(213\) −5.00000 −0.342594
\(214\) 12.0000 12.0000i 0.820303 0.820303i
\(215\) 9.00000i 0.613795i
\(216\) −10.0000 10.0000i −0.680414 0.680414i
\(217\) 0 0
\(218\) −15.0000 15.0000i −1.01593 1.01593i
\(219\) 6.00000 0.405442
\(220\) 4.00000i 0.269680i
\(221\) 9.00000 6.00000i 0.605406 0.403604i
\(222\) 3.00000 3.00000i 0.201347 0.201347i
\(223\) 21.0000i 1.40626i −0.711059 0.703132i \(-0.751784\pi\)
0.711059 0.703132i \(-0.248216\pi\)
\(224\) −12.0000 + 12.0000i −0.801784 + 0.801784i
\(225\) −8.00000 −0.533333
\(226\) −6.00000 6.00000i −0.399114 0.399114i
\(227\) 2.00000 0.132745 0.0663723 0.997795i \(-0.478857\pi\)
0.0663723 + 0.997795i \(0.478857\pi\)
\(228\) 0 0
\(229\) 15.0000 0.991228 0.495614 0.868543i \(-0.334943\pi\)
0.495614 + 0.868543i \(0.334943\pi\)
\(230\) 6.00000 + 6.00000i 0.395628 + 0.395628i
\(231\) −6.00000 −0.394771
\(232\) 12.0000 + 12.0000i 0.787839 + 0.787839i
\(233\) 9.00000 0.589610 0.294805 0.955557i \(-0.404745\pi\)
0.294805 + 0.955557i \(0.404745\pi\)
\(234\) 10.0000 + 2.00000i 0.653720 + 0.130744i
\(235\) 7.00000i 0.456630i
\(236\) 20.0000i 1.30189i
\(237\) 0 0
\(238\) 9.00000 9.00000i 0.583383 0.583383i
\(239\) 19.0000i 1.22901i −0.788914 0.614504i \(-0.789356\pi\)
0.788914 0.614504i \(-0.210644\pi\)
\(240\) 4.00000i 0.258199i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −7.00000 7.00000i −0.449977 0.449977i
\(243\) 16.0000i 1.02640i
\(244\) −20.0000 −1.28037
\(245\) 2.00000 0.127775
\(246\) −10.0000 10.0000i −0.637577 0.637577i
\(247\) 0 0
\(248\) 0 0
\(249\) 16.0000i 1.01396i
\(250\) 9.00000 + 9.00000i 0.569210 + 0.569210i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 12.0000 0.755929
\(253\) 12.0000 0.754434
\(254\) 18.0000 + 18.0000i 1.12942 + 1.12942i
\(255\) 3.00000i 0.187867i
\(256\) 16.0000 1.00000
\(257\) 3.00000 0.187135 0.0935674 0.995613i \(-0.470173\pi\)
0.0935674 + 0.995613i \(0.470173\pi\)
\(258\) 9.00000 + 9.00000i 0.560316 + 0.560316i
\(259\) 9.00000i 0.559233i
\(260\) −4.00000 6.00000i −0.248069 0.372104i
\(261\) 12.0000i 0.742781i
\(262\) −15.0000 + 15.0000i −0.926703 + 0.926703i
\(263\) −6.00000 −0.369976 −0.184988 0.982741i \(-0.559225\pi\)
−0.184988 + 0.982741i \(0.559225\pi\)
\(264\) 4.00000 + 4.00000i 0.246183 + 0.246183i
\(265\) 6.00000i 0.368577i
\(266\) 0 0
\(267\) 4.00000 0.244796
\(268\) 24.0000i 1.46603i
\(269\) 6.00000i 0.365826i −0.983129 0.182913i \(-0.941447\pi\)
0.983129 0.182913i \(-0.0585527\pi\)
\(270\) 5.00000 5.00000i 0.304290 0.304290i
\(271\) 15.0000i 0.911185i 0.890188 + 0.455593i \(0.150573\pi\)
−0.890188 + 0.455593i \(0.849427\pi\)
\(272\) −12.0000 −0.727607
\(273\) 9.00000 6.00000i 0.544705 0.363137i
\(274\) −2.00000 + 2.00000i −0.120824 + 0.120824i
\(275\) 8.00000 0.482418
\(276\) 12.0000 0.722315
\(277\) 18.0000i 1.08152i 0.841178 + 0.540758i \(0.181862\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) −9.00000 + 9.00000i −0.539784 + 0.539784i
\(279\) 0 0
