Properties

Label 1035.1.bd.a.244.1
Level 10351035
Weight 11
Character 1035.244
Analytic conductor 0.5170.517
Analytic rank 00
Dimension 1010
Projective image D22D_{22}
CM discriminant -15
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1035,1,Mod(19,1035)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1035.19"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1035, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 11, 15])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 1035=32523 1035 = 3^{2} \cdot 5 \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1035.bd (of order 2222, degree 1010, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5165322880750.516532288075
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D22D_{22}
Projective field: Galois closure of Q[x]/(x22)\mathbb{Q}[x]/(x^{22} - \cdots)

Embedding invariants

Embedding label 244.1
Root 0.841254+0.540641i-0.841254 + 0.540641i of defining polynomial
Character χ\chi == 1035.244
Dual form 1035.1.bd.a.649.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(0.4258391.45027i)q2+(1.08070+0.694523i)q4+(0.1423150.989821i)q5+(0.325137+0.281733i)q8+(1.37491+0.627899i)q10+(0.263521+0.577031i)q16+(1.415420.909632i)q17+(0.9835681.53046i)q19+(0.841254+0.970858i)q20+(0.959493+0.281733i)q23+(0.959493+0.281733i)q25+(0.5440780.627899i)q31+(1.37491+0.197682i)q32+(0.716476+2.44009i)q34+(1.80075+2.07817i)q38+(0.2325930.361922i)q401.51150iq460.563465iq47+(0.654861+0.755750i)q49+(0.817178+1.27155i)q50+(0.797176+1.74557i)q53+(0.4258390.368991i)q61+(1.142310.521678i)q62+(0.2085181.45027i)q64+2.16140q68+(2.12588+0.970858i)q76+(1.800750.822373i)q79+(0.608660+0.178719i)q80+(0.1863931.29639i)q83+(0.698939+1.53046i)q85+(1.23259+0.361922i)q92+(0.817178+0.239945i)q94+(1.37491+1.19136i)q95+(0.8171781.27155i)q98+O(q100)q+(-0.425839 - 1.45027i) q^{2} +(-1.08070 + 0.694523i) q^{4} +(-0.142315 - 0.989821i) q^{5} +(0.325137 + 0.281733i) q^{8} +(-1.37491 + 0.627899i) q^{10} +(-0.263521 + 0.577031i) q^{16} +(-1.41542 - 0.909632i) q^{17} +(-0.983568 - 1.53046i) q^{19} +(0.841254 + 0.970858i) q^{20} +(0.959493 + 0.281733i) q^{23} +(-0.959493 + 0.281733i) q^{25} +(0.544078 - 0.627899i) q^{31} +(1.37491 + 0.197682i) q^{32} +(-0.716476 + 2.44009i) q^{34} +(-1.80075 + 2.07817i) q^{38} +(0.232593 - 0.361922i) q^{40} -1.51150i q^{46} -0.563465i q^{47} +(0.654861 + 0.755750i) q^{49} +(0.817178 + 1.27155i) q^{50} +(-0.797176 + 1.74557i) q^{53} +(-0.425839 - 0.368991i) q^{61} +(-1.14231 - 0.521678i) q^{62} +(-0.208518 - 1.45027i) q^{64} +2.16140 q^{68} +(2.12588 + 0.970858i) q^{76} +(1.80075 - 0.822373i) q^{79} +(0.608660 + 0.178719i) q^{80} +(0.186393 - 1.29639i) q^{83} +(-0.698939 + 1.53046i) q^{85} +(-1.23259 + 0.361922i) q^{92} +(-0.817178 + 0.239945i) q^{94} +(-1.37491 + 1.19136i) q^{95} +(0.817178 - 1.27155i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 10qq4q5+11q8q169q17q20+q23q25+2q3111q3411q40+q492q5311q62+10q64+2q68+11q76+10q802q83++q92+O(q100) 10 q - q^{4} - q^{5} + 11 q^{8} - q^{16} - 9 q^{17} - q^{20} + q^{23} - q^{25} + 2 q^{31} - 11 q^{34} - 11 q^{40} + q^{49} - 2 q^{53} - 11 q^{62} + 10 q^{64} + 2 q^{68} + 11 q^{76} + 10 q^{80} - 2 q^{83}+ \cdots + q^{92}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1035Z)×\left(\mathbb{Z}/1035\mathbb{Z}\right)^\times.

