Properties

Label 104.2.b.a.53.1
Level $104$
Weight $2$
Character 104.53
Analytic conductor $0.830$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,2,Mod(53,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 53.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 104.53
Dual form 104.2.b.a.53.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +1.00000i q^{3} +2.00000i q^{4} -3.00000i q^{5} +(1.00000 - 1.00000i) q^{6} +3.00000 q^{7} +(2.00000 - 2.00000i) q^{8} +2.00000 q^{9} +O(q^{10})\) \(q+(-1.00000 - 1.00000i) q^{2} +1.00000i q^{3} +2.00000i q^{4} -3.00000i q^{5} +(1.00000 - 1.00000i) q^{6} +3.00000 q^{7} +(2.00000 - 2.00000i) q^{8} +2.00000 q^{9} +(-3.00000 + 3.00000i) q^{10} -2.00000 q^{12} -1.00000i q^{13} +(-3.00000 - 3.00000i) q^{14} +3.00000 q^{15} -4.00000 q^{16} -7.00000 q^{17} +(-2.00000 - 2.00000i) q^{18} +4.00000i q^{19} +6.00000 q^{20} +3.00000i q^{21} +4.00000 q^{23} +(2.00000 + 2.00000i) q^{24} -4.00000 q^{25} +(-1.00000 + 1.00000i) q^{26} +5.00000i q^{27} +6.00000i q^{28} +4.00000i q^{29} +(-3.00000 - 3.00000i) q^{30} -8.00000 q^{31} +(4.00000 + 4.00000i) q^{32} +(7.00000 + 7.00000i) q^{34} -9.00000i q^{35} +4.00000i q^{36} -7.00000i q^{37} +(4.00000 - 4.00000i) q^{38} +1.00000 q^{39} +(-6.00000 - 6.00000i) q^{40} +2.00000 q^{41} +(3.00000 - 3.00000i) q^{42} +1.00000i q^{43} -6.00000i q^{45} +(-4.00000 - 4.00000i) q^{46} -7.00000 q^{47} -4.00000i q^{48} +2.00000 q^{49} +(4.00000 + 4.00000i) q^{50} -7.00000i q^{51} +2.00000 q^{52} -4.00000i q^{53} +(5.00000 - 5.00000i) q^{54} +(6.00000 - 6.00000i) q^{56} -4.00000 q^{57} +(4.00000 - 4.00000i) q^{58} +14.0000i q^{59} +6.00000i q^{60} +10.0000i q^{61} +(8.00000 + 8.00000i) q^{62} +6.00000 q^{63} -8.00000i q^{64} -3.00000 q^{65} -2.00000i q^{67} -14.0000i q^{68} +4.00000i q^{69} +(-9.00000 + 9.00000i) q^{70} -3.00000 q^{71} +(4.00000 - 4.00000i) q^{72} +14.0000 q^{73} +(-7.00000 + 7.00000i) q^{74} -4.00000i q^{75} -8.00000 q^{76} +(-1.00000 - 1.00000i) q^{78} -10.0000 q^{79} +12.0000i q^{80} +1.00000 q^{81} +(-2.00000 - 2.00000i) q^{82} -14.0000i q^{83} -6.00000 q^{84} +21.0000i q^{85} +(1.00000 - 1.00000i) q^{86} -4.00000 q^{87} +(-6.00000 + 6.00000i) q^{90} -3.00000i q^{91} +8.00000i q^{92} -8.00000i q^{93} +(7.00000 + 7.00000i) q^{94} +12.0000 q^{95} +(-4.00000 + 4.00000i) q^{96} +8.00000 q^{97} +(-2.00000 - 2.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{6} + 6 q^{7} + 4 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{6} + 6 q^{7} + 4 q^{8} + 4 q^{9} - 6 q^{10} - 4 q^{12} - 6 q^{14} + 6 q^{15} - 8 q^{16} - 14 q^{17} - 4 q^{18} + 12 q^{20} + 8 q^{23} + 4 q^{24} - 8 q^{25} - 2 q^{26} - 6 q^{30} - 16 q^{31} + 8 q^{32} + 14 q^{34} + 8 q^{38} + 2 q^{39} - 12 q^{40} + 4 q^{41} + 6 q^{42} - 8 q^{46} - 14 q^{47} + 4 q^{49} + 8 q^{50} + 4 q^{52} + 10 q^{54} + 12 q^{56} - 8 q^{57} + 8 q^{58} + 16 q^{62} + 12 q^{63} - 6 q^{65} - 18 q^{70} - 6 q^{71} + 8 q^{72} + 28 q^{73} - 14 q^{74} - 16 q^{76} - 2 q^{78} - 20 q^{79} + 2 q^{81} - 4 q^{82} - 12 q^{84} + 2 q^{86} - 8 q^{87} - 12 q^{90} + 14 q^{94} + 24 q^{95} - 8 q^{96} + 16 q^{97} - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.707107 0.707107i
\(3\) 1.00000i 0.577350i 0.957427 + 0.288675i \(0.0932147\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) 2.00000i 1.00000i
\(5\) 3.00000i 1.34164i −0.741620 0.670820i \(-0.765942\pi\)
0.741620 0.670820i \(-0.234058\pi\)
\(6\) 1.00000 1.00000i 0.408248 0.408248i
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) 2.00000 0.666667
\(10\) −3.00000 + 3.00000i −0.948683 + 0.948683i
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) −2.00000 −0.577350
\(13\) 1.00000i 0.277350i
\(14\) −3.00000 3.00000i −0.801784 0.801784i
\(15\) 3.00000 0.774597
\(16\) −4.00000 −1.00000
\(17\) −7.00000 −1.69775 −0.848875 0.528594i \(-0.822719\pi\)
−0.848875 + 0.528594i \(0.822719\pi\)
\(18\) −2.00000 2.00000i −0.471405 0.471405i
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 6.00000 1.34164
\(21\) 3.00000i 0.654654i
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 2.00000 + 2.00000i 0.408248 + 0.408248i
\(25\) −4.00000 −0.800000
\(26\) −1.00000 + 1.00000i −0.196116 + 0.196116i
\(27\) 5.00000i 0.962250i
\(28\) 6.00000i 1.13389i
\(29\) 4.00000i 0.742781i 0.928477 + 0.371391i \(0.121119\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) −3.00000 3.00000i −0.547723 0.547723i
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 0 0
