Properties

Label 104.2.b.a
Level $104$
Weight $2$
Character orbit 104.b
Analytic conductor $0.830$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,2,Mod(53,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (i - 1) q^{2} - i q^{3} - 2 i q^{4} + 3 i q^{5} + (i + 1) q^{6} + 3 q^{7} + (2 i + 2) q^{8} + 2 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (i - 1) q^{2} - i q^{3} - 2 i q^{4} + 3 i q^{5} + (i + 1) q^{6} + 3 q^{7} + (2 i + 2) q^{8} + 2 q^{9} + ( - 3 i - 3) q^{10} - 2 q^{12} + i q^{13} + (3 i - 3) q^{14} + 3 q^{15} - 4 q^{16} - 7 q^{17} + (2 i - 2) q^{18} - 4 i q^{19} + 6 q^{20} - 3 i q^{21} + 4 q^{23} + ( - 2 i + 2) q^{24} - 4 q^{25} + ( - i - 1) q^{26} - 5 i q^{27} - 6 i q^{28} - 4 i q^{29} + (3 i - 3) q^{30} - 8 q^{31} + ( - 4 i + 4) q^{32} + ( - 7 i + 7) q^{34} + 9 i q^{35} - 4 i q^{36} + 7 i q^{37} + (4 i + 4) q^{38} + q^{39} + (6 i - 6) q^{40} + 2 q^{41} + (3 i + 3) q^{42} - i q^{43} + 6 i q^{45} + (4 i - 4) q^{46} - 7 q^{47} + 4 i q^{48} + 2 q^{49} + ( - 4 i + 4) q^{50} + 7 i q^{51} + 2 q^{52} + 4 i q^{53} + (5 i + 5) q^{54} + (6 i + 6) q^{56} - 4 q^{57} + (4 i + 4) q^{58} - 14 i q^{59} - 6 i q^{60} - 10 i q^{61} + ( - 8 i + 8) q^{62} + 6 q^{63} + 8 i q^{64} - 3 q^{65} + 2 i q^{67} + 14 i q^{68} - 4 i q^{69} + ( - 9 i - 9) q^{70} - 3 q^{71} + (4 i + 4) q^{72} + 14 q^{73} + ( - 7 i - 7) q^{74} + 4 i q^{75} - 8 q^{76} + (i - 1) q^{78} - 10 q^{79} - 12 i q^{80} + q^{81} + (2 i - 2) q^{82} + 14 i q^{83} - 6 q^{84} - 21 i q^{85} + (i + 1) q^{86} - 4 q^{87} + ( - 6 i - 6) q^{90} + 3 i q^{91} - 8 i q^{92} + 8 i q^{93} + ( - 7 i + 7) q^{94} + 12 q^{95} + ( - 4 i - 4) q^{96} + 8 q^{97} + (2 i - 2) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{6} + 6 q^{7} + 4 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{6} + 6 q^{7} + 4 q^{8} + 4 q^{9} - 6 q^{10} - 4 q^{12} - 6 q^{14} + 6 q^{15} - 8 q^{16} - 14 q^{17} - 4 q^{18} + 12 q^{20} + 8 q^{23} + 4 q^{24} - 8 q^{25} - 2 q^{26} - 6 q^{30} - 16 q^{31} + 8 q^{32} + 14 q^{34} + 8 q^{38} + 2 q^{39} - 12 q^{40} + 4 q^{41} + 6 q^{42} - 8 q^{46} - 14 q^{47} + 4 q^{49} + 8 q^{50} + 4 q^{52} + 10 q^{54} + 12 q^{56} - 8 q^{57} + 8 q^{58} + 16 q^{62} + 12 q^{63} - 6 q^{65} - 18 q^{70} - 6 q^{71} + 8 q^{72} + 28 q^{73} - 14 q^{74} - 16 q^{76} - 2 q^{78} - 20 q^{79} + 2 q^{81} - 4 q^{82} - 12 q^{84} + 2 q^{86} - 8 q^{87} - 12 q^{90} + 14 q^{94} + 24 q^{95} - 8 q^{96} + 16 q^{97} - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
1.00000i
1.00000i
−1.00000 1.00000i 1.00000i 2.00000i 3.00000i 1.00000 1.00000i 3.00000 2.00000 2.00000i 2.00000 −3.00000 + 3.00000i
53.2 −1.00000 + 1.00000i 1.00000i 2.00000i 3.00000i 1.00000 + 1.00000i 3.00000 2.00000 + 2.00000i 2.00000 −3.00000 3.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 104.2.b.a 2
3.b odd 2 1 936.2.g.a 2
4.b odd 2 1 416.2.b.a 2
8.b even 2 1 inner 104.2.b.a 2
8.d odd 2 1 416.2.b.a 2
12.b even 2 1 3744.2.g.a 2
16.e even 4 1 3328.2.a.c 1
16.e even 4 1 3328.2.a.j 1
16.f odd 4 1 3328.2.a.f 1
16.f odd 4 1 3328.2.a.g 1
24.f even 2 1 3744.2.g.a 2
24.h odd 2 1 936.2.g.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.b.a 2 1.a even 1 1 trivial
104.2.b.a 2 8.b even 2 1 inner
416.2.b.a 2 4.b odd 2 1
416.2.b.a 2 8.d odd 2 1
936.2.g.a 2 3.b odd 2 1
936.2.g.a 2 24.h odd 2 1
3328.2.a.c 1 16.e even 4 1
3328.2.a.f 1 16.f odd 4 1
3328.2.a.g 1 16.f odd 4 1
3328.2.a.j 1 16.e even 4 1
3744.2.g.a 2 12.b even 2 1
3744.2.g.a 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(104, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 9 \) Copy content Toggle raw display
$7$ \( (T - 3)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 1 \) Copy content Toggle raw display
$17$ \( (T + 7)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 16 \) Copy content Toggle raw display
$31$ \( (T + 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 49 \) Copy content Toggle raw display
$41$ \( (T - 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 1 \) Copy content Toggle raw display
$47$ \( (T + 7)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 16 \) Copy content Toggle raw display
$59$ \( T^{2} + 196 \) Copy content Toggle raw display
$61$ \( T^{2} + 100 \) Copy content Toggle raw display
$67$ \( T^{2} + 4 \) Copy content Toggle raw display
$71$ \( (T + 3)^{2} \) Copy content Toggle raw display
$73$ \( (T - 14)^{2} \) Copy content Toggle raw display
$79$ \( (T + 10)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 196 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( (T - 8)^{2} \) Copy content Toggle raw display
show more
show less