nn 461461 622622 856856
χ(n)\chi(n) 11 1-1 e(2122)e\left(\frac{21}{22}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.425839 1.45027i −0.425839 1.45027i −0.841254 0.540641i 0.818182π-0.818182\pi
0.415415 0.909632i 0.363636π-0.363636\pi
33 0 0
44 −1.08070 + 0.694523i −1.08070 + 0.694523i
55 −0.142315 0.989821i −0.142315 0.989821i
66 0 0
77 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
88 0.325137 + 0.281733i 0.325137 + 0.281733i
99 0 0
1010 −1.37491 + 0.627899i −1.37491 + 0.627899i
1111 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
1212 0 0
1313 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
1414 0 0
1515 0 0
1616 −0.263521 + 0.577031i −0.263521 + 0.577031i
1717 −1.41542 0.909632i −1.41542 0.909632i −0.415415 0.909632i 0.636364π-0.636364\pi
−1.00000 π\pi
1818 0 0
1919 −0.983568 1.53046i −0.983568 1.53046i −0.841254 0.540641i 0.818182π-0.818182\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
2020 0.841254 + 0.970858i 0.841254 + 0.970858i
2121 0 0
2222 0 0
2323 0.959493 + 0.281733i 0.959493 + 0.281733i
2424 0 0
2525 −0.959493 + 0.281733i −0.959493 + 0.281733i
2626 0 0
2727 0 0
2828 0 0
2929 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
3030 0 0
3131 0.544078 0.627899i 0.544078 0.627899i −0.415415 0.909632i 0.636364π-0.636364\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
3232 1.37491 + 0.197682i 1.37491 + 0.197682i
3333 0 0
3434 −0.716476 + 2.44009i −0.716476 + 2.44009i
3535 0 0
3636 0 0
3737 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
3838 −1.80075 + 2.07817i −1.80075 + 2.07817i
3939 0 0
4040 0.232593 0.361922i 0.232593 0.361922i
4141 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
4242 0 0
4343 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
4444 0 0
4545 0 0
4646 1.51150i 1.51150i
4747 0.563465i 0.563465i −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
4848 0 0
4949 0.654861 + 0.755750i 0.654861 + 0.755750i
5050 0.817178 + 1.27155i 0.817178 + 1.27155i
5151 0 0
5252 0 0
5353 −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
6060 0 0
6161 −0.425839 0.368991i −0.425839 0.368991i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
6262 −1.14231 0.521678i −1.14231 0.521678i
6363 0 0
6464 −0.208518 1.45027i −0.208518 1.45027i
6565 0 0
6666 0 0
6767 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
6868 2.16140 2.16140
6969 0 0
7070 0 0
7171 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
7272 0 0
7373 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
7474 0 0
7575 0 0
7676 2.12588 + 0.970858i 2.12588 + 0.970858i
7777 0 0
7878 0 0
7979 1.80075 0.822373i 1.80075 0.822373i 0.841254 0.540641i 0.181818π-0.181818\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
8080 0.608660 + 0.178719i 0.608660 + 0.178719i
8181 0 0
8282 0 0
8383 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i 0.727273π-0.727273\pi
0.841254 0.540641i 0.181818π-0.181818\pi
8484 0 0
8585 −0.698939 + 1.53046i −0.698939 + 1.53046i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
9090 0 0
9191 0 0
9292 −1.23259 + 0.361922i −1.23259 + 0.361922i
9393 0 0
9494 −0.817178 + 0.239945i −0.817178 + 0.239945i
9595 −1.37491 + 1.19136i −1.37491 + 1.19136i
9696 0 0
9797 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
9898 0.817178 1.27155i 0.817178 1.27155i
9999 0 0
100100 0.841254 0.970858i 0.841254 0.970858i
101101 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
102102 0 0
103103 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
104104 0 0
105105 0 0
106106 2.87102 + 0.412791i 2.87102 + 0.412791i
107107 −0.186393 + 0.215109i −0.186393 + 0.215109i −0.841254 0.540641i 0.818182π-0.818182\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
108108 0 0
109109 1.07028 1.66538i 1.07028 1.66538i 0.415415 0.909632i 0.363636π-0.363636\pi
0.654861 0.755750i 0.272727π-0.272727\pi
110110 0 0
111111 0 0
112112 0 0
113113 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i 0.363636π-0.363636\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