\(34\) 7.00000 + 7.00000i 1.20049 + 1.20049i
\(35\) 9.00000i 1.52128i
\(36\) 4.00000i 0.666667i
\(37\) 7.00000i 1.15079i −0.817875 0.575396i \(-0.804848\pi\)
0.817875 0.575396i \(-0.195152\pi\)
\(38\) 4.00000 4.00000i 0.648886 0.648886i
\(39\) 1.00000 0.160128
\(40\) −6.00000 6.00000i −0.948683 0.948683i
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 3.00000 3.00000i 0.462910 0.462910i
\(43\) 1.00000i 0.152499i 0.997089 + 0.0762493i \(0.0242945\pi\)
−0.997089 + 0.0762493i \(0.975706\pi\)
\(44\) 0 0
\(45\) 6.00000i 0.894427i
\(46\) −4.00000 4.00000i −0.589768 0.589768i
\(47\) −7.00000 −1.02105 −0.510527 0.859861i \(-0.670550\pi\)
−0.510527 + 0.859861i \(0.670550\pi\)
\(48\) 4.00000i 0.577350i
\(49\) 2.00000 0.285714
\(50\) 4.00000 + 4.00000i 0.565685 + 0.565685i
\(51\) 7.00000i 0.980196i
\(52\) 2.00000 0.277350
\(53\) 4.00000i 0.549442i −0.961524 0.274721i \(-0.911414\pi\)
0.961524 0.274721i \(-0.0885855\pi\)
\(54\) 5.00000 5.00000i 0.680414 0.680414i
\(55\) 0 0
\(56\) 6.00000 6.00000i 0.801784 0.801784i
\(57\) −4.00000 −0.529813
\(58\) 4.00000 4.00000i 0.525226 0.525226i
\(59\) 14.0000i 1.82264i 0.411693 + 0.911322i \(0.364937\pi\)
−0.411693 + 0.911322i \(0.635063\pi\)
\(60\) 6.00000i 0.774597i
\(61\) 10.0000i 1.28037i 0.768221 + 0.640184i \(0.221142\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 8.00000 + 8.00000i 1.01600 + 1.01600i
\(63\) 6.00000 0.755929
\(64\) 8.00000i 1.00000i
\(65\) −3.00000 −0.372104
\(66\) 0 0
\(67\) 2.00000i 0.244339i −0.992509 0.122169i \(-0.961015\pi\)
0.992509 0.122169i \(-0.0389851\pi\)
\(68\) 14.0000i 1.69775i
\(69\) 4.00000i 0.481543i
\(70\) −9.00000 + 9.00000i −1.07571 + 1.07571i
\(71\) −3.00000 −0.356034 −0.178017 0.984027i \(-0.556968\pi\)
−0.178017 + 0.984027i \(0.556968\pi\)
\(72\) 4.00000 4.00000i 0.471405 0.471405i
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) −7.00000 + 7.00000i −0.813733 + 0.813733i
\(75\) 4.00000i 0.461880i
\(76\) −8.00000 −0.917663
\(77\) 0 0
\(78\) −1.00000 1.00000i −0.113228 0.113228i
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 12.0000i 1.34164i
\(81\) 1.00000 0.111111
\(82\) −2.00000 2.00000i −0.220863 0.220863i
\(83\) 14.0000i 1.53670i −0.640030 0.768350i \(-0.721078\pi\)
0.640030 0.768350i \(-0.278922\pi\)
\(84\) −6.00000 −0.654654
\(85\) 21.0000i 2.27777i
\(86\) 1.00000 1.00000i 0.107833 0.107833i
\(87\) −4.00000 −0.428845
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −6.00000 + 6.00000i −0.632456 + 0.632456i
\(91\) 3.00000i 0.314485i
\(92\) 8.00000i 0.834058i
\(93\) 8.00000i 0.829561i
\(94\) 7.00000 + 7.00000i 0.721995 + 0.721995i
\(95\) 12.0000 1.23117
\(96\) −4.00000 + 4.00000i −0.408248 + 0.408248i
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) −2.00000 2.00000i −0.202031 0.202031i
\(99\) 0 0
\(100\) 8.00000i 0.800000i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −7.00000 + 7.00000i −0.693103 + 0.693103i
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) −2.00000 2.00000i −0.196116 0.196116i
\(105\) 9.00000 0.878310
\(106\) −4.00000 + 4.00000i −0.388514 + 0.388514i
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) −10.0000 −0.962250
\(109\) 1.00000i 0.0957826i −0.998853 0.0478913i \(-0.984750\pi\)
0.998853 0.0478913i \(-0.0152501\pi\)
\(110\) 0 0
\(111\) 7.00000 0.664411
\(112\) −12.0000 −1.13389
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 4.00000 + 4.00000i 0.374634 + 0.374634i
\(115\) 12.0000i 1.11901i
\(116\) −8.00000 −0.742781
\(117\) 2.00000i 0.184900i
\(118\) 14.0000 14.0000i 1.28880 1.28880i
\(119\) −21.0000 −1.92507
\(120\) 6.00000 6.00000i 0.547723 0.547723i
\(121\) 11.0000 1.00000
\(122\) 10.0000 10.0000i 0.905357 0.905357i
\(123\) 2.00000i 0.180334i
\(124\) 16.0000i 1.43684i
\(125\) 3.00000i 0.268328i
\(126\) −6.00000 6.00000i −0.534522 0.534522i
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −8.00000 + 8.00000i −0.707107 + 0.707107i
\(129\) −1.00000 −0.0880451
\(130\) 3.00000 + 3.00000i 0.263117 + 0.263117i
\(131\) 15.0000i 1.31056i 0.755388 + 0.655278i \(0.227449\pi\)
−0.755388 + 0.655278i \(0.772551\pi\)
\(132\) 0 0
\(133\) 12.0000i 1.04053i
\(134\) −2.00000 + 2.00000i −0.172774 + 0.172774i
\(135\) 15.0000 1.29099
\(136\) −14.0000 + 14.0000i −1.20049 + 1.20049i
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 4.00000 4.00000i 0.340503 0.340503i
\(139\) 11.0000i 0.933008i −0.884519 0.466504i \(-0.845513\pi\)
