Properties

Label 1035.2.a.q.1.6
Level 10351035
Weight 22
Character 1035.1
Self dual yes
Analytic conductor 8.2658.265
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1035,2,Mod(1,1035)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1035, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1035.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1035=32523 1035 = 3^{2} \cdot 5 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1035.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,10,6,0,6,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.264516609208.26451660920
Analytic rank: 00
Dimension: 66
Coefficient field: 6.6.98838128.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6x510x4x3+16x2+5x1 x^{6} - x^{5} - 10x^{4} - x^{3} + 16x^{2} + 5x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.6
Root 1.44541-1.44541 of defining polynomial
Character χ\chi == 1035.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+2.50089q2+4.25445q4+1.00000q5+3.78907q7+5.63815q8+2.50089q104.47428q11+5.13725q13+9.47606q14+5.59148q166.39171q177.47606q19+4.25445q2011.1897q221.00000q23+1.00000q25+12.8477q26+16.1204q284.92633q291.25445q31+2.70738q3215.9850q34+3.78907q35+6.54973q3718.6968q38+5.63815q40+9.19411q413.17189q4319.0356q442.50089q46+6.71540q47+7.35708q49+2.50089q50+21.8562q52+11.3069q534.47428q55+21.3633q5612.3202q583.65360q598.98319q613.13725q624.41209q64+5.13725q65+15.1297q6727.1932q68+9.47606q708.33437q711.13725q73+16.3802q7431.8066q7616.9534q7715.7852q79+5.59148q80+22.9935q82+3.06575q836.39171q857.93254q8625.2266q8813.4432q89+19.4654q914.25445q92+16.7945q947.47606q954.42230q97+18.3992q98+O(q100)q+2.50089 q^{2} +4.25445 q^{4} +1.00000 q^{5} +3.78907 q^{7} +5.63815 q^{8} +2.50089 q^{10} -4.47428 q^{11} +5.13725 q^{13} +9.47606 q^{14} +5.59148 q^{16} -6.39171 q^{17} -7.47606 q^{19} +4.25445 q^{20} -11.1897 q^{22} -1.00000 q^{23} +1.00000 q^{25} +12.8477 q^{26} +16.1204 q^{28} -4.92633 q^{29} -1.25445 q^{31} +2.70738 q^{32} -15.9850 q^{34} +3.78907 q^{35} +6.54973 q^{37} -18.6968 q^{38} +5.63815 q^{40} +9.19411 q^{41} -3.17189 q^{43} -19.0356 q^{44} -2.50089 q^{46} +6.71540 q^{47} +7.35708 q^{49} +2.50089 q^{50} +21.8562 q^{52} +11.3069 q^{53} -4.47428 q^{55} +21.3633 q^{56} -12.3202 q^{58} -3.65360 q^{59} -8.98319 q^{61} -3.13725 q^{62} -4.41209 q^{64} +5.13725 q^{65} +15.1297 q^{67} -27.1932 q^{68} +9.47606 q^{70} -8.33437 q^{71} -1.13725 q^{73} +16.3802 q^{74} -31.8066 q^{76} -16.9534 q^{77} -15.7852 q^{79} +5.59148 q^{80} +22.9935 q^{82} +3.06575 q^{83} -6.39171 q^{85} -7.93254 q^{86} -25.2266 q^{88} -13.4432 q^{89} +19.4654 q^{91} -4.25445 q^{92} +16.7945 q^{94} -7.47606 q^{95} -4.42230 q^{97} +18.3992 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+10q4+6q5+6q74q11+12q13+4q14+14q164q17+8q19+10q20+8q226q23+6q25+12q26+24q28+6q29+8q3120q32++4q98+O(q100) 6 q + 10 q^{4} + 6 q^{5} + 6 q^{7} - 4 q^{11} + 12 q^{13} + 4 q^{14} + 14 q^{16} - 4 q^{17} + 8 q^{19} + 10 q^{20} + 8 q^{22} - 6 q^{23} + 6 q^{25} + 12 q^{26} + 24 q^{28} + 6 q^{29} + 8 q^{31} - 20 q^{32}+ \cdots + 4 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.50089 1.76840 0.884198 0.467111i 0.154705π-0.154705\pi
0.884198 + 0.467111i 0.154705π0.154705\pi
33 0 0
44 4.25445 2.12723
55 1.00000 0.447214
66 0 0
77 3.78907 1.43214 0.716068 0.698031i 0.245940π-0.245940\pi
0.716068 + 0.698031i 0.245940π0.245940\pi
88 5.63815 1.99339
99 0 0
1010 2.50089 0.790851
1111 −4.47428 −1.34905 −0.674523 0.738254i 0.735651π-0.735651\pi
−0.674523 + 0.738254i 0.735651π0.735651\pi
1212 0 0
1313 5.13725 1.42482 0.712409 0.701764i 0.247604π-0.247604\pi
0.712409 + 0.701764i 0.247604π0.247604\pi
1414 9.47606 2.53258
1515 0 0
1616 5.59148 1.39787
1717 −6.39171 −1.55022 −0.775109 0.631828i 0.782305π-0.782305\pi
−0.775109 + 0.631828i 0.782305π0.782305\pi
1818 0 0
1919 −7.47606 −1.71513 −0.857563 0.514379i 0.828022π-0.828022\pi
−0.857563 + 0.514379i 0.828022π0.828022\pi
2020 4.25445 0.951325
2121 0 0
2222 −11.1897 −2.38565
2323 −1.00000 −0.208514
2424 0 0
2525 1.00000 0.200000
2626 12.8477 2.51964
2727 0 0
2828 16.1204 3.04648
2929 −4.92633 −0.914796 −0.457398 0.889262i 0.651219π-0.651219\pi
−0.457398 + 0.889262i 0.651219π0.651219\pi
3030 0 0
3131 −1.25445 −0.225307 −0.112653 0.993634i 0.535935π-0.535935\pi
−0.112653 + 0.993634i 0.535935π0.535935\pi
3232 2.70738 0.478602
3333 0 0
3434 −15.9850 −2.74140
3535 3.78907 0.640470
3636 0 0
3737 6.54973 1.07677 0.538385 0.842699i 0.319035π-0.319035\pi
0.538385 + 0.842699i 0.319035π0.319035\pi
3838 −18.6968 −3.03302
3939 0 0
4040 5.63815 0.891469
4141 9.19411 1.43588 0.717940 0.696105i 0.245085π-0.245085\pi
0.717940 + 0.696105i 0.245085π0.245085\pi
4242 0 0