\(280\) −6.00000 6.00000i −0.358569 0.358569i
\(281\) 20.0000i 1.19310i −0.802576 0.596550i \(-0.796538\pi\)
0.802576 0.596550i \(-0.203462\pi\)
\(282\) −7.00000 7.00000i −0.416844 0.416844i
\(283\) 4.00000i 0.237775i −0.992908 0.118888i \(-0.962067\pi\)
0.992908 0.118888i \(-0.0379328\pi\)
\(284\) −10.0000 −0.593391
\(285\) 0 0
\(286\) −10.0000 2.00000i −0.591312 0.118262i
\(287\) 30.0000 1.77084
\(288\) −8.00000 8.00000i −0.471405 0.471405i
\(289\) −8.00000 −0.470588
\(290\) −6.00000 + 6.00000i −0.352332 + 0.352332i
\(291\) 18.0000 1.05518
\(292\) 12.0000 0.702247
\(293\) 1.00000 0.0584206 0.0292103 0.999573i \(-0.490701\pi\)
0.0292103 + 0.999573i \(0.490701\pi\)
\(294\) 2.00000 2.00000i 0.116642 0.116642i
\(295\) 10.0000 0.582223
\(296\) 6.00000 6.00000i 0.348743 0.348743i
\(297\) 10.0000i 0.580259i
\(298\) 10.0000 + 10.0000i 0.579284 + 0.579284i
\(299\) −18.0000 + 12.0000i −1.04097 + 0.693978i
\(300\) 8.00000 0.461880
\(301\) −27.0000 −1.55625
\(302\) −15.0000 + 15.0000i −0.863153 + 0.863153i
\(303\) 0 0
\(304\) 0 0
\(305\) 10.0000i 0.572598i
\(306\) 6.00000 + 6.00000i 0.342997 + 0.342997i
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) −12.0000 −0.683763
\(309\) 4.00000i 0.227552i
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) −10.0000 2.00000i −0.566139 0.113228i
\(313\) 9.00000 0.508710 0.254355 0.967111i \(-0.418137\pi\)
0.254355 + 0.967111i \(0.418137\pi\)
\(314\) −18.0000 + 18.0000i −1.01580 + 1.01580i
\(315\) 6.00000i 0.338062i
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) −6.00000 6.00000i −0.336463 0.336463i
\(319\) 12.0000i 0.671871i
\(320\) 8.00000i 0.447214i
\(321\) 12.0000 0.669775
\(322\) −18.0000 + 18.0000i −1.00310 + 1.00310i
\(323\) 0 0
\(324\) 2.00000i 0.111111i
\(325\) −12.0000 + 8.00000i −0.665640 + 0.443760i
\(326\) 6.00000 + 6.00000i 0.332309 + 0.332309i
\(327\) 15.0000i 0.829502i
\(328\) −20.0000 20.0000i −1.10432 1.10432i
\(329\) 21.0000 1.15777
\(330\) −2.00000 + 2.00000i −0.110096 + 0.110096i
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 32.0000i 1.75623i
\(333\) −6.00000 −0.328798
\(334\) 8.00000 8.00000i 0.437741 0.437741i
\(335\) −12.0000 −0.655630
\(336\) −12.0000 −0.654654
\(337\) −27.0000 −1.47078 −0.735392 0.677642i \(-0.763002\pi\)
−0.735392 + 0.677642i \(0.763002\pi\)
\(338\) 17.0000 7.00000i 0.924678 0.380750i
\(339\) 6.00000i 0.325875i
\(340\) 6.00000i 0.325396i
\(341\) 0 0
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) 18.0000 + 18.0000i 0.970495 + 0.970495i
\(345\) 6.00000i 0.323029i
\(346\) 24.0000 24.0000i 1.29025 1.29025i
\(347\) 27.0000i 1.44944i −0.689046 0.724718i \(-0.741970\pi\)
0.689046 0.724718i \(-0.258030\pi\)
\(348\) 12.0000i 0.643268i
\(349\) 15.0000 0.802932 0.401466 0.915874i \(-0.368501\pi\)
0.401466 + 0.915874i \(0.368501\pi\)
\(350\) −12.0000 + 12.0000i −0.641427 + 0.641427i
\(351\) 10.0000 + 15.0000i 0.533761 + 0.800641i
\(352\) 8.00000 + 8.00000i 0.426401 + 0.426401i