0.884519 0.466504i \(-0.154487\pi\)
\(140\) 18.0000 1.52128
\(141\) 7.00000i 0.589506i
\(142\) 3.00000 + 3.00000i 0.251754 + 0.251754i
\(143\) 0 0
\(144\) −8.00000 −0.666667
\(145\) 12.0000 0.996546
\(146\) −14.0000 14.0000i −1.15865 1.15865i
\(147\) 2.00000i 0.164957i
\(148\) 14.0000 1.15079
\(149\) 6.00000i 0.491539i −0.969328 0.245770i \(-0.920959\pi\)
0.969328 0.245770i \(-0.0790407\pi\)
\(150\) −4.00000 + 4.00000i −0.326599 + 0.326599i
\(151\) 17.0000 1.38344 0.691720 0.722166i \(-0.256853\pi\)
0.691720 + 0.722166i \(0.256853\pi\)
\(152\) 8.00000 + 8.00000i 0.648886 + 0.648886i
\(153\) −14.0000 −1.13183
\(154\) 0 0
\(155\) 24.0000i 1.92773i
\(156\) 2.00000i 0.160128i
\(157\) 2.00000i 0.159617i −0.996810 0.0798087i \(-0.974569\pi\)
0.996810 0.0798087i \(-0.0254309\pi\)
\(158\) 10.0000 + 10.0000i 0.795557 + 0.795557i
\(159\) 4.00000 0.317221
\(160\) 12.0000 12.0000i 0.948683 0.948683i
\(161\) 12.0000 0.945732
\(162\) −1.00000 1.00000i −0.0785674 0.0785674i
\(163\) 24.0000i 1.87983i −0.341415 0.939913i \(-0.610906\pi\)
0.341415 0.939913i \(-0.389094\pi\)
\(164\) 4.00000i 0.312348i
\(165\) 0 0
\(166\) −14.0000 + 14.0000i −1.08661 + 1.08661i
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 6.00000 + 6.00000i 0.462910 + 0.462910i
\(169\) −1.00000 −0.0769231
\(170\) 21.0000 21.0000i 1.61063 1.61063i
\(171\) 8.00000i 0.611775i
\(172\) −2.00000 −0.152499
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 4.00000 + 4.00000i 0.303239 + 0.303239i
\(175\) −12.0000 −0.907115
\(176\) 0 0
\(177\) −14.0000 −1.05230
\(178\) 0 0
\(179\) 21.0000i 1.56961i −0.619740 0.784807i \(-0.712762\pi\)
0.619740 0.784807i \(-0.287238\pi\)
\(180\) 12.0000 0.894427
\(181\) 10.0000i 0.743294i −0.928374 0.371647i \(-0.878793\pi\)
0.928374 0.371647i \(-0.121207\pi\)
\(182\) −3.00000 + 3.00000i −0.222375 + 0.222375i
\(183\) −10.0000 −0.739221
\(184\) 8.00000 8.00000i 0.589768 0.589768i
\(185\) −21.0000 −1.54395
\(186\) −8.00000 + 8.00000i −0.586588 + 0.586588i
\(187\) 0 0
\(188\) 14.0000i 1.02105i
\(189\) 15.0000i 1.09109i
\(190\) −12.0000 12.0000i −0.870572 0.870572i
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 8.00000 0.577350
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) −8.00000 8.00000i −0.574367 0.574367i
\(195\) 3.00000i 0.214834i
\(196\) 4.00000i 0.285714i
\(197\) 17.0000i 1.21120i −0.795769 0.605600i \(-0.792933\pi\)
0.795769 0.605600i \(-0.207067\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) −8.00000 + 8.00000i −0.565685 + 0.565685i
\(201\) 2.00000 0.141069
\(202\) 0 0
\(203\) 12.0000i 0.842235i
\(204\) 14.0000 0.980196
\(205\) 6.00000i 0.419058i
\(206\) 6.00000 + 6.00000i 0.418040 + 0.418040i
\(207\) 8.00000 0.556038
\(208\) 4.00000i 0.277350i
\(209\) 0 0
\(210\) −9.00000 9.00000i −0.621059 0.621059i
\(211\) 15.0000i 1.03264i 0.856395 + 0.516321i \(0.172699\pi\)
−0.856395 + 0.516321i \(0.827301\pi\)
\(212\) 8.00000 0.549442
\(213\) 3.00000i 0.205557i
\(214\) 8.00000 8.00000i 0.546869 0.546869i
\(215\) 3.00000 0.204598
\(216\) 10.0000 + 10.0000i 0.680414 + 0.680414i
\(217\) −24.0000 −1.62923
\(218\) −1.00000 + 1.00000i −0.0677285 + 0.0677285i
\(219\) 14.0000i 0.946032i
\(220\) 0 0
\(221\) 7.00000i 0.470871i
\(222\) −7.00000 7.00000i −0.469809 0.469809i
\(223\) −1.00000 −0.0669650 −0.0334825 0.999439i \(-0.510660\pi\)
−0.0334825 + 0.999439i \(0.510660\pi\)
\(224\) 12.0000 + 12.0000i 0.801784 + 0.801784i
\(225\) −8.00000 −0.533333
\(226\) 6.00000 + 6.00000i 0.399114 + 0.399114i
\(227\) 18.0000i 1.19470i 0.801980 + 0.597351i \(0.203780\pi\)
−0.801980 + 0.597351i \(0.796220\pi\)
\(228\) 8.00000i 0.529813i
\(229\) 21.0000i 1.38772i −0.720110 0.693860i \(-0.755909\pi\)
0.720110 0.693860i \(-0.244091\pi\)
\(230\) −12.0000 + 12.0000i −0.791257 + 0.791257i
\(231\) 0 0
\(232\) 8.00000 + 8.00000i 0.525226 + 0.525226i
\(233\) 19.0000 1.24473 0.622366 0.782727i \(-0.286172\pi\)
0.622366 + 0.782727i \(0.286172\pi\)
\(234\) −2.00000 + 2.00000i −0.130744 + 0.130744i
\(235\) 21.0000i 1.36989i
\(236\) −28.0000 −1.82264
\(237\) 10.0000i 0.649570i
\(238\) 21.0000 + 21.0000i 1.36123 + 1.36123i
\(239\) 5.00000 0.323423 0.161712 0.986838i \(-0.448299\pi\)
0.161712 + 0.986838i \(0.448299\pi\)
\(240\) −12.0000 −0.774597
\(241\) −8.00000 −0.515325 −0.257663 0.966235i \(-0.582952\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(242\) −11.0000 11.0000i −0.707107 0.707107i
\(243\) 16.0000i 1.02640i
\(244\) −20.0000 −1.28037