4343 −3.17189 −0.483708 −0.241854 0.970313i 0.577756π-0.577756\pi
−0.241854 + 0.970313i 0.577756π0.577756\pi
4444 −19.0356 −2.86973
4545 0 0
4646 −2.50089 −0.368736
4747 6.71540 0.979542 0.489771 0.871851i 0.337080π-0.337080\pi
0.489771 + 0.871851i 0.337080π0.337080\pi
4848 0 0
4949 7.35708 1.05101
5050 2.50089 0.353679
5151 0 0
5252 21.8562 3.03091
5353 11.3069 1.55312 0.776560 0.630044i 0.216963π-0.216963\pi
0.776560 + 0.630044i 0.216963π0.216963\pi
5454 0 0
5555 −4.47428 −0.603311
5656 21.3633 2.85480
5757 0 0
5858 −12.3202 −1.61772
5959 −3.65360 −0.475658 −0.237829 0.971307i 0.576436π-0.576436\pi
−0.237829 + 0.971307i 0.576436π0.576436\pi
6060 0 0
6161 −8.98319 −1.15018 −0.575090 0.818090i 0.695033π-0.695033\pi
−0.575090 + 0.818090i 0.695033π0.695033\pi
6262 −3.13725 −0.398432
6363 0 0
6464 −4.41209 −0.551511
6565 5.13725 0.637198
6666 0 0
6767 15.1297 1.84838 0.924191 0.381931i 0.124741π-0.124741\pi
0.924191 + 0.381931i 0.124741π0.124741\pi
6868 −27.1932 −3.29767
6969 0 0
7070 9.47606 1.13261
7171 −8.33437 −0.989108 −0.494554 0.869147i 0.664669π-0.664669\pi
−0.494554 + 0.869147i 0.664669π0.664669\pi
7272 0 0
7373 −1.13725 −0.133106 −0.0665528 0.997783i 0.521200π-0.521200\pi
−0.0665528 + 0.997783i 0.521200π0.521200\pi
7474 16.3802 1.90416
7575 0 0
7676 −31.8066 −3.64846
7777 −16.9534 −1.93202
7878 0 0
7979 −15.7852 −1.77597 −0.887987 0.459869i 0.847897π-0.847897\pi
−0.887987 + 0.459869i 0.847897π0.847897\pi
8080 5.59148 0.625146
8181 0 0
8282 22.9935 2.53920
8383 3.06575 0.336510 0.168255 0.985743i 0.446187π-0.446187\pi
0.168255 + 0.985743i 0.446187π0.446187\pi
8484 0 0
8585 −6.39171 −0.693278
8686 −7.93254 −0.855388
8787 0 0
8888 −25.2266 −2.68917
8989 −13.4432 −1.42498 −0.712490 0.701682i 0.752433π-0.752433\pi
−0.712490 + 0.701682i 0.752433π0.752433\pi
9090 0 0
9191 19.4654 2.04053
9292 −4.25445 −0.443558
9393 0 0
9494 16.7945 1.73222
9595 −7.47606 −0.767027
9696 0 0
9797 −4.42230 −0.449016 −0.224508 0.974472i 0.572078π-0.572078\pi
−0.224508 + 0.974472i 0.572078π0.572078\pi
9898 18.3992 1.85860
9999 0 0
100100 4.25445 0.425445
101101 −0.245559 −0.0244341 −0.0122170 0.999925i 0.503889π-0.503889\pi
−0.0122170 + 0.999925i 0.503889π0.503889\pi
102102 0 0
103103 6.11688 0.602714 0.301357 0.953511i 0.402560π-0.402560\pi
0.301357 + 0.953511i 0.402560π0.402560\pi
104104 28.9646 2.84021
105105 0 0
106106 28.2773 2.74653
107107 −8.35832 −0.808030 −0.404015 0.914752i 0.632386π-0.632386\pi
−0.404015 + 0.914752i 0.632386π0.632386\pi
108108 0 0
109109 15.7630 1.50983 0.754913 0.655825i 0.227679π-0.227679\pi
0.754913 + 0.655825i 0.227679π0.227679\pi
110110 −11.1897 −1.06689
111111 0 0
112112 21.1865 2.00194
113113 −1.37073 −0.128947 −0.0644737 0.997919i 0.520537π-0.520537\pi
−0.0644737 + 0.997919i 0.520537π0.520537\pi
114114 0 0
115115 −1.00000 −0.0932505
116116 −20.9588 −1.94598
117117 0 0
118118 −9.13725 −0.841153
119119 −24.2187 −2.22012
120120 0 0
121121 9.01916 0.819923
122122 −22.4660 −2.03397
123123 0 0
124124 −5.33702 −0.479279
125125 1.00000 0.0894427
126126 0 0
127127 5.79707 0.514407 0.257203 0.966357i 0.417199π-0.417199\pi
0.257203 + 0.966357i 0.417199π0.417199\pi
128128 −16.4489 −1.45389
129129 0 0
130130 12.8477 1.12682
131131 7.86513 0.687180 0.343590 0.939120i 0.388357π-0.388357\pi
0.343590 + 0.939120i 0.388357π0.388357\pi
132132 0 0
133133 −28.3273 −2.45629
134134 37.8376 3.26867
135135 0 0
136136 −36.0374 −3.09018
137137 4.77670 0.408101 0.204050 0.978960i 0.434589π-0.434589\pi
0.204050 + 0.978960i 0.434589π0.434589\pi
138138 0 0
139139 3.68303 0.312391 0.156195 0.987726i 0.450077π-0.450077\pi
0.156195 + 0.987726i 0.450077π0.450077\pi
140140 16.1204 1.36243
141141 0 0
142142 −20.8433 −1.74913
143143 −22.9855 −1.92214
144144 0 0
145145 −4.92633 −0.409109
146146 −2.84415 −0.235384
147147 0 0
148148 27.8655 2.29053
149149 −1.32155 −0.108265 −0.0541327 0.998534i 0.517239π-0.517239\pi
−0.0541327 + 0.998534i 0.517239π0.517239\pi
150150 0 0
151151 6.69320 0.544685 0.272343 0.962200i 0.412202π-0.412202\pi
0.272343 + 0.962200i 0.412202π0.412202\pi
152152 −42.1511 −3.41891
153153 0 0
154154 −42.3985 −3.41657
155155 −1.25445 −0.100760
156156 0 0
157157 2.51635 0.200826 0.100413 0.994946i 0.467984π-0.467984\pi
0.100413 + 0.994946i 0.467984π0.467984\pi
158158 −39.4771 −3.14063
159159 0 0
160160 2.70738 0.214037
161161 −3.78907 −0.298621
162162 0 0
163163 −3.76560 −0.294945 −0.147472 0.989066i 0.547114π-0.547114\pi
−0.147472 + 0.989066i 0.547114π0.547114\pi
164164 39.1159 3.05444
165165 0 0
166166 7.66712 0.595084
167167 −3.03144 −0.234580 −0.117290 0.993098i 0.537421π-0.537421\pi
−0.117290 + 0.993098i 0.537421π0.537421\pi
168168 0 0
169169 13.3914 1.03011