\(353\) 16.0000i 0.851594i −0.904819 0.425797i \(-0.859994\pi\)
0.904819 0.425797i \(-0.140006\pi\)
\(354\) 10.0000 10.0000i 0.531494 0.531494i
\(355\) 5.00000i 0.265372i
\(356\) 8.00000 0.423999
\(357\) 9.00000 0.476331
\(358\) −9.00000 + 9.00000i −0.475665 + 0.475665i
\(359\) 4.00000i 0.211112i −0.994413 0.105556i \(-0.966338\pi\)
0.994413 0.105556i \(-0.0336622\pi\)
\(360\) 4.00000 4.00000i 0.210819 0.210819i
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 7.00000i 0.367405i
\(364\) 18.0000 12.0000i 0.943456 0.628971i
\(365\) 6.00000i 0.314054i
\(366\) −10.0000 10.0000i −0.522708 0.522708i
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) 24.0000 1.25109
\(369\) 20.0000i 1.04116i
\(370\) 3.00000 + 3.00000i 0.155963 + 0.155963i
\(371\) 18.0000 0.934513
\(372\) 0 0
\(373\) 4.00000i 0.207112i −0.994624 0.103556i \(-0.966978\pi\)
0.994624 0.103556i \(-0.0330221\pi\)
\(374\) −6.00000 6.00000i −0.310253 0.310253i
\(375\) 9.00000i 0.464758i
\(376\) −14.0000 14.0000i −0.721995 0.721995i
\(377\) −12.0000 18.0000i −0.618031 0.927047i
\(378\) 15.0000 + 15.0000i 0.771517 + 0.771517i
\(379\) 30.0000 1.54100 0.770498 0.637442i \(-0.220007\pi\)
0.770498 + 0.637442i \(0.220007\pi\)
\(380\) 0 0
\(381\) 18.0000i 0.922168i
\(382\) −18.0000 18.0000i −0.920960 0.920960i
\(383\) 1.00000i 0.0510976i −0.999674 0.0255488i \(-0.991867\pi\)
0.999674 0.0255488i \(-0.00813332\pi\)
\(384\) 8.00000 + 8.00000i 0.408248 + 0.408248i
\(385\) 6.00000i 0.305788i
\(386\) −24.0000 + 24.0000i −1.22157 + 1.22157i
\(387\) 18.0000i 0.914991i
\(388\) 36.0000 1.82762
\(389\) 6.00000i 0.304212i −0.988364 0.152106i \(-0.951394\pi\)
0.988364 0.152106i \(-0.0486055\pi\)
\(390\) 1.00000 5.00000i 0.0506370 0.253185i
\(391\) −18.0000 −0.910299
\(392\) 4.00000 4.00000i 0.202031 0.202031i
\(393\) −15.0000 −0.756650
\(394\) −23.0000 23.0000i −1.15872 1.15872i
\(395\) 0 0
\(396\) 8.00000i 0.402015i
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 16.0000 0.800000
\(401\) 10.0000i 0.499376i 0.968326 + 0.249688i \(0.0803281\pi\)
−0.968326 + 0.249688i \(0.919672\pi\)
\(402\) −12.0000 + 12.0000i −0.598506 + 0.598506i
\(403\) 0 0
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) −18.0000 18.0000i −0.893325 0.893325i
\(407\) 6.00000 0.297409
\(408\) −6.00000 6.00000i −0.297044 0.297044i
\(409\) 6.00000i 0.296681i 0.988936 + 0.148340i \(0.0473931\pi\)
−0.988936 + 0.148340i \(0.952607\pi\)
\(410\) 10.0000 10.0000i 0.493865 0.493865i
\(411\) −2.00000 −0.0986527
\(412\) 8.00000i 0.394132i
\(413\) 30.0000i 1.47620i
\(414\) −12.0000 12.0000i −0.589768 0.589768i
\(415\) −16.0000 −0.785409
\(416\) −20.0000 4.00000i −0.980581 0.196116i
\(417\) −9.00000 −0.440732
\(418\) 0 0
\(419\) 9.00000i 0.439679i 0.975536 + 0.219839i \(0.0705533\pi\)
−0.975536 + 0.219839i \(0.929447\pi\)
\(420\) 6.00000i 0.292770i
\(421\) 3.00000 0.146211 0.0731055 0.997324i \(-0.476709\pi\)
0.0731055 + 0.997324i \(0.476709\pi\)
\(422\) 5.00000 5.00000i 0.243396 0.243396i