114114 0 0
115115 0.142315 0.989821i 0.142315 0.989821i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0.841254 + 0.540641i 0.841254 + 0.540641i
122122 −0.353799 + 0.774713i −0.353799 + 0.774713i
123123 0 0
124124 −0.151894 + 1.05645i −0.151894 + 1.05645i
125125 0.415415 + 0.909632i 0.415415 + 0.909632i
126126 0 0
127127 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
128128 −0.750975 + 0.342959i −0.750975 + 0.342959i
129129 0 0
130130 0 0
131131 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −0.203930 0.694523i −0.203930 0.694523i
137137 0.284630 0.284630 0.142315 0.989821i 0.454545π-0.454545\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
138138 0 0
139139 1.91899 1.91899 0.959493 0.281733i 0.0909091π-0.0909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
150150 0 0
151151 −0.698939 1.53046i −0.698939 1.53046i −0.841254 0.540641i 0.818182π-0.818182\pi
0.142315 0.989821i 0.454545π-0.454545\pi
152152 0.111387 0.774713i 0.111387 0.774713i
153153 0 0
154154 0 0
155155 −0.698939 0.449181i −0.698939 0.449181i
156156 0 0
157157 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
158158 −1.95949 2.26138i −1.95949 2.26138i
159159 0 0
160160 1.38905i 1.38905i
161161 0 0
162162 0 0
163163 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
164164 0 0
165165 0 0
166166 −1.95949 + 0.281733i −1.95949 + 0.281733i
167167 1.07028 1.66538i 1.07028 1.66538i 0.415415 0.909632i 0.363636π-0.363636\pi
0.654861 0.755750i 0.272727π-0.272727\pi
168168 0 0
169169 −0.654861 + 0.755750i −0.654861 + 0.755750i
170170 2.51722 + 0.361922i 2.51722 + 0.361922i
171171 0 0
172172 0 0
173173 0.158746 0.540641i 0.158746 0.540641i −0.841254 0.540641i 0.818182π-0.818182\pi
1.00000 00
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
180180 0 0
181181 −0.817178 + 0.708089i −0.817178 + 0.708089i −0.959493 0.281733i 0.909091π-0.909091\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
182182 0 0
183183 0 0
184184 0.232593 + 0.361922i 0.232593 + 0.361922i
185185 0 0
186186 0 0
187187 0 0
188188 0.391340 + 0.608936i 0.391340 + 0.608936i
189189 0 0
190190 2.31329 + 1.48666i 2.31329 + 1.48666i
191191 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
192192 0 0
193193 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
194194 0 0
195195 0 0
196196 −1.23259 0.361922i −1.23259 0.361922i
197197 −1.80075 + 0.822373i −1.80075 + 0.822373i −0.841254 + 0.540641i 0.818182π0.818182\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
198198 0 0
199199 −1.14231 0.989821i −1.14231 0.989821i −0.142315 0.989821i 0.545455π-0.545455\pi
−1.00000 π\pi
200200 −0.391340 0.178719i −0.391340 0.178719i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 −1.41542 + 0.909632i −1.41542 + 0.909632i −0.415415 + 0.909632i 0.636364π0.636364\pi
−1.00000 π\pi
212212 −0.350833 2.44009i −0.350833 2.44009i
213213 0 0
214214 0.391340 + 0.178719i 0.391340 + 0.178719i
215215 0 0
216216 0 0
217217 0 0
218218 −2.87102 0.843008i −2.87102 0.843008i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
224224 0 0
225225 0 0
226226 −1.07028 1.66538i −1.07028 1.66538i
227227 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i 0.181818π0.181818\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
228228 0 0
229229 1.51150i 1.51150i −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 0.755750i 0.272727π-0.272727\pi
230230 −1.49611 + 0.215109i −1.49611 + 0.215109i
231231 0 0
232232 0 0
233233 1.49611 1.29639i 1.49611 1.29639i 0.654861 0.755750i 0.272727π-0.272727\pi
0.841254 0.540641i 0.181818π-0.181818\pi
234234 0 0
235235 −0.557730 + 0.0801894i −0.557730 + 0.0801894i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
240240 0 0
241241 −0.304632 + 1.03748i −0.304632 + 1.03748i 0.654861 + 0.755750i 0.272727π0.272727\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
242242 0.425839 1.45027i 0.425839 1.45027i
243243 0 0