170170 −15.9850 −1.22599
171171 0 0
172172 −13.4947 −1.02896
173173 7.93254 0.603100 0.301550 0.953450i 0.402496π-0.402496\pi
0.301550 + 0.953450i 0.402496π0.402496\pi
174174 0 0
175175 3.78907 0.286427
176176 −25.0178 −1.88579
177177 0 0
178178 −33.6201 −2.51993
179179 2.52626 0.188821 0.0944107 0.995533i 0.469903π-0.469903\pi
0.0944107 + 0.995533i 0.469903π0.469903\pi
180180 0 0
181181 12.2380 0.909641 0.454820 0.890583i 0.349703π-0.349703\pi
0.454820 + 0.890583i 0.349703π0.349703\pi
182182 48.6809 3.60847
183183 0 0
184184 −5.63815 −0.415650
185185 6.54973 0.481546
186186 0 0
187187 28.5983 2.09131
188188 28.5704 2.08371
189189 0 0
190190 −18.6968 −1.35641
191191 −0.979624 −0.0708831 −0.0354415 0.999372i 0.511284π-0.511284\pi
−0.0354415 + 0.999372i 0.511284π0.511284\pi
192192 0 0
193193 8.50891 0.612485 0.306242 0.951954i 0.400928π-0.400928\pi
0.306242 + 0.951954i 0.400928π0.400928\pi
194194 −11.0597 −0.794039
195195 0 0
196196 31.3004 2.23574
197197 2.44145 0.173946 0.0869732 0.996211i 0.472281π-0.472281\pi
0.0869732 + 0.996211i 0.472281π0.472281\pi
198198 0 0
199199 −23.9503 −1.69779 −0.848897 0.528558i 0.822733π-0.822733\pi
−0.848897 + 0.528558i 0.822733π0.822733\pi
200200 5.63815 0.398677
201201 0 0
202202 −0.614117 −0.0432091
203203 −18.6662 −1.31011
204204 0 0
205205 9.19411 0.642145
206206 15.2976 1.06584
207207 0 0
208208 28.7248 1.99171
209209 33.4500 2.31378
210210 0 0
211211 19.6821 1.35497 0.677485 0.735537i 0.263070π-0.263070\pi
0.677485 + 0.735537i 0.263070π0.263070\pi
212212 48.1046 3.30384
213213 0 0
214214 −20.9033 −1.42892
215215 −3.17189 −0.216321
216216 0 0
217217 −4.75322 −0.322670
218218 39.4217 2.66997
219219 0 0
220220 −19.0356 −1.28338
221221 −32.8358 −2.20878
222222 0 0
223223 −24.2415 −1.62333 −0.811666 0.584121i 0.801439π-0.801439\pi
−0.811666 + 0.584121i 0.801439π0.801439\pi
224224 10.2585 0.685423
225225 0 0
226226 −3.42804 −0.228030
227227 6.81608 0.452399 0.226200 0.974081i 0.427370π-0.427370\pi
0.226200 + 0.974081i 0.427370π0.427370\pi
228228 0 0
229229 −26.8883 −1.77683 −0.888413 0.459044i 0.848192π-0.848192\pi
−0.888413 + 0.459044i 0.848192π0.848192\pi
230230 −2.50089 −0.164904
231231 0 0
232232 −27.7754 −1.82354
233233 2.66795 0.174783 0.0873916 0.996174i 0.472147π-0.472147\pi
0.0873916 + 0.996174i 0.472147π0.472147\pi
234234 0 0
235235 6.71540 0.438065
236236 −15.5441 −1.01183
237237 0 0
238238 −60.5682 −3.92605
239239 14.7598 0.954731 0.477366 0.878705i 0.341592π-0.341592\pi
0.477366 + 0.878705i 0.341592π0.341592\pi
240240 0 0
241241 −3.52929 −0.227341 −0.113671 0.993518i 0.536261π-0.536261\pi
−0.113671 + 0.993518i 0.536261π0.536261\pi
242242 22.5559 1.44995
243243 0 0
244244 −38.2186 −2.44669
245245 7.35708 0.470026
246246 0 0
247247 −38.4064 −2.44374
248248 −7.07280 −0.449123
249249 0 0
250250 2.50089 0.158170
251251 2.43964 0.153989 0.0769945 0.997032i 0.475468π-0.475468\pi
0.0769945 + 0.997032i 0.475468π0.475468\pi
252252 0 0
253253 4.47428 0.281295
254254 14.4978 0.909676
255255 0 0
256256 −32.3128 −2.01955
257257 −23.5965 −1.47191 −0.735955 0.677031i 0.763266π-0.763266\pi
−0.735955 + 0.677031i 0.763266π0.763266\pi
258258 0 0
259259 24.8174 1.54208
260260 21.8562 1.35547
261261 0 0
262262 19.6698 1.21521
263263 18.7323 1.15508 0.577542 0.816361i 0.304012π-0.304012\pi
0.577542 + 0.816361i 0.304012π0.304012\pi
264264 0 0
265265 11.3069 0.694576
266266 −70.8436 −4.34370
267267 0 0
268268 64.3685 3.93193
269269 5.07723 0.309564 0.154782 0.987949i 0.450532π-0.450532\pi
0.154782 + 0.987949i 0.450532π0.450532\pi
270270 0 0
271271 −16.2939 −0.989782 −0.494891 0.868955i 0.664792π-0.664792\pi
−0.494891 + 0.868955i 0.664792π0.664792\pi
272272 −35.7391 −2.16700
273273 0 0
274274 11.9460 0.721684
275275 −4.47428 −0.269809
276276 0 0
277277 18.7469 1.12639 0.563195 0.826324i 0.309572π-0.309572\pi
0.563195 + 0.826324i 0.309572π0.309572\pi
278278 9.21086 0.552431
279279 0 0
280280 21.3633 1.27670
281281 24.1846 1.44273 0.721365 0.692555i 0.243515π-0.243515\pi
0.721365 + 0.692555i 0.243515π0.243515\pi
282282 0 0
283283 9.00857 0.535504 0.267752 0.963488i 0.413719π-0.413719\pi
0.267752 + 0.963488i 0.413719π0.413719\pi
284284 −35.4582 −2.10406
285285 0 0
286286 −57.4842 −3.39911
287287 34.8372 2.05637
288288 0 0
289289 23.8540 1.40317
290290 −12.3202 −0.723468
291291 0 0
292292 −4.83840 −0.283146
293293 −23.2444 −1.35795 −0.678976 0.734160i 0.737576π-0.737576\pi
−0.678976 + 0.734160i 0.737576π0.737576\pi
294294 0 0
295295 −3.65360 −0.212721
296296 36.9283 2.14642
297297 0 0
298298 −3.30504 −0.191456
299299 −5.13725 −0.297095
300300 0 0
301301 −12.0185 −0.692736
302302 16.7390 0.963219
303303 0 0
304304 −41.8022 −2.39752