\(423\) 14.0000i 0.680703i
\(424\) −12.0000 12.0000i −0.582772 0.582772i
\(425\) −12.0000 −0.582086
\(426\) −5.00000 5.00000i −0.242251 0.242251i
\(427\) 30.0000 1.45180
\(428\) 24.0000 1.16008
\(429\) −4.00000 6.00000i −0.193122 0.289683i
\(430\) −9.00000 + 9.00000i −0.434019 + 0.434019i
\(431\) 5.00000i 0.240842i 0.992723 + 0.120421i \(0.0384244\pi\)
−0.992723 + 0.120421i \(0.961576\pi\)
\(432\) 20.0000i 0.962250i
\(433\) 9.00000 0.432512 0.216256 0.976337i \(-0.430615\pi\)
0.216256 + 0.976337i \(0.430615\pi\)
\(434\) 0 0
\(435\) −6.00000 −0.287678
\(436\) 30.0000i 1.43674i
\(437\) 0 0
\(438\) 6.00000 + 6.00000i 0.286691 + 0.286691i
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) −4.00000 + 4.00000i −0.190693 + 0.190693i
\(441\) −4.00000 −0.190476
\(442\) 15.0000 + 3.00000i 0.713477 + 0.142695i
\(443\) 9.00000i 0.427603i −0.976877 0.213801i \(-0.931415\pi\)
0.976877 0.213801i \(-0.0685846\pi\)
\(444\) 6.00000 0.284747
\(445\) 4.00000i 0.189618i
\(446\) 21.0000 21.0000i 0.994379 0.994379i
\(447\) 10.0000i 0.472984i
\(448\) −24.0000 −1.13389
\(449\) 14.0000i 0.660701i −0.943858 0.330350i \(-0.892833\pi\)
0.943858 0.330350i \(-0.107167\pi\)
\(450\) −8.00000 8.00000i −0.377124 0.377124i
\(451\) 20.0000i 0.941763i
\(452\) 12.0000i 0.564433i
\(453\) −15.0000 −0.704761
\(454\) 2.00000 + 2.00000i 0.0938647 + 0.0938647i
\(455\) 6.00000 + 9.00000i 0.281284 + 0.421927i
\(456\) 0 0
\(457\) 12.0000i 0.561336i 0.959805 + 0.280668i \(0.0905560\pi\)
−0.959805 + 0.280668i \(0.909444\pi\)
\(458\) 15.0000 + 15.0000i 0.700904 + 0.700904i
\(459\) 15.0000i 0.700140i
\(460\) 12.0000i 0.559503i
\(461\) −7.00000 −0.326023 −0.163011 0.986624i \(-0.552121\pi\)
−0.163011 + 0.986624i \(0.552121\pi\)
\(462\) −6.00000 6.00000i −0.279145 0.279145i
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) 24.0000i 1.11417i
\(465\) 0 0
\(466\) 9.00000 + 9.00000i 0.416917 + 0.416917i
\(467\) 12.0000i 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) 8.00000 + 12.0000i 0.369800 + 0.554700i
\(469\) 36.0000i 1.66233i
\(470\) 7.00000 7.00000i 0.322886 0.322886i
\(471\) −18.0000 −0.829396
\(472\) 20.0000 20.0000i 0.920575 0.920575i
\(473\) 18.0000i 0.827641i
\(474\) 0 0
\(475\) 0 0
\(476\) 18.0000 0.825029
\(477\) 12.0000i 0.549442i
\(478\) 19.0000 19.0000i 0.869040 0.869040i
\(479\) 29.0000i 1.32504i −0.749043 0.662522i \(-0.769486\pi\)
0.749043 0.662522i \(-0.230514\pi\)
\(480\) −4.00000 + 4.00000i −0.182574 + 0.182574i
\(481\) −9.00000 + 6.00000i −0.410365 + 0.273576i
\(482\) 0 0
\(483\) −18.0000 −0.819028
\(484\) 14.0000i 0.636364i
\(485\) 18.0000i 0.817338i
\(486\) −16.0000 + 16.0000i −0.725775 + 0.725775i
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) −20.0000 20.0000i −0.905357 0.905357i
\(489\) 6.00000i 0.271329i
\(490\) 2.00000 + 2.00000i 0.0903508 + 0.0903508i
\(491\) 15.0000i 0.676941i 0.940977 + 0.338470i \(0.109909\pi\)
−0.940977 + 0.338470i \(0.890091\pi\)
