Properties

Label 1035.2.a.k
Level $1035$
Weight $2$
Character orbit 1035.a
Self dual yes
Analytic conductor $8.265$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1035 = 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1035.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(8.26451660920\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Defining polynomial: \(x^{2} - 6\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + 4 q^{4} + q^{5} - q^{7} + 2 \beta q^{8} +O(q^{10})\) \( q + \beta q^{2} + 4 q^{4} + q^{5} - q^{7} + 2 \beta q^{8} + \beta q^{10} -\beta q^{11} + ( 2 + \beta ) q^{13} -\beta q^{14} + 4 q^{16} + ( 3 + \beta ) q^{17} + ( 2 + \beta ) q^{19} + 4 q^{20} -6 q^{22} + q^{23} + q^{25} + ( 6 + 2 \beta ) q^{26} -4 q^{28} + ( -3 - 3 \beta ) q^{29} + ( 5 - 2 \beta ) q^{31} + ( 6 + 3 \beta ) q^{34} - q^{35} + ( -1 + 2 \beta ) q^{37} + ( 6 + 2 \beta ) q^{38} + 2 \beta q^{40} + ( -3 - \beta ) q^{41} + 2 q^{43} -4 \beta q^{44} + \beta q^{46} + ( -6 - \beta ) q^{47} -6 q^{49} + \beta q^{50} + ( 8 + 4 \beta ) q^{52} + ( -3 + \beta ) q^{53} -\beta q^{55} -2 \beta q^{56} + ( -18 - 3 \beta ) q^{58} + ( -3 - 3 \beta ) q^{59} + ( 8 - 3 \beta ) q^{61} + ( -12 + 5 \beta ) q^{62} -8 q^{64} + ( 2 + \beta ) q^{65} -7 q^{67} + ( 12 + 4 \beta ) q^{68} -\beta q^{70} + ( -3 + 3 \beta ) q^{71} + ( 2 - 3 \beta ) q^{73} + ( 12 - \beta ) q^{74} + ( 8 + 4 \beta ) q^{76} + \beta q^{77} -4 q^{79} + 4 q^{80} + ( -6 - 3 \beta ) q^{82} + ( -3 - 5 \beta ) q^{83} + ( 3 + \beta ) q^{85} + 2 \beta q^{86} -12 q^{88} + ( 12 + 2 \beta ) q^{89} + ( -2 - \beta ) q^{91} + 4 q^{92} + ( -6 - 6 \beta ) q^{94} + ( 2 + \beta ) q^{95} + ( 8 - 2 \beta ) q^{97} -6 \beta q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 8q^{4} + 2q^{5} - 2q^{7} + O(q^{10}) \) \( 2q + 8q^{4} + 2q^{5} - 2q^{7} + 4q^{13} + 8q^{16} + 6q^{17} + 4q^{19} + 8q^{20} - 12q^{22} + 2q^{23} + 2q^{25} + 12q^{26} - 8q^{28} - 6q^{29} + 10q^{31} + 12q^{34} - 2q^{35} - 2q^{37} + 12q^{38} - 6q^{41} + 4q^{43} - 12q^{47} - 12q^{49} + 16q^{52} - 6q^{53} - 36q^{58} - 6q^{59} + 16q^{61} - 24q^{62} - 16q^{64} + 4q^{65} - 14q^{67} + 24q^{68} - 6q^{71} + 4q^{73} + 24q^{74} + 16q^{76} - 8q^{79} + 8q^{80} - 12q^{82} - 6q^{83} + 6q^{85} - 24q^{88} + 24q^{89} - 4q^{91} + 8q^{92} - 12q^{94} + 4q^{95} + 16q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.44949
2.44949
−2.44949 0 4.00000 1.00000 0 −1.00000 −4.89898 0 −2.44949
1.2 2.44949 0 4.00000 1.00000 0 −1.00000 4.89898 0 2.44949
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(-1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1035.2.a.k 2
3.b odd 2 1 345.2.a.i 2
5.b even 2 1 5175.2.a.bl 2
12.b even 2 1 5520.2.a.bi 2
15.d odd 2 1 1725.2.a.y 2
15.e even 4 2 1725.2.b.m 4
69.c even 2 1 7935.2.a.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
345.2.a.i 2 3.b odd 2 1
1035.2.a.k 2 1.a even 1 1 trivial
1725.2.a.y 2 15.d odd 2 1
1725.2.b.m 4 15.e even 4 2
5175.2.a.bl 2 5.b even 2 1
5520.2.a.bi 2 12.b even 2 1
7935.2.a.t 2 69.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1035))\):

\( T_{2}^{2} - 6 \)
\( T_{7} + 1 \)
\( T_{11}^{2} - 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -6 + T^{2} \)
$3$ \( T^{2} \)
$5$ \( ( -1 + T )^{2} \)
$7$ \( ( 1 + T )^{2} \)
$11$ \( -6 + T^{2} \)
$13$ \( -2 - 4 T + T^{2} \)
$17$ \( 3 - 6 T + T^{2} \)
$19$ \( -2 - 4 T + T^{2} \)
$23$ \( ( -1 + T )^{2} \)
$29$ \( -45 + 6 T + T^{2} \)
$31$ \( 1 - 10 T + T^{2} \)
$37$ \( -23 + 2 T + T^{2} \)
$41$ \( 3 + 6 T + T^{2} \)
$43$ \( ( -2 + T )^{2} \)
$47$ \( 30 + 12 T + T^{2} \)
$53$ \( 3 + 6 T + T^{2} \)
$59$ \( -45 + 6 T + T^{2} \)
$61$ \( 10 - 16 T + T^{2} \)
$67$ \( ( 7 + T )^{2} \)
$71$ \( -45 + 6 T + T^{2} \)
$73$ \( -50 - 4 T + T^{2} \)
$79$ \( ( 4 + T )^{2} \)
$83$ \( -141 + 6 T + T^{2} \)
$89$ \( 120 - 24 T + T^{2} \)
$97$ \( 40 - 16 T + T^{2} \)
show more
show less