244244 0.716476 + 0.103014i 0.716476 + 0.103014i
245245 0.654861 0.755750i 0.654861 0.755750i
246246 0 0
247247 0 0
248248 0.353799 0.0508687i 0.353799 0.0508687i
249249 0 0
250250 1.14231 0.989821i 1.14231 0.989821i
251251 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −0.142315 0.164240i −0.142315 0.164240i
257257 0.584585 + 0.909632i 0.584585 + 0.909632i 1.00000 00
−0.415415 + 0.909632i 0.636364π0.636364\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 00
−0.654861 + 0.755750i 0.727273π0.727273\pi
264264 0 0
265265 1.84125 + 0.540641i 1.84125 + 0.540641i
266266 0 0
267267 0 0
268268 0 0
269269 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
270270 0 0
271271 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i 0.363636π0.363636\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
272272 0.897877 0.577031i 0.897877 0.577031i
273273 0 0
274274 −0.121206 0.412791i −0.121206 0.412791i
275275 0 0
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 −0.817178 2.78305i −0.817178 2.78305i
279279 0 0
280280 0 0
281281 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
282282 0 0
283283 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0.760554 + 1.66538i 0.760554 + 1.66538i
290290 0 0
291291 0 0
292292 0 0
293293 1.10181 + 0.708089i 1.10181 + 0.708089i 0.959493 0.281733i 0.0909091π-0.0909091\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 −1.92195 + 1.66538i −1.92195 + 1.66538i
303303 0 0
304304 1.14231 0.164240i 1.14231 0.164240i
305305 −0.304632 + 0.474017i −0.304632 + 0.474017i
306306 0 0
307307 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
308308 0 0
309309 0 0
310310 −0.353799 + 1.20493i −0.353799 + 1.20493i
311311 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
312312 0 0
313313 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
314314 0 0
315315 0 0
316316 −1.37491 + 2.13940i −1.37491 + 2.13940i
317317 −1.07028 + 0.153882i −1.07028 + 0.153882i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
318318 0 0
319319 0 0
320320 −1.40584 + 0.412791i −1.40584 + 0.412791i
321321 0 0
322322 0 0
323323 3.06092i 3.06092i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i 0.727273π-0.727273\pi
0.841254 0.540641i 0.181818π-0.181818\pi
332332 0.698939 + 1.53046i 0.698939 + 1.53046i
333333 0 0
334334 −2.87102 0.843008i −2.87102 0.843008i
335335 0 0
336336 0 0
337337 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
338338 1.37491 + 0.627899i 1.37491 + 0.627899i
339339 0 0
340340 −0.307599 2.13940i −0.307599 2.13940i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −0.851677 −0.851677
347347 0.512546 + 1.74557i 0.512546 + 1.74557i 0.654861 + 0.755750i 0.272727π0.272727\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
348348 0 0
349349 −1.10181 + 0.708089i −1.10181 + 0.708089i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
350350 0 0
351351 0 0
352352 0 0
353353 1.37491 + 1.19136i 1.37491 + 1.19136i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
360360 0 0
361361 −0.959493 + 2.10100i −0.959493 + 2.10100i
362362 1.37491 + 0.883600i 1.37491 + 0.883600i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 −0.415415 + 0.479414i −0.415415 + 0.479414i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
374374 0 0
375375 0 0
376376 0.158746 0.183203i 0.158746 0.183203i
377377 0 0
378378 0 0
379379 0.425839 1.45027i 0.425839 1.45027i −0.415415 0.909632i 0.636364π-0.636364\pi
0.841254 0.540641i 0.181818π-0.181818\pi
380380 0.658432 2.24241i 0.658432 2.24241i
381381 0 0
382382 0 0
383383 −0.857685 + 0.989821i −0.857685 + 0.989821i 0.142315 + 0.989821i 0.454545π0.454545\pi
−1.00000 π\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
390390 0 0
391391 −1.10181 1.27155i −1.10181 1.27155i
392392 0.430218i 0.430218i
393393 0 0
394394 1.95949 + 2.26138i 1.95949 + 2.26138i
395395 −1.07028 1.66538i −1.07028 1.66538i
396396 0 0
397397 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