\(245\) 6.00000i 0.383326i
\(246\) 2.00000 2.00000i 0.127515 0.127515i
\(247\) 4.00000 0.254514
\(248\) −16.0000 + 16.0000i −1.01600 + 1.01600i
\(249\) 14.0000 0.887214
\(250\) −3.00000 + 3.00000i −0.189737 + 0.189737i
\(251\) 20.0000i 1.26239i −0.775625 0.631194i \(-0.782565\pi\)
0.775625 0.631194i \(-0.217435\pi\)
\(252\) 12.0000i 0.755929i
\(253\) 0 0
\(254\) −8.00000 8.00000i −0.501965 0.501965i
\(255\) −21.0000 −1.31507
\(256\) 16.0000 1.00000
\(257\) −7.00000 −0.436648 −0.218324 0.975876i \(-0.570059\pi\)
−0.218324 + 0.975876i \(0.570059\pi\)
\(258\) 1.00000 + 1.00000i 0.0622573 + 0.0622573i
\(259\) 21.0000i 1.30488i
\(260\) 6.00000i 0.372104i
\(261\) 8.00000i 0.495188i
\(262\) 15.0000 15.0000i 0.926703 0.926703i
\(263\) 14.0000 0.863277 0.431638 0.902047i \(-0.357936\pi\)
0.431638 + 0.902047i \(0.357936\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 12.0000 12.0000i 0.735767 0.735767i
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 6.00000i 0.365826i −0.983129 0.182913i \(-0.941447\pi\)
0.983129 0.182913i \(-0.0585527\pi\)
\(270\) −15.0000 15.0000i −0.912871 0.912871i
\(271\) −3.00000 −0.182237 −0.0911185 0.995840i \(-0.529044\pi\)
−0.0911185 + 0.995840i \(0.529044\pi\)
\(272\) 28.0000 1.69775
\(273\) 3.00000 0.181568
\(274\) 12.0000 + 12.0000i 0.724947 + 0.724947i
\(275\) 0 0
\(276\) −8.00000 −0.481543
\(277\) 18.0000i 1.08152i 0.841178 + 0.540758i \(0.181862\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) −11.0000 + 11.0000i −0.659736 + 0.659736i
\(279\) −16.0000 −0.957895
\(280\) −18.0000 18.0000i −1.07571 1.07571i
\(281\) −8.00000 −0.477240 −0.238620 0.971113i \(-0.576695\pi\)
−0.238620 + 0.971113i \(0.576695\pi\)
\(282\) −7.00000 + 7.00000i −0.416844 + 0.416844i
\(283\) 4.00000i 0.237775i −0.992908 0.118888i \(-0.962067\pi\)
0.992908 0.118888i \(-0.0379328\pi\)
\(284\) 6.00000i 0.356034i
\(285\) 12.0000i 0.710819i
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 8.00000 + 8.00000i 0.471405 + 0.471405i
\(289\) 32.0000 1.88235
\(290\) −12.0000 12.0000i −0.704664 0.704664i
\(291\) 8.00000i 0.468968i
\(292\) 28.0000i 1.63858i
\(293\) 1.00000i 0.0584206i 0.999573 + 0.0292103i \(0.00929925\pi\)
−0.999573 + 0.0292103i \(0.990701\pi\)
\(294\) 2.00000 2.00000i 0.116642 0.116642i
\(295\) 42.0000 2.44533
\(296\) −14.0000 14.0000i −0.813733 0.813733i
\(297\) 0 0
\(298\) −6.00000 + 6.00000i −0.347571 + 0.347571i
\(299\) 4.00000i 0.231326i
\(300\) 8.00000 0.461880
\(301\) 3.00000i 0.172917i
\(302\) −17.0000 17.0000i −0.978240 0.978240i
\(303\) 0 0
\(304\) 16.0000i 0.917663i
\(305\) 30.0000 1.71780
\(306\) 14.0000 + 14.0000i 0.800327 + 0.800327i
\(307\) 2.00000i 0.114146i −0.998370 0.0570730i \(-0.981823\pi\)
0.998370 0.0570730i \(-0.0181768\pi\)
\(308\) 0 0
\(309\) 6.00000i 0.341328i
\(310\) 24.0000 24.0000i 1.36311 1.36311i
\(311\) 32.0000 1.81455 0.907277 0.420534i \(-0.138157\pi\)
0.907277 + 0.420534i \(0.138157\pi\)
\(312\) 2.00000 2.00000i 0.113228 0.113228i
\(313\) 29.0000 1.63918 0.819588 0.572953i \(-0.194202\pi\)
0.819588 + 0.572953i \(0.194202\pi\)
\(314\) −2.00000 + 2.00000i −0.112867 + 0.112867i
\(315\) 18.0000i 1.01419i
\(316\) 20.0000i 1.12509i
\(317\) 18.0000i 1.01098i 0.862832 + 0.505490i \(0.168688\pi\)
−0.862832 + 0.505490i \(0.831312\pi\)
\(318\) −4.00000 4.00000i −0.224309 0.224309i
\(319\) 0 0
\(320\) −24.0000 −1.34164
\(321\) −8.00000 −0.446516
\(322\) −12.0000 12.0000i −0.668734 0.668734i
\(323\) 28.0000i 1.55796i
\(324\) 2.00000i 0.111111i
\(325\) 4.00000i 0.221880i
\(326\) −24.0000 + 24.0000i −1.32924 + 1.32924i
\(327\) 1.00000 0.0553001
\(328\) 4.00000 4.00000i 0.220863 0.220863i
\(329\) −21.0000 −1.15777
\(330\) 0 0
\(331\) 10.0000i 0.549650i −0.961494 0.274825i \(-0.911380\pi\)
0.961494 0.274825i \(-0.0886199\pi\)
\(332\) 28.0000 1.53670
\(333\) 14.0000i 0.767195i
\(334\) 12.0000 + 12.0000i 0.656611 + 0.656611i
\(335\) −6.00000 −0.327815
\(336\) 12.0000i 0.654654i
\(337\) −17.0000 −0.926049 −0.463025 0.886345i \(-0.653236\pi\)
−0.463025 + 0.886345i \(0.653236\pi\)
\(338\) 1.00000 + 1.00000i 0.0543928 + 0.0543928i
\(339\) 6.00000i 0.325875i
\(340\) −42.0000 −2.27777
\(341\) 0 0
\(342\) 8.00000 8.00000i 0.432590 0.432590i
\(343\) −15.0000 −0.809924
\(344\) 2.00000 + 2.00000i 0.107833 + 0.107833i
\(345\) 12.0000 0.646058
\(346\) 6.00000 6.00000i 0.322562 0.322562i
\(347\) 7.00000i 0.375780i −0.982190 0.187890i \(-0.939835\pi\)
0.982190 0.187890i \(-0.0601648\pi\)
