Properties

Label 104.2
Level 104
Weight 2
Dimension 165
Nonzero newspaces 10
Newform subspaces 19
Sturm bound 1344
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 19 \)
Sturm bound: \(1344\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(104))\).

Total New Old
Modular forms 408 209 199
Cusp forms 265 165 100
Eisenstein series 143 44 99

Trace form

\( 165 q - 12 q^{2} - 12 q^{3} - 12 q^{4} - 12 q^{6} - 12 q^{7} - 12 q^{8} - 24 q^{9} - 12 q^{10} - 12 q^{11} - 12 q^{12} - 24 q^{14} - 12 q^{15} - 12 q^{16} - 27 q^{17} - 12 q^{18} - 24 q^{19} - 12 q^{20}+ \cdots + 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(104))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
104.2.a \(\chi_{104}(1, \cdot)\) 104.2.a.a 1 1
104.2.a.b 2
104.2.b \(\chi_{104}(53, \cdot)\) 104.2.b.a 2 1
104.2.b.b 4
104.2.b.c 6
104.2.e \(\chi_{104}(77, \cdot)\) 104.2.e.a 2 1
104.2.e.b 2
104.2.e.c 8
104.2.f \(\chi_{104}(25, \cdot)\) 104.2.f.a 4 1
104.2.i \(\chi_{104}(9, \cdot)\) 104.2.i.a 2 2
104.2.i.b 4
104.2.k \(\chi_{104}(31, \cdot)\) None 0 2
104.2.m \(\chi_{104}(83, \cdot)\) 104.2.m.a 4 2
104.2.m.b 20
104.2.o \(\chi_{104}(17, \cdot)\) 104.2.o.a 8 2
104.2.r \(\chi_{104}(29, \cdot)\) 104.2.r.a 24 2
104.2.s \(\chi_{104}(69, \cdot)\) 104.2.s.a 4 2
104.2.s.b 4
104.2.s.c 16
104.2.u \(\chi_{104}(11, \cdot)\) 104.2.u.a 48 4
104.2.w \(\chi_{104}(7, \cdot)\) None 0 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(104))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(104)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 2}\)