\(492\) 20.0000i 0.901670i
\(493\) 18.0000i 0.810679i
\(494\) 0 0
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 15.0000 0.672842
\(498\) −16.0000 + 16.0000i −0.716977 + 0.716977i
\(499\) −30.0000 −1.34298 −0.671492 0.741012i \(-0.734346\pi\)
−0.671492 + 0.741012i \(0.734346\pi\)
\(500\) 18.0000i 0.804984i
\(501\) 8.00000 0.357414
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 12.0000 + 12.0000i 0.534522 + 0.534522i
\(505\) 0 0
\(506\) 12.0000 + 12.0000i 0.533465 + 0.533465i
\(507\) 12.0000 + 5.00000i 0.532939 + 0.222058i
\(508\) 36.0000i 1.59724i
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 3.00000 3.00000i 0.132842 0.132842i
\(511\) −18.0000 −0.796273
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) 3.00000 + 3.00000i 0.132324 + 0.132324i
\(515\) −4.00000 −0.176261
\(516\) 18.0000i 0.792406i
\(517\) 14.0000i 0.615719i
\(518\) −9.00000 + 9.00000i −0.395437 + 0.395437i
\(519\) 24.0000 1.05348
\(520\) 2.00000 10.0000i 0.0877058 0.438529i
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 12.0000 12.0000i 0.525226 0.525226i
\(523\) 36.0000i 1.57417i 0.616844 + 0.787085i \(0.288411\pi\)
−0.616844 + 0.787085i \(0.711589\pi\)
\(524\) −30.0000 −1.31056
\(525\) −12.0000 −0.523723
\(526\) −6.00000 6.00000i −0.261612 0.261612i
\(527\) 0 0
\(528\) 8.00000i 0.348155i
\(529\) 13.0000 0.565217
\(530\) 6.00000 6.00000i 0.260623 0.260623i
\(531\) −20.0000 −0.867926
\(532\) 0 0
\(533\) 20.0000 + 30.0000i 0.866296 + 1.29944i
\(534\) 4.00000 + 4.00000i 0.173097 + 0.173097i
\(535\) 12.0000i 0.518805i
\(536\) −24.0000 + 24.0000i −1.03664 + 1.03664i
\(537\) −9.00000 −0.388379
\(538\) 6.00000 6.00000i 0.258678 0.258678i
\(539\) 4.00000 0.172292
\(540\) 10.0000 0.430331
\(541\) 33.0000 1.41878 0.709390 0.704816i \(-0.248970\pi\)
0.709390 + 0.704816i \(0.248970\pi\)
\(542\) −15.0000 + 15.0000i −0.644305 + 0.644305i
\(543\) 0 0
\(544\) −12.0000 12.0000i −0.514496 0.514496i
\(545\) 15.0000 0.642529
\(546\) 15.0000 + 3.00000i 0.641941 + 0.128388i
\(547\) 27.0000i 1.15444i −0.816590 0.577218i \(-0.804138\pi\)
0.816590 0.577218i \(-0.195862\pi\)
\(548\) −4.00000 −0.170872
\(549\) 20.0000i 0.853579i
\(550\) 8.00000 + 8.00000i 0.341121 + 0.341121i
\(551\) 0 0
\(552\) 12.0000 + 12.0000i 0.510754 + 0.510754i
\(553\) 0 0
\(554\) −18.0000 + 18.0000i −0.764747 + 0.764747i
\(555\) 3.00000i 0.127343i
\(556\) −18.0000 −0.763370
\(557\) −23.0000 −0.974541 −0.487271 0.873251i \(-0.662007\pi\)
−0.487271 + 0.873251i \(0.662007\pi\)
\(558\) 0 0
\(559\) −18.0000 27.0000i −0.761319 1.14198i
\(560\) 12.0000i 0.507093i
\(561\) 6.00000i 0.253320i
\(562\) 20.0000 20.0000i 0.843649 0.843649i
\(563\) 21.0000i 0.885044i 0.896758 + 0.442522i \(0.145916\pi\)
−0.896758 + 0.442522i \(0.854084\pi\)
\(564\) 14.0000i 0.589506i
\(565\) 6.00000 0.252422
\(566\) 4.00000 4.00000i 0.168133 0.168133i
\(567\) 3.00000i 0.125988i
\(568\) −10.0000 10.0000i −0.419591 0.419591i