305305 −8.98319 −0.514376
306306 0 0
307307 7.52192 0.429299 0.214649 0.976691i 0.431139π-0.431139\pi
0.214649 + 0.976691i 0.431139π0.431139\pi
308308 −72.1273 −4.10984
309309 0 0
310310 −3.13725 −0.178184
311311 3.83306 0.217353 0.108676 0.994077i 0.465339π-0.465339\pi
0.108676 + 0.994077i 0.465339π0.465339\pi
312312 0 0
313313 −12.0622 −0.681794 −0.340897 0.940101i 0.610731π-0.610731\pi
−0.340897 + 0.940101i 0.610731π0.610731\pi
314314 6.29310 0.355140
315315 0 0
316316 −67.1574 −3.77790
317317 −6.17993 −0.347099 −0.173550 0.984825i 0.555524π-0.555524\pi
−0.173550 + 0.984825i 0.555524π0.555524\pi
318318 0 0
319319 22.0418 1.23410
320320 −4.41209 −0.246643
321321 0 0
322322 −9.47606 −0.528080
323323 47.7848 2.65882
324324 0 0
325325 5.13725 0.284964
326326 −9.41735 −0.521579
327327 0 0
328328 51.8378 2.86226
329329 25.4452 1.40284
330330 0 0
331331 −2.97930 −0.163757 −0.0818786 0.996642i 0.526092π-0.526092\pi
−0.0818786 + 0.996642i 0.526092π0.526092\pi
332332 13.0431 0.715834
333333 0 0
334334 −7.58131 −0.414831
335335 15.1297 0.826622
336336 0 0
337337 −6.83665 −0.372416 −0.186208 0.982510i 0.559620π-0.559620\pi
−0.186208 + 0.982510i 0.559620π0.559620\pi
338338 33.4904 1.82164
339339 0 0
340340 −27.1932 −1.47476
341341 5.61278 0.303949
342342 0 0
343343 1.35299 0.0730547
344344 −17.8836 −0.964217
345345 0 0
346346 19.8384 1.06652
347347 14.6740 0.787744 0.393872 0.919165i 0.371135π-0.371135\pi
0.393872 + 0.919165i 0.371135π0.371135\pi
348348 0 0
349349 21.8418 1.16917 0.584584 0.811333i 0.301258π-0.301258\pi
0.584584 + 0.811333i 0.301258π0.301258\pi
350350 9.47606 0.506517
351351 0 0
352352 −12.1136 −0.645656
353353 23.5130 1.25147 0.625736 0.780035i 0.284799π-0.284799\pi
0.625736 + 0.780035i 0.284799π0.284799\pi
354354 0 0
355355 −8.33437 −0.442342
356356 −57.1936 −3.03126
357357 0 0
358358 6.31789 0.333911
359359 4.11920 0.217403 0.108701 0.994074i 0.465331π-0.465331\pi
0.108701 + 0.994074i 0.465331π0.465331\pi
360360 0 0
361361 36.8915 1.94166
362362 30.6058 1.60861
363363 0 0
364364 82.8148 4.34068
365365 −1.13725 −0.0595266
366366 0 0
367367 21.6911 1.13227 0.566133 0.824314i 0.308439π-0.308439\pi
0.566133 + 0.824314i 0.308439π0.308439\pi
368368 −5.59148 −0.291476
369369 0 0
370370 16.3802 0.851564
371371 42.8426 2.22428
372372 0 0
373373 −8.36016 −0.432873 −0.216436 0.976297i 0.569443π-0.569443\pi
−0.216436 + 0.976297i 0.569443π0.569443\pi
374374 71.5212 3.69827
375375 0 0
376376 37.8624 1.95260
377377 −25.3078 −1.30342
378378 0 0
379379 −23.2433 −1.19393 −0.596964 0.802268i 0.703627π-0.703627\pi
−0.596964 + 0.802268i 0.703627π0.703627\pi
380380 −31.8066 −1.63164
381381 0 0
382382 −2.44993 −0.125349
383383 −19.9556 −1.01968 −0.509842 0.860268i 0.670296π-0.670296\pi
−0.509842 + 0.860268i 0.670296π0.670296\pi
384384 0 0
385385 −16.9534 −0.864023
386386 21.2799 1.08312
387387 0 0
388388 −18.8145 −0.955160
389389 16.8853 0.856121 0.428061 0.903750i 0.359197π-0.359197\pi
0.428061 + 0.903750i 0.359197π0.359197\pi
390390 0 0
391391 6.39171 0.323243
392392 41.4803 2.09507
393393 0 0
394394 6.10581 0.307606
395395 −15.7852 −0.794240
396396 0 0
397397 15.7859 0.792271 0.396135 0.918192i 0.370351π-0.370351\pi
0.396135 + 0.918192i 0.370351π0.370351\pi
398398 −59.8972 −3.00237
399399 0 0
400400 5.59148 0.279574
401401 22.4976 1.12348 0.561738 0.827315i 0.310133π-0.310133\pi
0.561738 + 0.827315i 0.310133π0.310133\pi
402402 0 0
403403 −6.44446 −0.321021
404404 −1.04472 −0.0519768
405405 0 0
406406 −46.6822 −2.31680
407407 −29.3053 −1.45261
408408 0 0
409409 4.05591 0.200552 0.100276 0.994960i 0.468027π-0.468027\pi
0.100276 + 0.994960i 0.468027π0.468027\pi
410410 22.9935 1.13557
411411 0 0
412412 26.0240 1.28211
413413 −13.8438 −0.681207
414414 0 0
415415 3.06575 0.150492
416416 13.9085 0.681921
417417 0 0
418418 83.6547 4.09169
419419 −5.01585 −0.245040 −0.122520 0.992466i 0.539098π-0.539098\pi
−0.122520 + 0.992466i 0.539098π0.539098\pi
420420 0 0
421421 19.1440 0.933020 0.466510 0.884516i 0.345511π-0.345511\pi
0.466510 + 0.884516i 0.345511π0.345511\pi
422422 49.2227 2.39612
423423 0 0
424424 63.7498 3.09597
425425 −6.39171 −0.310043
426426 0 0
427427 −34.0380 −1.64721
428428 −35.5601 −1.71886
429429 0 0
430430 −7.93254 −0.382541
431431 −40.0606 −1.92965 −0.964825 0.262894i 0.915323π-0.915323\pi
−0.964825 + 0.262894i 0.915323π0.915323\pi
432432 0 0
433433 −4.22696 −0.203135 −0.101567 0.994829i 0.532386π-0.532386\pi
−0.101567 + 0.994829i 0.532386π0.532386\pi
434434 −11.8873 −0.570608
435435 0 0
436436 67.0632 3.21174
437437 7.47606 0.357628
438438 0 0
439439 −4.92940 −0.235267 −0.117634 0.993057i 0.537531π-0.537531\pi
−0.117634 + 0.993057i 0.537531π0.537531\pi
