# Properties

 Label 1024.4.b.j Level 1024 Weight 4 Character orbit 1024.b Analytic conductor 60.418 Analytic rank 0 Dimension 10 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1024 = 2^{10}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1024.b (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$60.4179558459$$ Analytic rank: $$0$$ Dimension: $$10$$ Coefficient field: $$\mathbb{Q}[x]/(x^{10} + \cdots)$$ Defining polynomial: $$x^{10} + 36 x^{8} + 405 x^{6} + 1380 x^{4} + 420 x^{2} + 32$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2^{22}$$ Twist minimal: no (minimal twist has level 16) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{9}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{7} q^{3} -\beta_{6} q^{5} + ( -3 - \beta_{2} ) q^{7} + ( -6 - \beta_{2} - \beta_{3} ) q^{9} +O(q^{10})$$ $$q + \beta_{7} q^{3} -\beta_{6} q^{5} + ( -3 - \beta_{2} ) q^{7} + ( -6 - \beta_{2} - \beta_{3} ) q^{9} + ( -\beta_{6} + \beta_{9} ) q^{11} + ( -\beta_{6} + 3 \beta_{7} + \beta_{8} - \beta_{9} ) q^{13} + ( 13 + 2 \beta_{3} - \beta_{4} + \beta_{5} ) q^{15} + ( 2 \beta_{2} - \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{17} + ( -\beta_{1} + 5 \beta_{6} - 2 \beta_{7} + 2 \beta_{8} + \beta_{9} ) q^{19} + ( \beta_{1} - 11 \beta_{7} + 3 \beta_{8} + \beta_{9} ) q^{21} + ( -29 - 2 \beta_{2} - 2 \beta_{3} - \beta_{4} + 3 \beta_{5} ) q^{23} + ( -6 - 3 \beta_{2} + 2 \beta_{3} - 6 \beta_{4} + \beta_{5} ) q^{25} + ( -5 \beta_{1} - 9 \beta_{6} + \beta_{7} + 2 \beta_{8} - \beta_{9} ) q^{27} + ( 3 \beta_{1} - \beta_{6} + 18 \beta_{7} + 2 \beta_{8} + 2 \beta_{9} ) q^{29} + ( 36 - 3 \beta_{2} - 2 \beta_{3} + 3 \beta_{4} + 3 \beta_{5} ) q^{31} + ( -1 + 3 \beta_{2} + \beta_{3} - 8 \beta_{4} - 2 \beta_{5} ) q^{33} + ( -11 \beta_{1} + 10 \beta_{6} - 2 \beta_{7} - 2 \beta_{8} ) q^{35} + ( 2 \beta_{1} + \beta_{6} - 29 \beta_{7} + \beta_{8} - \beta_{9} ) q^{37} + ( -73 - \beta_{2} + 2 \beta_{4} + 4 \beta_{5} ) q^{39} + ( -1 + \beta_{2} + 4 \beta_{3} - 14 \beta_{4} - \beta_{5} ) q^{41} + ( -20 \beta_{1} - 12 \beta_{6} + \beta_{7} - 4 \beta_{9} ) q^{43} + ( \beta_{1} + \beta_{6} + 41 \beta_{7} - \beta_{8} + 5 \beta_{9} ) q^{45} + ( 90 - 7 \beta_{2} - 10 \beta_{3} + 5 \beta_{4} + 3 \beta_{5} ) q^{47} + ( -11 - 4 \beta_{2} + 6 \beta_{3} - 