\(348\) 8.00000i 0.428845i
\(349\) 19.0000i 1.01705i 0.861048 + 0.508523i \(0.169808\pi\)
−0.861048 + 0.508523i \(0.830192\pi\)
\(350\) 12.0000 + 12.0000i 0.641427 + 0.641427i
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 14.0000 + 14.0000i 0.744092 + 0.744092i
\(355\) 9.00000i 0.477670i
\(356\) 0 0
\(357\) 21.0000i 1.11144i
\(358\) −21.0000 + 21.0000i −1.10988 + 1.10988i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −12.0000 12.0000i −0.632456 0.632456i
\(361\) 3.00000 0.157895
\(362\) −10.0000 + 10.0000i −0.525588 + 0.525588i
\(363\) 11.0000i 0.577350i
\(364\) 6.00000 0.314485
\(365\) 42.0000i 2.19838i
\(366\) 10.0000 + 10.0000i 0.522708 + 0.522708i
\(367\) −22.0000 −1.14839 −0.574195 0.818718i \(-0.694685\pi\)
−0.574195 + 0.818718i \(0.694685\pi\)
\(368\) −16.0000 −0.834058
\(369\) 4.00000 0.208232
\(370\) 21.0000 + 21.0000i 1.09174 + 1.09174i
\(371\) 12.0000i 0.623009i
\(372\) 16.0000 0.829561
\(373\) 36.0000i 1.86401i 0.362446 + 0.932005i \(0.381942\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 3.00000 0.154919
\(376\) −14.0000 + 14.0000i −0.721995 + 0.721995i
\(377\) 4.00000 0.206010
\(378\) 15.0000 15.0000i 0.771517 0.771517i
\(379\) 4.00000i 0.205466i 0.994709 + 0.102733i \(0.0327588\pi\)
−0.994709 + 0.102733i \(0.967241\pi\)
\(380\) 24.0000i 1.23117i
\(381\) 8.00000i 0.409852i
\(382\) −12.0000 12.0000i −0.613973 0.613973i
\(383\) −1.00000 −0.0510976 −0.0255488 0.999674i \(-0.508133\pi\)
−0.0255488 + 0.999674i \(0.508133\pi\)
\(384\) −8.00000 8.00000i −0.408248 0.408248i
\(385\) 0 0
\(386\) 6.00000 + 6.00000i 0.305392 + 0.305392i
\(387\) 2.00000i 0.101666i
\(388\) 16.0000i 0.812277i
\(389\) 34.0000i 1.72387i 0.507020 + 0.861934i \(0.330747\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(390\) −3.00000 + 3.00000i −0.151911 + 0.151911i
\(391\) −28.0000 −1.41602
\(392\) 4.00000 4.00000i 0.202031 0.202031i
\(393\) −15.0000 −0.756650
\(394\) −17.0000 + 17.0000i −0.856448 + 0.856448i
\(395\) 30.0000i 1.50946i
\(396\) 0 0
\(397\) 22.0000i 1.10415i −0.833795 0.552074i \(-0.813837\pi\)
0.833795 0.552074i \(-0.186163\pi\)
\(398\) 10.0000 + 10.0000i 0.501255 + 0.501255i
\(399\) −12.0000 −0.600751
\(400\) 16.0000 0.800000
\(401\) 32.0000 1.59800 0.799002 0.601329i \(-0.205362\pi\)
0.799002 + 0.601329i \(0.205362\pi\)
\(402\) −2.00000 2.00000i −0.0997509 0.0997509i
\(403\) 8.00000i 0.398508i
\(404\) 0 0
\(405\) 3.00000i 0.149071i
\(406\) 12.0000 12.0000i 0.595550 0.595550i
\(407\) 0 0
\(408\) −14.0000 14.0000i −0.693103 0.693103i
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) −6.00000 + 6.00000i −0.296319 + 0.296319i
\(411\) 12.0000i 0.591916i
\(412\) 12.0000i 0.591198i
\(413\) 42.0000i 2.06668i
\(414\) −8.00000 8.00000i −0.393179 0.393179i
\(415\) −42.0000 −2.06170
\(416\) 4.00000 4.00000i 0.196116 0.196116i
\(417\) 11.0000 0.538672
\(418\) 0 0
\(419\) 11.0000i 0.537385i −0.963226 0.268693i \(-0.913408\pi\)
0.963226 0.268693i \(-0.0865916\pi\)
\(420\) 18.0000i 0.878310i
\(421\) 15.0000i 0.731055i −0.930800 0.365528i \(-0.880889\pi\)
0.930800 0.365528i \(-0.119111\pi\)
\(422\) 15.0000 15.0000i 0.730189 0.730189i
\(423\) −14.0000 −0.680703
\(424\) −8.00000 8.00000i −0.388514 0.388514i
\(425\) 28.0000 1.35820
\(426\) −3.00000 + 3.00000i −0.145350 + 0.145350i
\(427\) 30.0000i 1.45180i
\(428\) −16.0000 −0.773389
\(429\) 0 0
\(430\) −3.00000 3.00000i −0.144673 0.144673i
\(431\) −3.00000 −0.144505 −0.0722525 0.997386i \(-0.523019\pi\)
−0.0722525 + 0.997386i \(0.523019\pi\)
\(432\) 20.0000i 0.962250i
\(433\) −1.00000 −0.0480569 −0.0240285 0.999711i \(-0.507649\pi\)
−0.0240285 + 0.999711i \(0.507649\pi\)
\(434\) 24.0000 + 24.0000i 1.15204 + 1.15204i
\(435\) 12.0000i 0.575356i
\(436\) 2.00000 0.0957826
\(437\) 16.0000i 0.765384i
\(438\) 14.0000 14.0000i 0.668946 0.668946i
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 0 0
\(441\) 4.00000 0.190476
\(442\) 7.00000 7.00000i 0.332956 0.332956i
\(443\) 9.00000i 0.427603i −0.976877 0.213801i \(-0.931415\pi\)
0.976877 0.213801i \(-0.0685846\pi\)
\(444\) 14.0000i 0.664411i
\(445\) 0 0
\(446\) 1.00000 + 1.00000i 0.0473514 + 0.0473514i
\(447\) 6.00000 0.283790
\(448\) 24.0000i 1.13389i
\(449\) −20.0000 −0.943858 −0.471929 0.881636i \(-0.656442\pi\)
−0.471929 + 0.881636i \(0.656442\pi\)
\(450\) 8.00000 + 8.00000i 0.377124 + 0.377124i
\(451\) 0 0
\(452\) 12.0000i 0.564433i
\(453\) 17.0000i 0.798730i
\(454\) 18.0000 18.0000i 0.844782 0.844782i