\(569\) 15.0000 0.628833 0.314416 0.949285i \(-0.398191\pi\)
0.314416 + 0.949285i \(0.398191\pi\)
\(570\) 0 0
\(571\) 5.00000i 0.209243i 0.994512 + 0.104622i \(0.0333632\pi\)
−0.994512 + 0.104622i \(0.966637\pi\)
\(572\) −8.00000 12.0000i −0.334497 0.501745i
\(573\) 18.0000i 0.751961i
\(574\) 30.0000 + 30.0000i 1.25218 + 1.25218i
\(575\) 24.0000 1.00087
\(576\) 16.0000i 0.666667i
\(577\) 18.0000i 0.749350i −0.927156 0.374675i \(-0.877754\pi\)
0.927156 0.374675i \(-0.122246\pi\)
\(578\) −8.00000 8.00000i −0.332756 0.332756i
\(579\) −24.0000 −0.997406
\(580\) −12.0000 −0.498273
\(581\) 48.0000i 1.99138i
\(582\) 18.0000 + 18.0000i 0.746124 + 0.746124i
\(583\) 12.0000i 0.496989i
\(584\) 12.0000 + 12.0000i 0.496564 + 0.496564i
\(585\) −6.00000 + 4.00000i −0.248069 + 0.165380i
\(586\) 1.00000 + 1.00000i 0.0413096 + 0.0413096i
\(587\) 2.00000 0.0825488 0.0412744 0.999148i \(-0.486858\pi\)
0.0412744 + 0.999148i \(0.486858\pi\)
\(588\) 4.00000 0.164957
\(589\) 0 0
\(590\) 10.0000 + 10.0000i 0.411693 + 0.411693i
\(591\) 23.0000i 0.946094i
\(592\) 12.0000 0.493197
\(593\) 14.0000i 0.574911i 0.957794 + 0.287456i \(0.0928094\pi\)
−0.957794 + 0.287456i \(0.907191\pi\)
\(594\) 10.0000 10.0000i 0.410305 0.410305i
\(595\) 9.00000i 0.368964i
\(596\) 20.0000i 0.819232i
\(597\) 0 0
\(598\) −30.0000 6.00000i −1.22679 0.245358i
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 8.00000 + 8.00000i 0.326599 + 0.326599i
\(601\) 27.0000 1.10135 0.550676 0.834719i \(-0.314370\pi\)
0.550676 + 0.834719i \(0.314370\pi\)
\(602\) −27.0000 27.0000i −1.10044 1.10044i
\(603\) 24.0000 0.977356
\(604\) −30.0000 −1.22068
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) 0 0
\(609\) 18.0000i 0.729397i
\(610\) 10.0000 10.0000i 0.404888 0.404888i
\(611\) 14.0000 + 21.0000i 0.566379 + 0.849569i
\(612\) 12.0000i 0.485071i
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) −18.0000 18.0000i −0.726421 0.726421i
\(615\) 10.0000 0.403239
\(616\) −12.0000 12.0000i −0.483494 0.483494i
\(617\) 8.00000i 0.322068i −0.986949 0.161034i \(-0.948517\pi\)
0.986949 0.161034i \(-0.0514829\pi\)
\(618\) −4.00000 + 4.00000i −0.160904 + 0.160904i
\(619\) 30.0000 1.20580 0.602901 0.797816i \(-0.294011\pi\)
0.602901 + 0.797816i \(0.294011\pi\)
\(620\) 0 0
\(621\) 30.0000i 1.20386i
\(622\) 12.0000 + 12.0000i 0.481156 + 0.481156i
\(623\) −12.0000 −0.480770
\(624\) −8.00000 12.0000i −0.320256 0.480384i
\(625\) 11.0000 0.440000
\(626\) 9.00000 + 9.00000i 0.359712 + 0.359712i
\(627\) 0 0
\(628\) −36.0000 −1.43656
\(629\) −9.00000 −0.358854
\(630\) −6.00000 + 6.00000i −0.239046 + 0.239046i
\(631\) 45.0000i 1.79142i −0.444637 0.895711i \(-0.646667\pi\)
0.444637 0.895711i \(-0.353333\pi\)
\(632\) 0 0
\(633\) 5.00000 0.198732
\(634\) 2.00000 + 2.00000i 0.0794301 + 0.0794301i
\(635\) −18.0000 −0.714308
\(636\) 12.0000i 0.475831i
\(637\) −6.00000 + 4.00000i −0.237729 + 0.158486i
\(638\) −12.0000 + 12.0000i −0.475085 + 0.475085i
\(639\) 10.0000i 0.395594i