440440 −25.2266 −1.20263
441441 0 0
442442 −82.1189 −3.90600
443443 −22.2712 −1.05814 −0.529069 0.848579i 0.677459π-0.677459\pi
−0.529069 + 0.848579i 0.677459π0.677459\pi
444444 0 0
445445 −13.4432 −0.637271
446446 −60.6254 −2.87070
447447 0 0
448448 −16.7177 −0.789838
449449 −14.9150 −0.703883 −0.351942 0.936022i 0.614478π-0.614478\pi
−0.351942 + 0.936022i 0.614478π0.614478\pi
450450 0 0
451451 −41.1370 −1.93707
452452 −5.83170 −0.274300
453453 0 0
454454 17.0463 0.800021
455455 19.4654 0.912554
456456 0 0
457457 26.7834 1.25287 0.626436 0.779473i 0.284513π-0.284513\pi
0.626436 + 0.779473i 0.284513π0.284513\pi
458458 −67.2446 −3.14213
459459 0 0
460460 −4.25445 −0.198365
461461 −15.4877 −0.721334 −0.360667 0.932695i 0.617451π-0.617451\pi
−0.360667 + 0.932695i 0.617451π0.617451\pi
462462 0 0
463463 −0.968557 −0.0450127 −0.0225063 0.999747i 0.507165π-0.507165\pi
−0.0225063 + 0.999747i 0.507165π0.507165\pi
464464 −27.5455 −1.27877
465465 0 0
466466 6.67225 0.309086
467467 17.0051 0.786901 0.393450 0.919346i 0.371281π-0.371281\pi
0.393450 + 0.919346i 0.371281π0.371281\pi
468468 0 0
469469 57.3274 2.64713
470470 16.7945 0.774672
471471 0 0
472472 −20.5995 −0.948170
473473 14.1919 0.652544
474474 0 0
475475 −7.47606 −0.343025
476476 −103.037 −4.72270
477477 0 0
478478 36.9126 1.68834
479479 −10.9306 −0.499434 −0.249717 0.968319i 0.580338π-0.580338\pi
−0.249717 + 0.968319i 0.580338π0.580338\pi
480480 0 0
481481 33.6476 1.53420
482482 −8.82636 −0.402030
483483 0 0
484484 38.3716 1.74416
485485 −4.42230 −0.200806
486486 0 0
487487 −20.3593 −0.922566 −0.461283 0.887253i 0.652611π-0.652611\pi
−0.461283 + 0.887253i 0.652611π0.652611\pi
488488 −50.6485 −2.29275
489489 0 0
490490 18.3992 0.831193
491491 17.9621 0.810620 0.405310 0.914179i 0.367164π-0.367164\pi
0.405310 + 0.914179i 0.367164π0.367164\pi
492492 0 0
493493 31.4877 1.41813
494494 −96.0503 −4.32151
495495 0 0
496496 −7.01426 −0.314949
497497 −31.5795 −1.41654
498498 0 0
499499 −22.6160 −1.01243 −0.506215 0.862407i 0.668956π-0.668956\pi
−0.506215 + 0.862407i 0.668956π0.668956\pi
500500 4.25445 0.190265
501501 0 0
502502 6.10128 0.272314
503503 21.4461 0.956233 0.478117 0.878296i 0.341320π-0.341320\pi
0.478117 + 0.878296i 0.341320π0.341320\pi
504504 0 0
505505 −0.245559 −0.0109272
506506 11.1897 0.497442
507507 0 0
508508 24.6634 1.09426
509509 −28.6063 −1.26795 −0.633975 0.773354i 0.718578π-0.718578\pi
−0.633975 + 0.773354i 0.718578π0.718578\pi
510510 0 0
511511 −4.30914 −0.190625
512512 −47.9129 −2.11747
513513 0 0
514514 −59.0123 −2.60292
515515 6.11688 0.269542
516516 0 0
517517 −30.0466 −1.32145
518518 62.0656 2.72701
519519 0 0
520520 28.9646 1.27018
521521 −8.92105 −0.390838 −0.195419 0.980720i 0.562607π-0.562607\pi
−0.195419 + 0.980720i 0.562607π0.562607\pi
522522 0 0
523523 −26.1946 −1.14541 −0.572705 0.819762i 0.694106π-0.694106\pi
−0.572705 + 0.819762i 0.694106π0.694106\pi
524524 33.4618 1.46179
525525 0 0
526526 46.8475 2.04265
527527 8.01811 0.349274
528528 0 0
529529 1.00000 0.0434783
530530 28.2773 1.22829
531531 0 0
532532 −120.517 −5.22509
533533 47.2325 2.04587
534534 0 0
535535 −8.35832 −0.361362
536536 85.3032 3.68454
537537 0 0
538538 12.6976 0.547433
539539 −32.9176 −1.41786
540540 0 0
541541 14.7624 0.634686 0.317343 0.948311i 0.397209π-0.397209\pi
0.317343 + 0.948311i 0.397209π0.397209\pi
542542 −40.7492 −1.75033
543543 0 0
544544 −17.3048 −0.741937
545545 15.7630 0.675215
546546 0 0
547547 −3.16331 −0.135253 −0.0676267 0.997711i 0.521543π-0.521543\pi
−0.0676267 + 0.997711i 0.521543π0.521543\pi
548548 20.3222 0.868123
549549 0 0
550550 −11.1897 −0.477130
551551 36.8295 1.56899
552552 0 0
553553 −59.8113 −2.54343
554554 46.8839 1.99191
555555 0 0
556556 15.6693 0.664526
557557 −9.13882 −0.387224 −0.193612 0.981078i 0.562020π-0.562020\pi
−0.193612 + 0.981078i 0.562020π0.562020\pi
558558 0 0
559559 −16.2948 −0.689196
560560 21.1865 0.895294
561561 0 0
562562 60.4830 2.55132
563563 4.59832 0.193796 0.0968981 0.995294i 0.469108π-0.469108\pi
0.0968981 + 0.995294i 0.469108π0.469108\pi
564564 0 0
565565 −1.37073 −0.0576670
566566 22.5295 0.946984
567567 0 0
568568 −46.9904 −1.97167
569569 34.5704 1.44927 0.724633 0.689135i 0.242009π-0.242009\pi
0.724633 + 0.689135i 0.242009π0.242009\pi
570570 0 0
571571 30.5865 1.28001 0.640003 0.768372i 0.278933π-0.278933\pi
0.640003 + 0.768372i 0.278933π0.278933\pi
572572 −97.7908 −4.08884
573573 0 0
574574 87.1240 3.63648
575575 −1.00000 −0.0417029
576576 0 0
577577 2.15835 0.0898535 0.0449267 0.998990i 0.485695π-0.485695\pi
0.0449267 + 0.998990i 0.485695π0.485695\pi
578578 59.6561 2.48137
579579 0 0
580580 −20.9588 −0.870269
581581 11.6164 0.481928
582582 0 0