\(455\) −9.00000 −0.421927
\(456\) −8.00000 + 8.00000i −0.374634 + 0.374634i
\(457\) −32.0000 −1.49690 −0.748448 0.663193i \(-0.769201\pi\)
−0.748448 + 0.663193i \(0.769201\pi\)
\(458\) −21.0000 + 21.0000i −0.981266 + 0.981266i
\(459\) 35.0000i 1.63366i
\(460\) 24.0000 1.11901
\(461\) 5.00000i 0.232873i −0.993198 0.116437i \(-0.962853\pi\)
0.993198 0.116437i \(-0.0371472\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 16.0000i 0.742781i
\(465\) −24.0000 −1.11297
\(466\) −19.0000 19.0000i −0.880158 0.880158i
\(467\) 12.0000i 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) 4.00000 0.184900
\(469\) 6.00000i 0.277054i
\(470\) 21.0000 21.0000i 0.968658 0.968658i
\(471\) 2.00000 0.0921551
\(472\) 28.0000 + 28.0000i 1.28880 + 1.28880i
\(473\) 0 0
\(474\) −10.0000 + 10.0000i −0.459315 + 0.459315i
\(475\) 16.0000i 0.734130i
\(476\) 42.0000i 1.92507i
\(477\) 8.00000i 0.366295i
\(478\) −5.00000 5.00000i −0.228695 0.228695i
\(479\) 5.00000 0.228456 0.114228 0.993455i \(-0.463561\pi\)
0.114228 + 0.993455i \(0.463561\pi\)
\(480\) 12.0000 + 12.0000i 0.547723 + 0.547723i
\(481\) −7.00000 −0.319173
\(482\) 8.00000 + 8.00000i 0.364390 + 0.364390i
\(483\) 12.0000i 0.546019i
\(484\) 22.0000i 1.00000i
\(485\) 24.0000i 1.08978i
\(486\) 16.0000 16.0000i 0.725775 0.725775i
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 20.0000 + 20.0000i 0.905357 + 0.905357i
\(489\) 24.0000 1.08532
\(490\) −6.00000 + 6.00000i −0.271052 + 0.271052i
\(491\) 15.0000i 0.676941i −0.940977 0.338470i \(-0.890091\pi\)
0.940977 0.338470i \(-0.109909\pi\)
\(492\) −4.00000 −0.180334
\(493\) 28.0000i 1.26106i
\(494\) −4.00000 4.00000i −0.179969 0.179969i
\(495\) 0 0
\(496\) 32.0000 1.43684
\(497\) −9.00000 −0.403705
\(498\) −14.0000 14.0000i −0.627355 0.627355i
\(499\) 6.00000i 0.268597i −0.990941 0.134298i \(-0.957122\pi\)
0.990941 0.134298i \(-0.0428781\pi\)
\(500\) 6.00000 0.268328
\(501\) 12.0000i 0.536120i
\(502\) −20.0000 + 20.0000i −0.892644 + 0.892644i
\(503\) 4.00000 0.178351 0.0891756 0.996016i \(-0.471577\pi\)
0.0891756 + 0.996016i \(0.471577\pi\)
\(504\) 12.0000 12.0000i 0.534522 0.534522i
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 16.0000i 0.709885i
\(509\) 14.0000i 0.620539i 0.950649 + 0.310270i \(0.100419\pi\)
−0.950649 + 0.310270i \(0.899581\pi\)
\(510\) 21.0000 + 21.0000i 0.929896 + 0.929896i
\(511\) 42.0000 1.85797
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) −20.0000 −0.883022
\(514\) 7.00000 + 7.00000i 0.308757 + 0.308757i
\(515\) 18.0000i 0.793175i
\(516\) 2.00000i 0.0880451i
\(517\) 0 0
\(518\) −21.0000 + 21.0000i −0.922687 + 0.922687i
\(519\) −6.00000 −0.263371
\(520\) −6.00000 + 6.00000i −0.263117 + 0.263117i
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 8.00000 8.00000i 0.350150 0.350150i
\(523\) 44.0000i 1.92399i −0.273075 0.961993i \(-0.588041\pi\)
0.273075 0.961993i \(-0.411959\pi\)
\(524\) −30.0000 −1.31056
\(525\) 12.0000i 0.523723i
\(526\) −14.0000 14.0000i −0.610429 0.610429i
\(527\) 56.0000 2.43940
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 12.0000 + 12.0000i 0.521247 + 0.521247i
\(531\) 28.0000i 1.21510i
\(532\) −24.0000 −1.04053
\(533\) 2.00000i 0.0866296i
\(534\) 0 0
\(535\) 24.0000 1.03761
\(536\) −4.00000 4.00000i −0.172774 0.172774i
\(537\) 21.0000 0.906217
\(538\) −6.00000 + 6.00000i −0.258678 + 0.258678i
\(539\) 0 0
\(540\) 30.0000i 1.29099i
\(541\) 25.0000i 1.07483i 0.843317 + 0.537417i \(0.180600\pi\)
−0.843317 + 0.537417i \(0.819400\pi\)
\(542\) 3.00000 + 3.00000i 0.128861 + 0.128861i
\(543\) 10.0000 0.429141
\(544\) −28.0000 28.0000i −1.20049 1.20049i
\(545\) −3.00000 −0.128506
\(546\) −3.00000 3.00000i −0.128388 0.128388i
\(547\) 13.0000i 0.555840i 0.960604 + 0.277920i \(0.0896450\pi\)
−0.960604 + 0.277920i \(0.910355\pi\)
\(548\) 24.0000i 1.02523i
\(549\) 20.0000i 0.853579i
\(550\) 0 0
\(551\) −16.0000 −0.681623
\(552\) 8.00000 + 8.00000i 0.340503 + 0.340503i
\(553\) −30.0000 −1.27573
\(554\) 18.0000 18.0000i 0.764747 0.764747i
\(555\) 21.0000i 0.891400i
\(556\) 22.0000 0.933008
\(557\) 13.0000i 0.550828i 0.961326 + 0.275414i \(0.0888149\pi\)
−0.961326 + 0.275414i \(0.911185\pi\)
\(558\) 16.0000 + 16.0000i 0.677334 + 0.677334i
\(559\) 1.00000 0.0422955
\(560\) 36.0000i 1.52128i
\(561\) 0 0
\(562\) 8.00000 + 8.00000i 0.337460 + 0.337460i
\(563\) 31.0000i 1.30649i 0.757145 + 0.653247i \(0.226594\pi\)
−0.757145 + 0.653247i \(0.773406\pi\)