\(640\) −8.00000 + 8.00000i −0.316228 + 0.316228i
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 12.0000 + 12.0000i 0.473602 + 0.473602i
\(643\) −24.0000 −0.946468 −0.473234 0.880937i \(-0.656913\pi\)
−0.473234 + 0.880937i \(0.656913\pi\)
\(644\) −36.0000 −1.41860
\(645\) −9.00000 −0.354375
\(646\) 0 0
\(647\) 18.0000 0.707653 0.353827 0.935311i \(-0.384880\pi\)
0.353827 + 0.935311i \(0.384880\pi\)
\(648\) −2.00000 + 2.00000i −0.0785674 + 0.0785674i
\(649\) 20.0000 0.785069
\(650\) −20.0000 4.00000i −0.784465 0.156893i
\(651\) 0 0
\(652\) 12.0000i 0.469956i
\(653\) 24.0000i 0.939193i −0.882881 0.469596i \(-0.844399\pi\)
0.882881 0.469596i \(-0.155601\pi\)
\(654\) 15.0000 15.0000i 0.586546 0.586546i
\(655\) 15.0000i 0.586098i
\(656\) 40.0000i 1.56174i
\(657\) 12.0000i 0.468165i
\(658\) 21.0000 + 21.0000i 0.818665 + 0.818665i
\(659\) 36.0000i 1.40236i −0.712984 0.701180i \(-0.752657\pi\)
0.712984 0.701180i \(-0.247343\pi\)
\(660\) −4.00000 −0.155700
\(661\) 18.0000 0.700119 0.350059 0.936727i \(-0.386161\pi\)
0.350059 + 0.936727i \(0.386161\pi\)
\(662\) −12.0000 12.0000i −0.466393 0.466393i
\(663\) 6.00000 + 9.00000i 0.233021 + 0.349531i
\(664\) −32.0000 + 32.0000i −1.24184 + 1.24184i
\(665\) 0 0
\(666\) −6.00000 6.00000i −0.232495 0.232495i
\(667\) 36.0000i 1.39393i
\(668\) 16.0000 0.619059
\(669\) 21.0000 0.811907
\(670\) −12.0000 12.0000i −0.463600 0.463600i
\(671\) 20.0000i 0.772091i
\(672\) −12.0000 12.0000i −0.462910 0.462910i
\(673\) 19.0000 0.732396 0.366198 0.930537i \(-0.380659\pi\)
0.366198 + 0.930537i \(0.380659\pi\)
\(674\) −27.0000 27.0000i −1.04000 1.04000i
\(675\) 20.0000i 0.769800i
\(676\) 24.0000 + 10.0000i 0.923077 + 0.384615i
\(677\) 12.0000i 0.461197i −0.973049 0.230599i \(-0.925932\pi\)
0.973049 0.230599i \(-0.0740685\pi\)
\(678\) 6.00000 6.00000i 0.230429 0.230429i
\(679\) −54.0000 −2.07233
\(680\) 6.00000 6.00000i 0.230089 0.230089i
\(681\) 2.00000i 0.0766402i
\(682\) 0 0
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 0 0
\(685\) 2.00000i 0.0764161i
\(686\) 15.0000 15.0000i 0.572703 0.572703i
\(687\) 15.0000i 0.572286i
\(688\) 36.0000i 1.37249i
\(689\) 12.0000 + 18.0000i 0.457164 + 0.685745i
\(690\) −6.00000 + 6.00000i −0.228416 + 0.228416i
\(691\) −12.0000 −0.456502 −0.228251 0.973602i \(-0.573301\pi\)
−0.228251 + 0.973602i \(0.573301\pi\)
\(692\) 48.0000 1.82469
\(693\) 12.0000i 0.455842i
\(694\) 27.0000 27.0000i 1.02491 1.02491i
\(695\) 9.00000i 0.341389i
\(696\) −12.0000 + 12.0000i −0.454859 + 0.454859i
\(697\) 30.0000i 1.13633i
\(698\) 15.0000 + 15.0000i 0.567758 + 0.567758i
\(699\) 9.00000i 0.340411i
\(700\) −24.0000 −0.907115
\(701\) 30.0000i 1.13308i 0.824033 + 0.566542i \(0.191719\pi\)
−0.824033 + 0.566542i \(0.808281\pi\)
\(702\) −5.00000 + 25.0000i −0.188713 + 0.943564i
\(703\) 0 0
\(704\) 16.0000i 0.603023i
\(705\) 7.00000 0.263635
\(706\) 16.0000 16.0000i 0.602168 0.602168i
\(707\) 0 0
\(708\) 20.0000 0.751646