583583 −50.5901 −2.09523
584584 −6.41201 −0.265331
585585 0 0
586586 −58.1317 −2.40140
587587 47.8776 1.97612 0.988060 0.154073i 0.0492390π-0.0492390\pi
0.988060 + 0.154073i 0.0492390π0.0492390\pi
588588 0 0
589589 9.37838 0.386429
590590 −9.13725 −0.376175
591591 0 0
592592 36.6227 1.50518
593593 −33.9403 −1.39376 −0.696880 0.717188i 0.745429π-0.745429\pi
−0.696880 + 0.717188i 0.745429π0.745429\pi
594594 0 0
595595 −24.2187 −0.992868
596596 −5.62246 −0.230305
597597 0 0
598598 −12.8477 −0.525382
599599 5.90588 0.241308 0.120654 0.992695i 0.461501π-0.461501\pi
0.120654 + 0.992695i 0.461501π0.461501\pi
600600 0 0
601601 16.3457 0.666755 0.333377 0.942794i 0.391812π-0.391812\pi
0.333377 + 0.942794i 0.391812π0.391812\pi
602602 −30.0570 −1.22503
603603 0 0
604604 28.4759 1.15867
605605 9.01916 0.366681
606606 0 0
607607 −41.1764 −1.67130 −0.835649 0.549263i 0.814908π-0.814908\pi
−0.835649 + 0.549263i 0.814908π0.814908\pi
608608 −20.2406 −0.820863
609609 0 0
610610 −22.4660 −0.909621
611611 34.4987 1.39567
612612 0 0
613613 38.8687 1.56989 0.784946 0.619564i 0.212690π-0.212690\pi
0.784946 + 0.619564i 0.212690π0.212690\pi
614614 18.8115 0.759170
615615 0 0
616616 −95.5855 −3.85125
617617 −15.8847 −0.639492 −0.319746 0.947503i 0.603598π-0.603598\pi
−0.319746 + 0.947503i 0.603598π0.603598\pi
618618 0 0
619619 −7.65739 −0.307777 −0.153888 0.988088i 0.549180π-0.549180\pi
−0.153888 + 0.988088i 0.549180π0.549180\pi
620620 −5.33702 −0.214340
621621 0 0
622622 9.58605 0.384366
623623 −50.9374 −2.04076
624624 0 0
625625 1.00000 0.0400000
626626 −30.1662 −1.20568
627627 0 0
628628 10.7057 0.427203
629629 −41.8640 −1.66923
630630 0 0
631631 10.9168 0.434591 0.217295 0.976106i 0.430276π-0.430276\pi
0.217295 + 0.976106i 0.430276π0.430276\pi
632632 −88.9993 −3.54020
633633 0 0
634634 −15.4553 −0.613809
635635 5.79707 0.230050
636636 0 0
637637 37.7952 1.49750
638638 55.1240 2.18238
639639 0 0
640640 −16.4489 −0.650200
641641 44.1838 1.74516 0.872578 0.488476i 0.162447π-0.162447\pi
0.872578 + 0.488476i 0.162447π0.162447\pi
642642 0 0
643643 −44.8947 −1.77047 −0.885237 0.465141i 0.846004π-0.846004\pi
−0.885237 + 0.465141i 0.846004π0.846004\pi
644644 −16.1204 −0.635234
645645 0 0
646646 119.505 4.70184
647647 3.31839 0.130459 0.0652296 0.997870i 0.479222π-0.479222\pi
0.0652296 + 0.997870i 0.479222π0.479222\pi
648648 0 0
649649 16.3472 0.641685
650650 12.8477 0.503929
651651 0 0
652652 −16.0206 −0.627414
653653 36.6445 1.43401 0.717006 0.697067i 0.245512π-0.245512\pi
0.717006 + 0.697067i 0.245512π0.245512\pi
654654 0 0
655655 7.86513 0.307316
656656 51.4087 2.00717
657657 0 0
658658 63.6355 2.48077
659659 −34.4549 −1.34217 −0.671086 0.741380i 0.734172π-0.734172\pi
−0.671086 + 0.741380i 0.734172π0.734172\pi
660660 0 0
661661 0.403420 0.0156912 0.00784560 0.999969i 0.497503π-0.497503\pi
0.00784560 + 0.999969i 0.497503π0.497503\pi
662662 −7.45091 −0.289588
663663 0 0
664664 17.2852 0.670795
665665 −28.3273 −1.09849
666666 0 0
667667 4.92633 0.190748
668668 −12.8971 −0.499005
669669 0 0
670670 37.8376 1.46180
671671 40.1933 1.55164
672672 0 0
673673 −40.6260 −1.56602 −0.783009 0.622010i 0.786316π-0.786316\pi
−0.783009 + 0.622010i 0.786316π0.786316\pi
674674 −17.0977 −0.658579
675675 0 0
676676 56.9731 2.19127
677677 −22.0206 −0.846321 −0.423160 0.906055i 0.639079π-0.639079\pi
−0.423160 + 0.906055i 0.639079π0.639079\pi
678678 0 0
679679 −16.7564 −0.643052
680680 −36.0374 −1.38197
681681 0 0
682682 14.0369 0.537503
683683 −3.36375 −0.128710 −0.0643551 0.997927i 0.520499π-0.520499\pi
−0.0643551 + 0.997927i 0.520499π0.520499\pi
684684 0 0
685685 4.77670 0.182508
686686 3.38369 0.129190
687687 0 0
688688 −17.7355 −0.676161
689689 58.0863 2.21291
690690 0 0
691691 −13.5824 −0.516698 −0.258349 0.966052i 0.583178π-0.583178\pi
−0.258349 + 0.966052i 0.583178π0.583178\pi
692692 33.7487 1.28293
693693 0 0
694694 36.6982 1.39304
695695 3.68303 0.139705
696696 0 0
697697 −58.7661 −2.22593
698698 54.6241 2.06755
699699 0 0
700700 16.1204 0.609295
701701 50.8750 1.92152 0.960762 0.277374i 0.0894641π-0.0894641\pi
0.960762 + 0.277374i 0.0894641π0.0894641\pi
702702 0 0
703703 −48.9662 −1.84679
704704 19.7409 0.744013
705705 0 0
706706 58.8035 2.21310
707707 −0.930442 −0.0349929
708708 0 0
709709 −41.0413 −1.54134 −0.770668 0.637237i 0.780077π-0.780077\pi
−0.770668 + 0.637237i 0.780077π0.780077\pi
710710 −20.8433 −0.782237
711711 0 0
712712 −75.7949 −2.84054
713713 1.25445 0.0469797
714714 0 0
715715 −22.9855 −0.859609
716716 10.7478 0.401666
717717 0 0
718718 10.3017 0.384454
719719 −19.6091 −0.731298 −0.365649 0.930753i 0.619153π-0.619153\pi
−0.365649 + 0.930753i 0.619153π0.619153\pi
720720 0 0