\(564\) 14.0000 0.589506
\(565\) 18.0000i 0.757266i
\(566\) −4.00000 + 4.00000i −0.168133 + 0.168133i
\(567\) 3.00000 0.125988
\(568\) −6.00000 + 6.00000i −0.251754 + 0.251754i
\(569\) 25.0000 1.04805 0.524027 0.851701i \(-0.324429\pi\)
0.524027 + 0.851701i \(0.324429\pi\)
\(570\) 12.0000 12.0000i 0.502625 0.502625i
\(571\) 5.00000i 0.209243i −0.994512 0.104622i \(-0.966637\pi\)
0.994512 0.104622i \(-0.0333632\pi\)
\(572\) 0 0
\(573\) 12.0000i 0.501307i
\(574\) −6.00000 6.00000i −0.250435 0.250435i
\(575\) −16.0000 −0.667246
\(576\) 16.0000i 0.666667i
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) −32.0000 32.0000i −1.33102 1.33102i
\(579\) 6.00000i 0.249351i
\(580\) 24.0000i 0.996546i
\(581\) 42.0000i 1.74245i
\(582\) 8.00000 8.00000i 0.331611 0.331611i
\(583\) 0 0
\(584\) 28.0000 28.0000i 1.15865 1.15865i
\(585\) −6.00000 −0.248069
\(586\) 1.00000 1.00000i 0.0413096 0.0413096i
\(587\) 28.0000i 1.15568i 0.816149 + 0.577842i \(0.196105\pi\)
−0.816149 + 0.577842i \(0.803895\pi\)
\(588\) −4.00000 −0.164957
\(589\) 32.0000i 1.31854i
\(590\) −42.0000 42.0000i −1.72911 1.72911i
\(591\) 17.0000 0.699287
\(592\) 28.0000i 1.15079i
\(593\) 24.0000 0.985562 0.492781 0.870153i \(-0.335980\pi\)
0.492781 + 0.870153i \(0.335980\pi\)
\(594\) 0 0
\(595\) 63.0000i 2.58275i
\(596\) 12.0000 0.491539
\(597\) 10.0000i 0.409273i
\(598\) −4.00000 + 4.00000i −0.163572 + 0.163572i
\(599\) 10.0000 0.408589 0.204294 0.978909i \(-0.434510\pi\)
0.204294 + 0.978909i \(0.434510\pi\)
\(600\) −8.00000 8.00000i −0.326599 0.326599i
\(601\) 27.0000 1.10135 0.550676 0.834719i \(-0.314370\pi\)
0.550676 + 0.834719i \(0.314370\pi\)
\(602\) 3.00000 3.00000i 0.122271 0.122271i
\(603\) 4.00000i 0.162893i
\(604\) 34.0000i 1.38344i
\(605\) 33.0000i 1.34164i
\(606\) 0 0
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) −16.0000 + 16.0000i −0.648886 + 0.648886i
\(609\) −12.0000 −0.486265
\(610\) −30.0000 30.0000i −1.21466 1.21466i
\(611\) 7.00000i 0.283190i
\(612\) 28.0000i 1.13183i
\(613\) 14.0000i 0.565455i −0.959200 0.282727i \(-0.908761\pi\)
0.959200 0.282727i \(-0.0912392\pi\)
\(614\) −2.00000 + 2.00000i −0.0807134 + 0.0807134i
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) −6.00000 + 6.00000i −0.241355 + 0.241355i
\(619\) 6.00000i 0.241160i −0.992704 0.120580i \(-0.961525\pi\)
0.992704 0.120580i \(-0.0384755\pi\)
\(620\) −48.0000 −1.92773
\(621\) 20.0000i 0.802572i
\(622\) −32.0000 32.0000i −1.28308 1.28308i
\(623\) 0 0
\(624\) −4.00000 −0.160128
\(625\) −29.0000 −1.16000
\(626\) −29.0000 29.0000i −1.15907 1.15907i
\(627\) 0 0
\(628\) 4.00000 0.159617
\(629\) 49.0000i 1.95376i
\(630\) −18.0000 + 18.0000i −0.717137 + 0.717137i
\(631\) −23.0000 −0.915616 −0.457808 0.889051i \(-0.651365\pi\)
−0.457808 + 0.889051i \(0.651365\pi\)
\(632\) −20.0000 + 20.0000i −0.795557 + 0.795557i
\(633\) −15.0000 −0.596196
\(634\) 18.0000 18.0000i 0.714871 0.714871i
\(635\) 24.0000i 0.952411i
\(636\) 8.00000i 0.317221i
\(637\) 2.00000i 0.0792429i
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 24.0000 + 24.0000i 0.948683 + 0.948683i
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 8.00000 + 8.00000i 0.315735 + 0.315735i
\(643\) 26.0000i 1.02534i 0.858586 + 0.512670i \(0.171344\pi\)
−0.858586 + 0.512670i \(0.828656\pi\)
\(644\) 24.0000i 0.945732i
\(645\) 3.00000i 0.118125i
\(646\) −28.0000 + 28.0000i −1.10165 + 1.10165i
\(647\) 18.0000 0.707653 0.353827 0.935311i \(-0.384880\pi\)
0.353827 + 0.935311i \(0.384880\pi\)
\(648\) 2.00000 2.00000i 0.0785674 0.0785674i
\(649\) 0 0
\(650\) 4.00000 4.00000i 0.156893 0.156893i
\(651\) 24.0000i 0.940634i
\(652\) 48.0000 1.87983
\(653\) 44.0000i 1.72185i −0.508729 0.860927i \(-0.669885\pi\)
0.508729 0.860927i \(-0.330115\pi\)
\(654\) −1.00000 1.00000i −0.0391031 0.0391031i
\(655\) 45.0000 1.75830
\(656\) −8.00000 −0.312348
\(657\) 28.0000 1.09238
\(658\) 21.0000 + 21.0000i 0.818665 + 0.818665i
\(659\) 4.00000i 0.155818i 0.996960 + 0.0779089i \(0.0248243\pi\)
−0.996960 + 0.0779089i \(0.975176\pi\)
\(660\) 0 0
\(661\) 30.0000i 1.16686i −0.812162 0.583432i \(-0.801709\pi\)
0.812162 0.583432i \(-0.198291\pi\)
\(662\) −10.0000 + 10.0000i −0.388661 + 0.388661i
\(663\) −7.00000 −0.271857
\(664\) −28.0000 28.0000i −1.08661 1.08661i
\(665\) 36.0000 1.39602
\(666\) −14.0000 + 14.0000i −0.542489 + 0.542489i
\(667\) 16.0000i 0.619522i
\(668\) 24.0000i 0.928588i
\(669\) 1.00000i 0.0386622i