398398 −0.949069 + 2.07817i −0.949069 + 2.07817i
399399 0 0
400400 0.0902783 0.627899i 0.0902783 0.627899i
401401 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0.239446 + 1.66538i 0.239446 + 1.66538i 0.654861 + 0.755750i 0.272727π0.272727\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 −1.30972 −1.30972
416416 0 0
417417 0 0
418418 0 0
419419 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
420420 0 0
421421 −1.65486 0.755750i −1.65486 0.755750i −0.654861 0.755750i 0.727273π-0.727273\pi
−1.00000 π\pi
422422 1.92195 + 1.66538i 1.92195 + 1.66538i
423423 0 0
424424 −0.750975 + 0.342959i −0.750975 + 0.342959i
425425 1.61435 + 0.474017i 1.61435 + 0.474017i
426426 0 0
427427 0 0
428428 0.0520365 0.361922i 0.0520365 0.361922i
429429 0 0
430430 0 0
431431 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
432432 0 0
433433 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
434434 0 0
435435 0 0
436436 2.54311i 2.54311i
437437 −0.512546 1.74557i −0.512546 1.74557i
438438 0 0
439439 −1.25667 + 0.368991i −1.25667 + 0.368991i −0.841254 0.540641i 0.818182π-0.818182\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
440440 0 0
441441 0 0
442442 0 0
443443 0.584585 0.909632i 0.584585 0.909632i −0.415415 0.909632i 0.636364π-0.636364\pi
1.00000 00
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
450450 0 0
451451 0 0
452452 −1.10181 + 1.27155i −1.10181 + 1.27155i
453453 0 0
454454 1.56815 2.44009i 1.56815 2.44009i
455455 0 0
456456 0 0
457457 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
458458 −2.19209 + 0.643655i −2.19209 + 0.643655i
459459 0 0
460460 0.533654 + 1.16854i 0.533654 + 1.16854i
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
464464 0 0
465465 0 0
466466 −2.51722 1.61772i −2.51722 1.61772i
467467 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i 0.545455π-0.545455\pi
0.841254 0.540641i 0.181818π-0.181818\pi
468468 0 0
469469 0 0
470470 0.353799 + 0.774713i 0.353799 + 0.774713i
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 1.37491 + 1.19136i 1.37491 + 1.19136i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
480480 0 0
481481 0 0
482482 1.63436 1.63436
483483 0 0
484484 −1.28463 −1.28463
485485 0 0
486486 0 0
487487 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
488488 −0.0344989 0.239945i −0.0344989 0.239945i
489489 0 0
490490 −1.37491 0.627899i −1.37491 0.627899i
491491 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0.218941 + 0.479414i 0.218941 + 0.479414i
497497 0 0
498498 0 0
499499 −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i 0.909091π-0.909091\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
500500 −1.08070 0.694523i −1.08070 0.694523i
501501 0 0
502502 0 0
503503 −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
510510 0 0
511511 0 0
512512 −0.623933 + 0.970858i −0.623933 + 0.970858i
513513 0 0
514514 1.07028 1.23516i 1.07028 1.23516i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
522522 0 0
523523 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
524524 0 0
525525 0 0
526526 0.949069 0.822373i 0.949069 0.822373i
527527 −1.34125 + 0.393828i −1.34125 + 0.393828i
528528 0 0
529529 0.841254 + 0.540641i 0.841254 + 0.540641i
530530 2.90055i 2.90055i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0.239446 + 0.153882i 0.239446 + 0.153882i
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0.797176 + 0.234072i 0.797176 + 0.234072i 0.654861 0.755750i 0.272727π-0.272727\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
542542 2.63843 1.20493i 2.63843 1.20493i
543543 0 0
544544 −1.76625 1.53046i −1.76625 1.53046i
545545 −1.80075 0.822373i −1.80075 0.822373i
546546 0 0
547547 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
548548 −0.307599 + 0.197682i −0.307599 + 0.197682i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 −2.07385 + 1.33278i −2.07385 + 1.33278i