16 \beta_{4} - 6 \beta_{5} ) q^{49} + ( -34 \beta_{1} + \beta_{6} + 7 \beta_{7} - 12 \beta_{8} - 5 \beta_{9} ) q^{51} + ( -3 \beta_{1} - \beta_{6} - 35 \beta_{7} - 13 \beta_{8} - 7 \beta_{9} ) q^{53} + ( -131 + 3 \beta_{2} + 12 \beta_{3} + 8 \beta_{4} - 6 \beta_{5} ) q^{55} + ( -13 + 15 \beta_{2} - 9 \beta_{3} - 8 \beta_{4} - 8 \beta_{5} ) q^{57} + ( -41 \beta_{1} + 18 \beta_{6} - 5 \beta_{7} - 14 \beta_{8} + 4 \beta_{9} ) q^{59} + ( -19 \beta_{1} + \beta_{6} + 41 \beta_{7} - 9 \beta_{8} - 11 \beta_{9} ) q^{61} + ( 263 + 2 \beta_{2} + 10 \beta_{3} - 21 \beta_{4} - 3 \beta_{5} ) q^{63} + ( -57 - 13 \beta_{2} - 4 \beta_{3} - 18 \beta_{4} + 13 \beta_{5} ) q^{65} + ( -50 \beta_{1} - 11 \beta_{6} - 10 \beta_{7} + 12 \beta_{8} - \beta_{9} ) q^{67} + ( -13 \beta_{1} + 12 \beta_{6} - 55 \beta_{7} - \beta_{8} + 5 \beta_{9} ) q^{69} + ( -347 + 10 \beta_{2} + 2 \beta_{3} - 15 \beta_{4} - 3 \beta_{5} ) q^{71} + ( 29 + 11 \beta_{2} + \beta_{3} - 16 \beta_{4} + 6 \beta_{5} ) q^{73} + ( -71 \beta_{1} + 28 \beta_{6} - 7 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} ) q^{75} + ( -3 \beta_{1} + 12 \beta_{6} + 23 \beta_{7} - 15 \beta_{8} - 5 \beta_{9} ) q^{77} + ( 446 + 12 \beta_{2} + 8 \beta_{3} - 6 \beta_{4} - 16 \beta_{5} ) q^{79} + ( -56 - 21 \beta_{2} - 9 \beta_{3} + 12 \beta_{5} ) q^{81} + ( -71 \beta_{1} - 48 \beta_{6} + 9 \beta_{7} + 22 \beta_{8} + 2 \beta_{9} ) q^{83} + ( -8 \beta_{1} - 3 \beta_{7} + 7 \beta_{8} + 17 \beta_{9} ) q^{85} + ( -617 - 2 \beta_{2} - 18 \beta_{3} - 29 \beta_{4} - 5 \beta_{5} ) q^{87} + ( -15 - 25 \beta_{2} + \beta_{3} - 8 \beta_{4} + 26 \beta_{5} ) q^{89} + ( -89 \beta_{1} + 4 \beta_{6} + 34 \beta_{8} + 2 \beta_{9} ) q^{91} + ( 48 \beta_{1} + 12 \beta_{6} + 6 \beta_{7} + 10 \beta_{8} + 14 \beta_{9} ) q^{93} + ( 701 + 15 \beta_{2} - 8 \beta_{3} + 56 \beta_{4} - 12 \beta_{5} ) q^{95} + ( 4 + 14 \beta_{2} - 3 \beta_{3} + 14 \beta_{4} - 29 \beta_{5} ) q^{97} + ( -125 \beta_{1} - 38 \beta_{6} + 17 \beta_{7} - 22 \beta_{8} + 4 \beta_{9} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$10q - 28q^{7} - 54q^{9} + O(q^{10})$$ $$10q - 28q^{7} - 54q^{9} + 124q^{15} + 4q^{17} - 276q^{23} - 50q^{25} + 368q^{31} - 4q^{33} - 732q^{39} + 944q^{47} - 94q^{49} - 1380q^{55} - 108q^{57} + 2628q^{63} - 492q^{65} - 