721721 23.1773 0.863168
722722 92.2615 3.43362
723723 0 0
724724 52.0659 1.93501
725725 −4.92633 −0.182959
726726 0 0
727727 −32.5903 −1.20871 −0.604354 0.796716i 0.706569π-0.706569\pi
−0.604354 + 0.796716i 0.706569π0.706569\pi
728728 109.749 4.06757
729729 0 0
730730 −2.84415 −0.105267
731731 20.2738 0.749853
732732 0 0
733733 46.0357 1.70037 0.850183 0.526487i 0.176491π-0.176491\pi
0.850183 + 0.526487i 0.176491π0.176491\pi
734734 54.2471 2.00230
735735 0 0
736736 −2.70738 −0.0997954
737737 −67.6943 −2.49355
738738 0 0
739739 −3.11486 −0.114582 −0.0572909 0.998358i 0.518246π-0.518246\pi
−0.0572909 + 0.998358i 0.518246π0.518246\pi
740740 27.8655 1.02436
741741 0 0
742742 107.145 3.93340
743743 −16.1123 −0.591103 −0.295551 0.955327i 0.595503π-0.595503\pi
−0.295551 + 0.955327i 0.595503π0.595503\pi
744744 0 0
745745 −1.32155 −0.0484177
746746 −20.9078 −0.765491
747747 0 0
748748 121.670 4.44870
749749 −31.6703 −1.15721
750750 0 0
751751 8.96619 0.327181 0.163590 0.986528i 0.447692π-0.447692\pi
0.163590 + 0.986528i 0.447692π0.447692\pi
752752 37.5490 1.36927
753753 0 0
754754 −63.2921 −2.30496
755755 6.69320 0.243591
756756 0 0
757757 6.54466 0.237870 0.118935 0.992902i 0.462052π-0.462052\pi
0.118935 + 0.992902i 0.462052π0.462052\pi
758758 −58.1290 −2.11134
759759 0 0
760760 −42.1511 −1.52898
761761 17.7896 0.644873 0.322437 0.946591i 0.395498π-0.395498\pi
0.322437 + 0.946591i 0.395498π0.395498\pi
762762 0 0
763763 59.7273 2.16227
764764 −4.16777 −0.150784
765765 0 0
766766 −49.9068 −1.80321
767767 −18.7695 −0.677726
768768 0 0
769769 −4.86138 −0.175306 −0.0876529 0.996151i 0.527937π-0.527937\pi
−0.0876529 + 0.996151i 0.527937π0.527937\pi
770770 −42.3985 −1.52794
771771 0 0
772772 36.2008 1.30289
773773 −32.8988 −1.18329 −0.591644 0.806200i 0.701521π-0.701521\pi
−0.591644 + 0.806200i 0.701521π0.701521\pi
774774 0 0
775775 −1.25445 −0.0450614
776776 −24.9336 −0.895063
777777 0 0
778778 42.2284 1.51396
779779 −68.7357 −2.46271
780780 0 0
781781 37.2903 1.33435
782782 15.9850 0.571621
783783 0 0
784784 41.1369 1.46918
785785 2.51635 0.0898122
786786 0 0
787787 50.1718 1.78843 0.894215 0.447638i 0.147735π-0.147735\pi
0.894215 + 0.447638i 0.147735π0.147735\pi
788788 10.3871 0.370024
789789 0 0
790790 −39.4771 −1.40453
791791 −5.19379 −0.184670
792792 0 0
793793 −46.1489 −1.63880
794794 39.4788 1.40105
795795 0 0
796796 −101.896 −3.61159
797797 29.1815 1.03366 0.516831 0.856087i 0.327111π-0.327111\pi
0.516831 + 0.856087i 0.327111π0.327111\pi
798798 0 0
799799 −42.9229 −1.51850
800800 2.70738 0.0957204
801801 0 0
802802 56.2640 1.98675
803803 5.08839 0.179566
804804 0 0
805805 −3.78907 −0.133547
806806 −16.1169 −0.567693
807807 0 0
808808 −1.38450 −0.0487065
809809 36.7855 1.29331 0.646655 0.762783i 0.276167π-0.276167\pi
0.646655 + 0.762783i 0.276167π0.276167\pi
810810 0 0
811811 −8.38974 −0.294604 −0.147302 0.989092i 0.547059π-0.547059\pi
−0.147302 + 0.989092i 0.547059π0.547059\pi
812812 −79.4146 −2.78691
813813 0 0
814814 −73.2894 −2.56879
815815 −3.76560 −0.131903
816816 0 0
817817 23.7132 0.829621
818818 10.1434 0.354655
819819 0 0
820820 39.1159 1.36599
821821 8.65877 0.302193 0.151097 0.988519i 0.451720π-0.451720\pi
0.151097 + 0.988519i 0.451720π0.451720\pi
822822 0 0
823823 37.0466 1.29136 0.645682 0.763606i 0.276573π-0.276573\pi
0.645682 + 0.763606i 0.276573π0.276573\pi
824824 34.4879 1.20144
825825 0 0
826826 −34.6217 −1.20464
827827 −44.9678 −1.56368 −0.781842 0.623477i 0.785719π-0.785719\pi
−0.781842 + 0.623477i 0.785719π0.785719\pi
828828 0 0
829829 −35.6089 −1.23675 −0.618374 0.785884i 0.712208π-0.712208\pi
−0.618374 + 0.785884i 0.712208π0.712208\pi
830830 7.66712 0.266130
831831 0 0
832832 −22.6660 −0.785803
833833 −47.0243 −1.62930
834834 0 0
835835 −3.03144 −0.104907
836836 142.311 4.92194
837837 0 0
838838 −12.5441 −0.433328
839839 −10.7850 −0.372338 −0.186169 0.982518i 0.559607π-0.559607\pi
−0.186169 + 0.982518i 0.559607π0.559607\pi
840840 0 0
841841 −4.73129 −0.163148
842842 47.8770 1.64995
843843 0 0
844844 83.7365 2.88233
845845 13.3914 0.460678
846846 0 0
847847 34.1742 1.17424
848848 63.2222 2.17106
849849 0 0
850850 −15.9850 −0.548280
851851 −6.54973 −0.224522
852852 0 0
853853 46.1337 1.57959 0.789793 0.613373i 0.210188π-0.210188\pi
0.789793 + 0.613373i 0.210188π0.210188\pi
854854 −85.1252 −2.91292
855855 0 0
856856 −47.1255 −1.61071
857857 54.6211 1.86582 0.932910 0.360108i 0.117260π-0.117260\pi
0.932910 + 0.360108i 0.117260π0.117260\pi
858858 0 0
859859 −1.06927 −0.0364832 −0.0182416 0.999834i 0.505807π-0.505807\pi
−0.0182416 + 0.999834i 0.505807π0.505807\pi
860860 −13.4947 −0.460164
861861 0 0
862862 −100.187 −3.41239