557557 0.118239 + 0.822373i 0.118239 + 0.822373i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 −1.84125 0.540641i −1.84125 0.540641i −0.841254 0.540641i 0.818182π-0.818182\pi
−1.00000 π\pi
564564 0 0
565565 −0.544078 1.19136i −0.544078 1.19136i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
570570 0 0
571571 0.304632 + 0.474017i 0.304632 + 0.474017i 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
572572 0 0
573573 0 0
574574 0 0
575575 −1.00000 −1.00000
576576 0 0
577577 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
578578 2.09138 1.81219i 2.09138 1.81219i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0.557730 1.89945i 0.557730 1.89945i
587587 0.512546 1.74557i 0.512546 1.74557i −0.142315 0.989821i 0.545455π-0.545455\pi
0.654861 0.755750i 0.272727π-0.272727\pi
588588 0 0
589589 −1.49611 0.215109i −1.49611 0.215109i
590590 0 0
591591 0 0
592592 0 0
593593 1.80075 0.258908i 1.80075 0.258908i 0.841254 0.540641i 0.181818π-0.181818\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i 0.181818π-0.181818\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
602602 0 0
603603 0 0
604604 1.81828 + 1.16854i 1.81828 + 1.16854i
605605 0.415415 0.909632i 0.415415 0.909632i
606606 0 0
607607 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
608608 −1.04977 2.29868i −1.04977 2.29868i
609609 0 0
610610 0.817178 + 0.239945i 0.817178 + 0.239945i
611611 0 0
612612 0 0
613613 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
614614 0 0
615615 0 0
616616 0 0
617617 −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i 0.727273π0.727273\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
618618 0 0
619619 0.557730 + 1.89945i 0.557730 + 1.89945i 0.415415 + 0.909632i 0.363636π0.363636\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
620620 1.06731 1.06731
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.841254 0.540641i 0.841254 0.540641i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0.983568 0.449181i 0.983568 0.449181i 0.142315 0.989821i 0.454545π-0.454545\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
632632 0.817178 + 0.239945i 0.817178 + 0.239945i
633633 0 0
634634 0.678936 + 1.48666i 0.678936 + 1.48666i
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0.446343 + 0.694523i 0.446343 + 0.694523i
641641 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
642642 0 0
643643 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
644644 0 0
645645 0 0
646646 4.43918 1.30346i 4.43918 1.30346i
647647 0.817178 0.708089i 0.817178 0.708089i −0.142315 0.989821i 0.545455π-0.545455\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −1.95949 0.281733i −1.95949 0.281733i −0.959493 0.281733i 0.909091π-0.909091\pi
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
660660 0 0
661661 −0.983568 + 1.53046i −0.983568 + 1.53046i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
662662 −1.95949 + 0.281733i −1.95949 + 0.281733i
663663 0 0
664664 0.425839 0.368991i 0.425839 0.368991i
665665 0 0
666666 0 0
667667 0 0
668668 2.54311i 2.54311i
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
674674 0 0
675675 0 0
676676 0.182822 1.27155i 0.182822 1.27155i
677677 −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i 0.181818π-0.181818\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
678678 0 0
679679 0 0
680680 −0.658432 + 0.300696i −0.658432 + 0.300696i
681681 0 0
682682 0 0
683683 −0.512546 0.234072i −0.512546 0.234072i 0.142315 0.989821i 0.454545π-0.454545\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
684684 0 0
685685 −0.0405070 0.281733i −0.0405070 0.281733i
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 1.30972 1.30972 0.654861 0.755750i 0.272727π-0.272727\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
692692 0.203930 + 0.694523i 0.203930 + 0.694523i
693693 0 0
694694 2.31329 1.48666i 2.31329 1.48666i
695695 −0.273100 1.89945i −0.273100 1.89945i
696696 0 0
697697 0 0
698698 1.49611 + 1.29639i 1.49611 + 1.29639i
699699 0 0
700700 0 0