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 5.00000 5.00000i 0.187647 0.187647i
\(711\) 0 0
\(712\) 8.00000 + 8.00000i 0.299813 + 0.299813i
\(713\) 0 0
\(714\) 9.00000 + 9.00000i 0.336817 + 0.336817i
\(715\) 6.00000 4.00000i 0.224387 0.149592i
\(716\) −18.0000 −0.672692
\(717\) 19.0000 0.709568
\(718\) 4.00000 4.00000i 0.149279 0.149279i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 8.00000 0.298142
\(721\) 12.0000i 0.446903i
\(722\) −19.0000 19.0000i −0.707107 0.707107i
\(723\) 0 0
\(724\) 0 0
\(725\) 24.0000i 0.891338i
\(726\) 7.00000 7.00000i 0.259794 0.259794i
\(727\) 18.0000 0.667583 0.333792 0.942647i \(-0.391672\pi\)
0.333792 + 0.942647i \(0.391672\pi\)
\(728\) 30.0000 + 6.00000i 1.11187 + 0.222375i
\(729\) −13.0000 −0.481481
\(730\) −6.00000 + 6.00000i −0.222070 + 0.222070i
\(731\) 27.0000i 0.998631i
\(732\) 20.0000i 0.739221i
\(733\) 51.0000 1.88373 0.941864 0.335994i \(-0.109072\pi\)
0.941864 + 0.335994i \(0.109072\pi\)
\(734\) 28.0000 + 28.0000i 1.03350 + 1.03350i
\(735\) 2.00000i 0.0737711i
\(736\) 24.0000 + 24.0000i 0.884652 + 0.884652i
\(737\) −24.0000 −0.884051
\(738\) −20.0000 + 20.0000i −0.736210 + 0.736210i
\(739\) −30.0000 −1.10357 −0.551784 0.833987i \(-0.686053\pi\)
−0.551784 + 0.833987i \(0.686053\pi\)
\(740\) 6.00000i 0.220564i
\(741\) 0 0
\(742\) 18.0000 + 18.0000i 0.660801 + 0.660801i
\(743\) 19.0000i 0.697042i 0.937301 + 0.348521i \(0.113316\pi\)
−0.937301 + 0.348521i \(0.886684\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) 4.00000 4.00000i 0.146450 0.146450i
\(747\) 32.0000 1.17082
\(748\) 12.0000i 0.438763i
\(749\) −36.0000 −1.31541
\(750\) −9.00000 + 9.00000i −0.328634 + 0.328634i
\(751\) 22.0000 0.802791 0.401396 0.915905i \(-0.368525\pi\)
0.401396 + 0.915905i \(0.368525\pi\)
\(752\) 28.0000i 1.02105i
\(753\) 0 0
\(754\) 6.00000 30.0000i 0.218507 1.09254i
\(755\) 15.0000i 0.545906i
\(756\) 30.0000i 1.09109i
\(757\) 38.0000i 1.38113i 0.723269 + 0.690567i \(0.242639\pi\)
−0.723269 + 0.690567i \(0.757361\pi\)
\(758\) 30.0000 + 30.0000i 1.08965 + 1.08965i
\(759\) 12.0000i 0.435572i
\(760\) 0 0
\(761\) 10.0000i 0.362500i −0.983437 0.181250i \(-0.941986\pi\)
0.983437 0.181250i \(-0.0580143\pi\)
\(762\) −18.0000 + 18.0000i −0.652071 + 0.652071i
\(763\) 45.0000i 1.62911i
\(764\) 36.0000i 1.30243i
\(765\) −6.00000 −0.216930
\(766\) 1.00000 1.00000i 0.0361315 0.0361315i
\(767\) −30.0000 + 20.0000i −1.08324 + 0.722158i
\(768\) 16.0000i 0.577350i
\(769\) 36.0000i 1.29819i 0.760706 + 0.649097i \(0.224853\pi\)
−0.760706 + 0.649097i \(0.775147\pi\)
\(770\) 6.00000 6.00000i 0.216225 0.216225i
\(771\) 3.00000i 0.108042i
\(772\) −48.0000 −1.72756
\(773\) −49.0000 −1.76241 −0.881204 0.472737i \(-0.843266\pi\)
−0.881204 + 0.472737i \(0.843266\pi\)
\(774\) 18.0000 18.0000i 0.646997 0.646997i
\(775\) 0 0
\(776\) 36.0000 + 36.0000i 1.29232 + 1.29232i
\(777\) −9.00000 −0.322873
\(778\) 6.00000 6.00000i 0.215110 0.215110i
\(779\) 0 0
\(780\) 6.00000