3468q^{71} + 296q^{73} + 4416q^{79} - 482q^{81} - 6036q^{87} - 88q^{89} + 6900q^{95} - 4q^{97} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{10} + 36 x^{8} + 405 x^{6} + 1380 x^{4} + 420 x^{2} + 32$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$7 \nu^{9} + 250 \nu^{7} + 2823 \nu^{5} + 10042 \nu^{3} + 4528 \nu$$$$)/208$$ $$\beta_{2}$$ $$=$$ $$($$$$59 \nu^{8} + 2018 \nu^{6} + 21595 \nu^{4} + 70882 \nu^{2} + 17840$$$$)/416$$ $$\beta_{3}$$ $$=$$ $$($$$$137 \nu^{8} + 4982 \nu^{6} + 55785 \nu^{4} + 180342 \nu^{2} + 24496$$$$)/416$$ $$\beta_{4}$$ $$=$$ $$($$$$-83 \nu^{8} - 2994 \nu^{6} - 33651 \nu^{4} - 112562 \nu^{2} - 18656$$$$)/208$$ $$\beta_{5}$$ $$=$$ $$($$$$231 \nu^{8} + 8042 \nu^{6} + 86919 \nu^{4} + 277098 \nu^{2} + 35856$$$$)/416$$ $$\beta_{6}$$ $$=$$ $$($$$$217 \nu^{9} + 7750 \nu^{7} + 85849 \nu^{5} + 278022 \nu^{3} + 18896 \nu$$$$)/832$$ $$\beta_{7}$$ $$=$$ $$($$$$-157 \nu^{9} - 5622 \nu^{7} - 62573 \nu^{5} - 206166 \nu^{3} - 34432 \nu$$$$)/416$$ $$\beta_{8}$$ $$=$$ $$($$$$55 \nu^{9} + 1978 \nu^{7} + 22135 \nu^{5} + 73594 \nu^{3} + 13680 \nu$$$$)/64$$ $$\beta_{9}$$ $$=$$ $$($$$$1015 \nu^{9} + 36458 \nu^{7} + 407255 \nu^{5} + 1348970 \nu^{3} + 224336 \nu$$$$)/832$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$-2 \beta_{9} + 2 \beta_{8} - 2 \beta_{7} - \beta_{1}$$$$)/32$$ $$\nu^{2}$$ $$=$$ $$($$$$-2 \beta_{5} + \beta_{4} + 2 \beta_{3} + 6 \beta_{2} - 113$$$$)/16$$ $$\nu^{3}$$ $$=$$ $$($$$$26 \beta_{9} - 30 \beta_{8} + 2 \beta_{7} - 20 \beta_{6} + \beta_{1}$$$$)/32$$ $$\nu^{4}$$ $$=$$ $$($$$$29 \beta_{5} - 25 \beta_{4} - 40 \beta_{3} - 91 \beta_{2} + 1516$$$$)/16$$ $$\nu^{5}$$ $$=$$ $$($$$$-374 \beta_{9} + 454 \beta_{8} + 106 \beta_{7} + 384 \beta_{6} + 177 \beta_{1}$$$$)/32$$ $$\nu^{6}$$ $$=$$ $$($$$$-446 \beta_{5} + 423 \beta_{4} + 678 \beta_{3} + 1362 \beta_{2} - 21951$$$$)/16$$ $$\nu^{7}$$ $$=$$ $$($$$$5622 \beta_{9} - 6754 \beta_{8} - 2066 \beta_{7} - 6460 \beta_{6} - 4433 \beta_{1}$$$$)/32$$ $$\nu^{8}$$ $$=$$ $$($$$$7043 \beta_{5} - 6519 \beta_{4} - 10952 \beta_{3} - 20373 \beta_{2} + 326836$$$$)/16$$ $$\nu^{9}$$ $$=$$ $$($$$$-85962 \beta_{9} + 99866 \beta_{8} + 29462 \beta_{7} + 104544 \beta_{6} + 87103 \beta_{1}$$$$)/32$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1024\mathbb{Z}\right)^\times$$.