701701 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 1.14231 2.50132i 1.14231 2.50132i
707707 0 0
708708 0 0
709709 −0.584585 0.909632i −0.584585 0.909632i 0.415415 0.909632i 0.363636π-0.363636\pi
−1.00000 π\pi
710710 0 0
711711 0 0
712712 0 0
713713 0.698939 0.449181i 0.698939 0.449181i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
720720 0 0
721721 0 0
722722 3.45561 + 0.496841i 3.45561 + 0.496841i
723723 0 0
724724 0.391340 1.33278i 0.391340 1.33278i
725725 0 0
726726 0 0
727727 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
734734 0 0
735735 0 0
736736 1.26352 + 0.577031i 1.26352 + 0.577031i
737737 0 0
738738 0 0
739739 −0.857685 0.989821i −0.857685 0.989821i 0.142315 0.989821i 0.454545π-0.454545\pi
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0.544078 1.19136i 0.544078 1.19136i −0.415415 0.909632i 0.636364π-0.636364\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0.817178 + 0.708089i 0.817178 + 0.708089i 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
752752 0.325137 + 0.148485i 0.325137 + 0.148485i
753753 0 0
754754 0 0
755755 −1.41542 + 0.909632i −1.41542 + 0.909632i
756756 0 0
757757 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
758758 −2.28463 −2.28463
759759 0 0
760760 −0.782679 −0.782679
761761 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 1.80075 + 0.822373i 1.80075 + 0.822373i
767767 0 0
768768 0 0
769769 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
770770 0 0
771771 0 0
772772 0 0
773773 0.118239 0.822373i 0.118239 0.822373i −0.841254 0.540641i 0.818182π-0.818182\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
774774 0 0
775775 −0.345139 + 0.755750i −0.345139 + 0.755750i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 −1.37491 + 2.13940i −1.37491 + 2.13940i
783783 0 0
784784 −0.608660 + 0.178719i −0.608660 + 0.178719i
785785 0 0
786786 0 0
787787 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
788788 1.37491 2.13940i 1.37491 2.13940i
789789 0 0
790790 −1.95949 + 2.26138i −1.95949 + 2.26138i
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 1.92195 + 0.276335i 1.92195 + 0.276335i
797797 0.544078 0.627899i 0.544078 0.627899i −0.415415 0.909632i 0.636364π-0.636364\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
798798 0 0
799799 −0.512546 + 0.797537i −0.512546 + 0.797537i
800800 −1.37491 + 0.197682i −1.37491 + 0.197682i
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
810810 0 0
811811 −0.239446 0.153882i −0.239446 0.153882i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 2.31329 1.05645i 2.31329 1.05645i
819819 0 0
820820 0 0
821821 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
822822 0 0
823823 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
824824 0 0
825825 0 0
826826 0 0
827827 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
828828 0 0
829829 0.284630 0.284630 0.142315 0.989821i 0.454545π-0.454545\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
830830 0.557730 + 1.89945i 0.557730 + 1.89945i
831831 0 0
832832 0 0
833833 −0.239446 1.66538i −0.239446 1.66538i
834834 0 0
835835 −1.80075 0.822373i −1.80075 0.822373i
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
840840 0 0
841841 −0.415415 0.909632i −0.415415 0.909632i
842842 −0.391340 + 2.72183i −0.391340 + 2.72183i
843843 0 0
844844 0.897877 1.96608i 0.897877 1.96608i
845845 0.841254 + 0.540641i 0.841254 + 0.540641i
846846 0 0
847847 0 0
848848 −0.797176 0.919990i −0.797176 0.919990i
849849 0 0
850850 2.54311i 2.54311i
851851 0 0
852852 0 0
853853 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
854854 0 0
855855 0 0
856856 −0.121206 + 0.0174268i −0.121206 + 0.0174268i
857857 −0.983568 + 1.53046i −0.983568 + 1.53046i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
858858 0 0
859859 −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
860860 0 0
861861 0 0
862862 0 0
863863 −0.557730 + 1.89945i −0.557730 + 1.89945i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
