Properties

Label 104.2.b
Level $104$
Weight $2$
Character orbit 104.b
Rep. character $\chi_{104}(53,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $3$
Sturm bound $28$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(28\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(104, [\chi])\).

Total New Old
Modular forms 16 12 4
Cusp forms 12 12 0
Eisenstein series 4 0 4

Trace form

\( 12 q - 2 q^{2} - 2 q^{4} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 12 q^{9} + O(q^{10}) \) \( 12 q - 2 q^{2} - 2 q^{4} - 4 q^{6} - 4 q^{7} + 4 q^{8} - 12 q^{9} + 6 q^{10} - 6 q^{12} - 14 q^{14} + 8 q^{15} + 10 q^{16} + 6 q^{18} + 8 q^{20} - 4 q^{22} + 8 q^{23} - 12 q^{25} - 32 q^{28} + 22 q^{30} - 4 q^{31} - 12 q^{32} + 8 q^{33} + 4 q^{34} + 16 q^{36} + 12 q^{38} - 8 q^{39} - 18 q^{40} - 8 q^{41} - 22 q^{42} + 24 q^{44} - 12 q^{46} - 4 q^{47} - 10 q^{48} + 12 q^{49} - 14 q^{50} + 4 q^{52} + 56 q^{54} + 16 q^{55} + 10 q^{56} - 8 q^{57} + 24 q^{58} + 28 q^{60} - 16 q^{62} - 20 q^{63} + 22 q^{64} + 32 q^{66} - 26 q^{68} - 32 q^{70} - 36 q^{71} - 32 q^{72} - 14 q^{74} + 4 q^{76} - 10 q^{78} - 24 q^{79} + 64 q^{80} + 4 q^{81} - 44 q^{82} + 24 q^{84} - 12 q^{86} + 56 q^{87} + 8 q^{88} + 16 q^{89} - 52 q^{90} + 32 q^{92} + 18 q^{94} + 24 q^{95} - 56 q^{96} + 16 q^{97} + 38 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(104, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
104.2.b.a 104.b 8.b $2$ $0.830$ \(\Q(\sqrt{-1}) \) None 104.2.b.a \(-2\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-1)q^{2}-i q^{3}-2 i q^{4}+3 i q^{5}+\cdots\)
104.2.b.b 104.b 8.b $4$ $0.830$ \(\Q(\zeta_{12})\) None 104.2.b.b \(2\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{2}+2\beta_{2} q^{3}+(\beta_{3}+\beta_1)q^{4}+\cdots\)
104.2.b.c 104.b 8.b $6$ $0.830$ 6.0.399424.1 None 104.2.b.c \(-2\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(-\beta _{1}+\beta _{5})q^{3}+(\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)