863863 30.6296 1.04264 0.521322 0.853360i 0.325439π-0.325439\pi
0.521322 + 0.853360i 0.325439π0.325439\pi
864864 0 0
865865 7.93254 0.269715
866866 −10.5712 −0.359223
867867 0 0
868868 −20.2224 −0.686392
869869 70.6274 2.39587
870870 0 0
871871 77.7249 2.63361
872872 88.8743 3.00966
873873 0 0
874874 18.6968 0.632429
875875 3.78907 0.128094
876876 0 0
877877 45.0882 1.52252 0.761259 0.648447i 0.224581π-0.224581\pi
0.761259 + 0.648447i 0.224581π0.224581\pi
878878 −12.3279 −0.416046
879879 0 0
880880 −25.0178 −0.843351
881881 −51.9802 −1.75126 −0.875629 0.482985i 0.839552π-0.839552\pi
−0.875629 + 0.482985i 0.839552π0.839552\pi
882882 0 0
883883 13.0431 0.438935 0.219468 0.975620i 0.429568π-0.429568\pi
0.219468 + 0.975620i 0.429568π0.429568\pi
884884 −139.699 −4.69857
885885 0 0
886886 −55.6979 −1.87121
887887 −2.32847 −0.0781825 −0.0390913 0.999236i 0.512446π-0.512446\pi
−0.0390913 + 0.999236i 0.512446π0.512446\pi
888888 0 0
889889 21.9655 0.736700
890890 −33.6201 −1.12695
891891 0 0
892892 −103.134 −3.45320
893893 −50.2047 −1.68004
894894 0 0
895895 2.52626 0.0844435
896896 −62.3261 −2.08217
897897 0 0
898898 −37.3008 −1.24475
899899 6.17986 0.206110
900900 0 0
901901 −72.2703 −2.40767
902902 −102.879 −3.42550
903903 0 0
904904 −7.72837 −0.257042
905905 12.2380 0.406804
906906 0 0
907907 14.7671 0.490334 0.245167 0.969481i 0.421157π-0.421157\pi
0.245167 + 0.969481i 0.421157π0.421157\pi
908908 28.9987 0.962356
909909 0 0
910910 48.6809 1.61376
911911 −14.1681 −0.469409 −0.234704 0.972067i 0.575412π-0.575412\pi
−0.234704 + 0.972067i 0.575412π0.575412\pi
912912 0 0
913913 −13.7170 −0.453968
914914 66.9822 2.21558
915915 0 0
916916 −114.395 −3.77971
917917 29.8016 0.984134
918918 0 0
919919 38.9568 1.28507 0.642534 0.766257i 0.277883π-0.277883\pi
0.642534 + 0.766257i 0.277883π0.277883\pi
920920 −5.63815 −0.185884
921921 0 0
922922 −38.7330 −1.27560
923923 −42.8158 −1.40930
924924 0 0
925925 6.54973 0.215354
926926 −2.42226 −0.0796003
927927 0 0
928928 −13.3375 −0.437823
929929 −36.8330 −1.20845 −0.604226 0.796813i 0.706518π-0.706518\pi
−0.604226 + 0.796813i 0.706518π0.706518\pi
930930 0 0
931931 −55.0019 −1.80262
932932 11.3507 0.371804
933933 0 0
934934 42.5278 1.39155
935935 28.5983 0.935264
936936 0 0
937937 10.0785 0.329251 0.164625 0.986356i 0.447358π-0.447358\pi
0.164625 + 0.986356i 0.447358π0.447358\pi
938938 143.370 4.68118
939939 0 0
940940 28.5704 0.931863
941941 −24.0027 −0.782466 −0.391233 0.920292i 0.627951π-0.627951\pi
−0.391233 + 0.920292i 0.627951π0.627951\pi
942942 0 0
943943 −9.19411 −0.299402
944944 −20.4290 −0.664908
945945 0 0
946946 35.4924 1.15396
947947 −12.2539 −0.398198 −0.199099 0.979979i 0.563802π-0.563802\pi
−0.199099 + 0.979979i 0.563802π0.563802\pi
948948 0 0
949949 −5.84237 −0.189651
950950 −18.6968 −0.606605
951951 0 0
952952 −136.548 −4.42556
953953 −10.6705 −0.345651 −0.172825 0.984952i 0.555290π-0.555290\pi
−0.172825 + 0.984952i 0.555290π0.555290\pi
954954 0 0
955955 −0.979624 −0.0316999
956956 62.7948 2.03093
957957 0 0
958958 −27.3363 −0.883197
959959 18.0992 0.584455
960960 0 0
961961 −29.4263 −0.949237
962962 84.1491 2.71307
963963 0 0
964964 −15.0152 −0.483607
965965 8.50891 0.273912
966966 0 0
967967 6.51308 0.209446 0.104723 0.994501i 0.466604π-0.466604\pi
0.104723 + 0.994501i 0.466604π0.466604\pi
968968 50.8513 1.63442
969969 0 0
970970 −11.0597 −0.355105
971971 33.4976 1.07499 0.537494 0.843267i 0.319371π-0.319371\pi
0.537494 + 0.843267i 0.319371π0.319371\pi
972972 0 0
973973 13.9553 0.447386
974974 −50.9163 −1.63146
975975 0 0
976976 −50.2293 −1.60780
977977 8.72554 0.279155 0.139577 0.990211i 0.455426π-0.455426\pi
0.139577 + 0.990211i 0.455426π0.455426\pi
978978 0 0
979979 60.1488 1.92236
980980 31.3004 0.999853
981981 0 0
982982 44.9213 1.43350
983983 27.7131 0.883912 0.441956 0.897037i 0.354285π-0.354285\pi
0.441956 + 0.897037i 0.354285π0.354285\pi
984984 0 0
985985 2.44145 0.0777912
986986 78.7472 2.50782
987987 0 0
988988 −163.398 −5.19840
989989 3.17189 0.100860
990990 0 0
991991 −49.1015 −1.55976 −0.779880 0.625928i 0.784720π-0.784720\pi
−0.779880 + 0.625928i 0.784720π0.784720\pi
992992 −3.39629 −0.107832
993993 0 0
994994 −78.9770 −2.50500
995995 −23.9503 −0.759277
996996 0 0
997997 −43.0382 −1.36303 −0.681517 0.731802i 0.738679π-0.738679\pi
−0.681517 + 0.731802i 0.738679π0.738679\pi
998998 −56.5601 −1.79038
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1035.2.a.q.1.6 yes 6
3.2 odd 2 1035.2.a.p.1.1 6
5.4 even 2 5175.2.a.by.1.1 6
15.14 odd 2 5175.2.a.bz.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1035.2.a.p.1.1 6 3.2 odd 2
1035.2.a.q.1.6 yes 6 1.1 even 1 trivial
5175.2.a.by.1.1 6 5.4 even 2
5175.2.a.bz.1.6 6 15.14 odd 2