\(670\) 6.00000 + 6.00000i 0.231800 + 0.231800i
\(671\) 0 0
\(672\) −12.0000 + 12.0000i −0.462910 + 0.462910i
\(673\) 29.0000 1.11787 0.558934 0.829212i \(-0.311211\pi\)
0.558934 + 0.829212i \(0.311211\pi\)
\(674\) 17.0000 + 17.0000i 0.654816 + 0.654816i
\(675\) 20.0000i 0.769800i
\(676\) 2.00000i 0.0769231i
\(677\) 22.0000i 0.845529i −0.906240 0.422764i \(-0.861060\pi\)
0.906240 0.422764i \(-0.138940\pi\)
\(678\) −6.00000 + 6.00000i −0.230429 + 0.230429i
\(679\) 24.0000 0.921035
\(680\) 42.0000 + 42.0000i 1.61063 + 1.61063i
\(681\) −18.0000 −0.689761
\(682\) 0 0
\(683\) 26.0000i 0.994862i 0.867503 + 0.497431i \(0.165723\pi\)
−0.867503 + 0.497431i \(0.834277\pi\)
\(684\) −16.0000 −0.611775
\(685\) 36.0000i 1.37549i
\(686\) 15.0000 + 15.0000i 0.572703 + 0.572703i
\(687\) 21.0000 0.801200
\(688\) 4.00000i 0.152499i
\(689\) −4.00000 −0.152388
\(690\) −12.0000 12.0000i −0.456832 0.456832i
\(691\) 20.0000i 0.760836i 0.924815 + 0.380418i \(0.124220\pi\)
−0.924815 + 0.380418i \(0.875780\pi\)
\(692\) −12.0000 −0.456172
\(693\) 0 0
\(694\) −7.00000 + 7.00000i −0.265716 + 0.265716i
\(695\) −33.0000 −1.25176
\(696\) −8.00000 + 8.00000i −0.303239 + 0.303239i
\(697\) −14.0000 −0.530288
\(698\) 19.0000 19.0000i 0.719161 0.719161i
\(699\) 19.0000i 0.718646i
\(700\) 24.0000i 0.907115i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −5.00000 5.00000i −0.188713 0.188713i
\(703\) 28.0000 1.05604
\(704\) 0 0
\(705\) −21.0000 −0.790906
\(706\) 6.00000 + 6.00000i 0.225813 + 0.225813i
\(707\) 0 0
\(708\) 28.0000i 1.05230i
\(709\) 6.00000i 0.225335i −0.993633 0.112667i \(-0.964061\pi\)
0.993633 0.112667i \(-0.0359394\pi\)
\(710\) 9.00000 9.00000i 0.337764 0.337764i
\(711\) −20.0000 −0.750059
\(712\) 0 0
\(713\) −32.0000 −1.19841
\(714\) −21.0000 + 21.0000i −0.785905 + 0.785905i
\(715\) 0 0
\(716\) 42.0000 1.56961
\(717\) 5.00000i 0.186728i
\(718\) 0 0
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 24.0000i 0.894427i
\(721\) −18.0000 −0.670355
\(722\) −3.00000 3.00000i −0.111648 0.111648i
\(723\) 8.00000i 0.297523i
\(724\) 20.0000 0.743294
\(725\) 16.0000i 0.594225i
\(726\) 11.0000 11.0000i 0.408248 0.408248i
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) −6.00000 6.00000i −0.222375 0.222375i
\(729\) −13.0000 −0.481481
\(730\) −42.0000 + 42.0000i −1.55449 + 1.55449i
\(731\) 7.00000i 0.258904i
\(732\) 20.0000i 0.739221i
\(733\) 1.00000i 0.0369358i 0.999829 + 0.0184679i \(0.00587886\pi\)
−0.999829 + 0.0184679i \(0.994121\pi\)
\(734\) 22.0000 + 22.0000i 0.812035 + 0.812035i
\(735\) 6.00000 0.221313
\(736\) 16.0000 + 16.0000i 0.589768 + 0.589768i
\(737\) 0 0
\(738\) −4.00000 4.00000i −0.147242 0.147242i
\(739\) 34.0000i 1.25071i 0.780340 + 0.625355i \(0.215046\pi\)
−0.780340 + 0.625355i \(0.784954\pi\)
\(740\) 42.0000i 1.54395i
\(741\) 4.00000i 0.146944i
\(742\) −12.0000 + 12.0000i −0.440534 + 0.440534i
\(743\) −21.0000 −0.770415 −0.385208 0.922830i \(-0.625870\pi\)
−0.385208 + 0.922830i \(0.625870\pi\)
\(744\) −16.0000 16.0000i −0.586588 0.586588i
\(745\) −18.0000 −0.659469
\(746\) 36.0000 36.0000i 1.31805 1.31805i
\(747\) 28.0000i 1.02447i
\(748\) 0 0
\(749\) 24.0000i 0.876941i
\(750\) −3.00000 3.00000i −0.109545 0.109545i
\(751\) 2.00000 0.0729810 0.0364905 0.999334i \(-0.488382\pi\)
0.0364905 + 0.999334i \(0.488382\pi\)
\(752\) 28.0000 1.02105
\(753\) 20.0000 0.728841
\(754\) −4.00000 4.00000i −0.145671 0.145671i
\(755\) 51.0000i 1.85608i
\(756\) −30.0000 −1.09109
\(757\) 32.0000i 1.16306i −0.813525 0.581530i \(-0.802454\pi\)
0.813525 0.581530i \(-0.197546\pi\)
\(758\) 4.00000 4.00000i 0.145287 0.145287i
\(759\) 0 0
\(760\) 24.0000 24.0000i 0.870572 0.870572i
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) 8.00000 8.00000i 0.289809 0.289809i
\(763\) 3.00000i 0.108607i
\(764\) 24.0000i 0.868290i
\(765\) 42.0000i 1.51851i
\(766\) 1.00000 + 1.00000i 0.0361315 + 0.0361315i
\(767\) 14.0000 0.505511
\(768\) 16.0000i 0.577350i
\(769\) −20.0000 −0.721218 −0.360609 0.932717i \(-0.617431\pi\)
−0.360609 + 0.932717i \(0.617431\pi\)
\(770\) 0 0
\(771\) 7.00000i 0.252099i
\(772\) 12.0000i 0.431889i
\(773\) 21.0000i 0.755318i 0.925945 + 0.377659i \(0.123271\pi\)
−0.925945 + 0.377659i \(0.876729\pi\)
\(774\) 2.00000 2.00000i 0.0718885 0.0718885i
\(775\) 32.0000 1.14947
\(776\) 16.0000 16.0000i 0.574367 0.574367i
\(777\) 21.0000 0.753371
\(778\) 34.0000 34.0000i 1.21896 1.21896i
\(779\) 8.00000i 0.286630i
\(780\) 6.00000 0.214834