 $$n$$ $$5$$ $$1023$$ $$\chi(n)$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
513.1
 2.34476i 0.357936i − 0.446984i − 3.82089i 3.94652i − 3.94652i 3.82089i 0.446984i − 0.357936i − 2.34476i
0 8.43597i 0 12.2748i 0 −1.63924 0 −44.1656 0
513.2 0 7.77277i 0 6.59550i 0 −24.8965 0 −33.4160 0
513.3 0 4.62644i 0 17.8826i 0 −13.8754 0 5.59607 0
513.4 0 2.80518i 0 0.844070i 0 29.0828 0 19.1310 0
513.5 0 1.07024i 0 11.6331i 0 −2.67171 0 25.8546 0
513.6 0 1.07024i 0 11.6331i 0 −2.67171 0 25.8546 0
513.7 0 2.80518i 0 0.844070i 0 29.0828 0 19.1310 0
513.8 0 4.62644i 0 17.8826i 0 −13.8754 0 5.59607 0
513.9 0 7.77277i 0 6.59550i 0 −24.8965 0 −33.4160 0
513.10 0 8.43597i 0 12.2748i 0 −1.63924 0 −44.1656 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 513.10 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1024.4.b.j 10
4.b odd 2 1 1024.4.b.k 10
8.b even 2 1 inner 1024.4.b.j 10
8.d odd 2 1 1024.4.b.k 10
16.e even 4 2 1024.4.a.n 10
16.f odd 4 2 1024.4.a.m 10
32.g even 8 2 16.4.e.a 10
32.g even 8 2 128.4.e.b 10
32.h odd 8 2 64.4.e.a 10
32.h odd 8 2 128.4.e.a 10
96.o even 8 2 576.4.k.a 10
96.p odd 8 2 144.4.k.a 10

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
16.4.e.a 10 32.g even 8 2
64.4.e.a 10 32.h odd 8 2
128.4.e.a 10 32.h odd 8 2
128.4.e.b 10 32.g even 8 2
144.4.k.a 10 96.p odd 8 2
576.4.k.a 10 96.o even 8 2
1024.4.a.m 10 16.f odd 4 2
1024.4.a.n 10 16.e even 4 2
1024.4.b.j 10 1.a even 1 1 trivial
1024.4.b.j 10 8.b even 2 1 inner
1024.4.b.k 10 4.b odd 2 1
1024.4.b.k 10 8.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(1024, [\chi])$$:

 $$T_{3}^{10} + 162 T_{3}^{8} + 8504 T_{3}^{6} + 157552 T_{3}^{4} + 893712 T_{3}^{2} + 829472$$ $$T_{5}^{10} + 650 T_{5}^{8} + 138664 T_{5}^{6} + 11484496 T_{5}^{4} + 291758672 T_{5}^{2} + 202085408$$ $$T_{7}^{5} + 14 T_{7}^{4} - 736 T_{7}^{3} - 13376 T_{7}^{2} - 46736 T_{7} - 44000$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ $$1 - 108 T^{2} + 6317 T^{4} - 275312 T^{6} + 9907770 T^{8} - 295366792 T^{10} + 7222764330 T^{12} - 146312084592 T^{14} + 2447335229013 T^{16} - 30502389939948 T^{18} + 205891132094649 T^{20}$$
$5$ $$1 - 600 T^{2} + 191789 T^{4} - 42513504 T^{6} + 7224666922 T^{8} - 994659832592 T^{10} + 112885420656250 T^{12} - 10379273437500000 T^{14} + 731616973876953125 T^{16} - 35762786865234375000 T^{18} +$$$$93\!\cdots\!25$$$$T^{20}$$
$7$ $$( 1 + 14 T + 979 T^{2} + 5832 T^{3} + 372410 T^{4} + 662580 T^{5} + 127736630 T^{6} + 686128968 T^{7} + 39506181253 T^{8} + 193778020814 T^{9} + 4747561509943 T^{10} )^{2}$$
$11$ $$1 - 7260 T^{2} + 24476093 T^{4} - 51189622576 T^{6} + 78543614693626 T^{8} - 105919424238644520 T^{10} +$$$$13\!\cdots\!86$$$$T^{12} -$$$$16\!\cdots\!96$$$$T^{14} +$$$$13\!\cdots\!33$$$$T^{16} -$$$$71\!\cdots\!60$$$$T^{18} +$$$$17\!\cdots\!01$$$$T^{20}$$