864864 0 0
865865 −0.557730 0.0801894i −0.557730 0.0801894i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0.817178 0.239945i 0.817178 0.239945i
873873 0 0
874874 −2.31329 + 1.48666i −2.31329 + 1.48666i
875875 0 0
876876 0 0
877877 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
878878 1.07028 + 1.66538i 1.07028 + 1.66538i
879879 0 0
880880 0 0
881881 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
882882 0 0
883883 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
884884 0 0
885885 0 0
886886 −1.56815 0.460451i −1.56815 0.460451i
887887 −0.983568 + 0.449181i −0.983568 + 0.449181i −0.841254 0.540641i 0.818182π-0.818182\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 −0.862362 + 0.554206i −0.862362 + 0.554206i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 2.71616 1.74557i 2.71616 1.74557i
902902 0 0
903903 0 0
904904 0.512546 + 0.234072i 0.512546 + 0.234072i
905905 0.817178 + 0.708089i 0.817178 + 0.708089i
906906 0 0
907907 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
908908 −2.36533 0.694523i −2.36533 0.694523i
909909 0 0
910910 0 0
911911 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 1.04977 + 1.63348i 1.04977 + 1.63348i
917917 0 0
918918 0 0
919919 1.08128i 1.08128i 0.841254 + 0.540641i 0.181818π0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
920920 0.325137 0.281733i 0.325137 0.281733i
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
930930 0 0
931931 0.512546 1.74557i 0.512546 1.74557i
932932 −0.716476 + 2.44009i −0.716476 + 2.44009i
933933 0 0
934934 −2.51722 0.361922i −2.51722 0.361922i
935935 0 0
936936 0 0
937937 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
938938 0 0
939939 0 0
940940 0.547045 0.474017i 0.547045 0.474017i
941941 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0.304632 + 0.474017i 0.304632 + 0.474017i 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
948948 0 0
949949 0 0
950950 1.14231 2.50132i 1.14231 2.50132i
951951 0 0
952952 0 0
953953 −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.0440780 + 0.306569i 0.0440780 + 0.306569i
962962 0 0
963963 0 0
964964 −0.391340 1.33278i −0.391340 1.33278i
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 0.121206 + 0.412791i 0.121206 + 0.412791i
969969 0 0
970970 0 0
971971 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0.325137 0.148485i 0.325137 0.148485i
977977 −0.273100 0.0801894i −0.273100 0.0801894i 0.142315 0.989821i 0.454545π-0.454545\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
978978 0 0
979979 0 0
980980 −0.182822 + 1.27155i −0.182822 + 1.27155i
981981 0 0
982982 0 0
983983 0.239446 + 0.153882i 0.239446 + 0.153882i 0.654861 0.755750i 0.272727π-0.272727\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
984984 0 0
985985 1.07028 + 1.66538i 1.07028 + 1.66538i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −0.273100 + 0.0801894i −0.273100 + 0.0801894i −0.415415 0.909632i 0.636364π-0.636364\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
992992 0.872182 0.755750i 0.872182 0.755750i
993993 0 0
994994 0 0
995995 −0.817178 + 1.27155i −0.817178 + 1.27155i
996996 0 0
997997 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
998998 0.425839 + 0.0612263i 0.425839 + 0.0612263i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1035.1.bd.a.244.1 10
3.2 odd 2 1035.1.bd.b.244.1 yes 10
5.4 even 2 1035.1.bd.b.244.1 yes 10
15.14 odd 2 CM 1035.1.bd.a.244.1 10
23.5 odd 22 1035.1.bd.b.649.1 yes 10
69.5 even 22 inner 1035.1.bd.a.649.1 yes 10
115.74 odd 22 inner 1035.1.bd.a.649.1 yes 10
345.74 even 22 1035.1.bd.b.649.1 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1035.1.bd.a.244.1 10 1.1 even 1 trivial
1035.1.bd.a.244.1 10 15.14 odd 2 CM
1035.1.bd.a.649.1 yes 10 69.5 even 22 inner
1035.1.bd.a.649.1 yes 10 115.74 odd 22 inner
1035.1.bd.b.244.1 yes 10 3.2 odd 2
1035.1.bd.b.244.1 yes 10 5.4 even 2
1035.1.bd.b.649.1 yes 10 23.5 odd 22
1035.1.bd.b.649.1 yes 10 345.74 even 22