$13$ $$1 - 12168 T^{2} + 76341149 T^{4} - 324341675296 T^{6} + 1028186938895082 T^{8} - 2540163312339385904 T^{10} +$$$$49\!\cdots\!38$$$$T^{12} -$$$$75\!\cdots\!76$$$$T^{14} +$$$$85\!\cdots\!21$$$$T^{16} -$$$$66\!\cdots\!48$$$$T^{18} +$$$$26\!\cdots\!49$$$$T^{20}$$
$17$ $$( 1 - 2 T + 12653 T^{2} - 102520 T^{3} + 98460610 T^{4} - 354493580 T^{5} + 483736976930 T^{6} - 2474583573880 T^{7} + 1500492401316541 T^{8} - 1165244474459522 T^{9} + 2862423051509815793 T^{10} )^{2}$$
$19$ $$1 - 33948 T^{2} + 631492045 T^{4} - 8119820572464 T^{6} + 79259035180229178 T^{8} -$$$$60\!\cdots\!76$$$$T^{10} +$$$$37\!\cdots\!18$$$$T^{12} -$$$$17\!\cdots\!04$$$$T^{14} +$$$$65\!\cdots\!45$$$$T^{16} -$$$$16\!\cdots\!08$$$$T^{18} +$$$$23\!\cdots\!01$$$$T^{20}$$
$23$ $$( 1 + 138 T + 47715 T^{2} + 4085400 T^{3} + 882303386 T^{4} + 56970028764 T^{5} + 10734985297462 T^{6} + 604785820920600 T^{7} + 85941999241707045 T^{8} + 3024218171618804298 T^{9} +$$$$26\!\cdots\!07$$$$T^{10} )^{2}$$
$29$ $$1 - 154168 T^{2} + 11039253245 T^{4} - 493373494152672 T^{6} + 16008852482124057194 T^{8} -$$$$42\!\cdots\!28$$$$T^{10} +$$$$95\!\cdots\!74$$$$T^{12} -$$$$17\!\cdots\!52$$$$T^{14} +$$$$23\!\cdots\!45$$$$T^{16} -$$$$19\!\cdots\!08$$$$T^{18} +$$$$74\!\cdots\!01$$$$T^{20}$$
$31$ $$( 1 - 184 T + 134043 T^{2} - 19809056 T^{3} + 7638677322 T^{4} - 852982867024 T^{5} + 227563836099702 T^{6} - 17580610117135136 T^{7} + 3544046273282822853 T^{8} -$$$$14\!\cdots\!24$$$$T^{9} +$$$$23\!\cdots\!51$$$$T^{10} )^{2}$$
$37$ $$1 - 361064 T^{2} + 63572869101 T^{4} - 7160954906480288 T^{6} +$$$$56\!\cdots\!06$$$$T^{8} -$$$$33\!\cdots\!92$$$$T^{10} +$$$$14\!\cdots\!54$$$$T^{12} -$$$$47\!\cdots\!28$$$$T^{14} +$$$$10\!\cdots\!29$$$$T^{16} -$$$$15\!\cdots\!04$$$$T^{18} +$$$$11\!\cdots\!49$$$$T^{20}$$
$41$ $$( 1 + 220509 T^{2} - 10715136 T^{3} + 24270968490 T^{4} - 1235215122432 T^{5} + 1672779419299290 T^{6} - 50898012956491776 T^{7} + 72190662971277946149 T^{8} +$$$$15\!\cdots\!01$$$$T^{10} )^{2}$$
$43$ $$1 - 551948 T^{2} + 145009588605 T^{4} - 24152295654927088 T^{6} +$$$$28\!\cdots\!30$$$$T^{8} -$$$$25\!\cdots\!12$$$$T^{10} +$$$$18\!\cdots\!70$$$$T^{12} -$$$$96\!\cdots\!88$$$$T^{14} +$$$$36\!\cdots\!45$$$$T^{16} -$$$$88\!\cdots\!48$$$$T^{18} +$$$$10\!\cdots\!49$$$$T^{20}$$
$47$ $$( 1 - 472 T + 462219 T^{2} - 171516064 T^{3} + 90105579914 T^{4} - 25593405310224 T^{5} + 9355031623411222 T^{6} - 1848808586238545056 T^{7} +$$$$51\!\cdots\!73$$$$T^{8} -$$$$54\!\cdots\!52$$$$T^{9} +$$$$12\!\cdots\!43$$$$T^{10} )^{2}$$
$53$ $$1 - 525160 T^{2} + 112387404877 T^{4} - 12025532417207968 T^{6} +$$$$67\!\cdots\!30$$$$T^{8} -$$$$40\!\cdots\!00$$$$T^{10} +$$$$15\!\cdots\!70$$$$T^{12} -$$$$59\!\cdots\!88$$$$T^{14} +$$$$12\!\cdots\!53$$$$T^{16} -$$$$12\!\cdots\!60$$$$T^{18} +$$$$53\!\cdots\!49$$$$T^{20}$$
$59$ $$1 - 958284 T^{2} + 532967592733 T^{4} - 207330855222256112 T^{6} +$$$$61\!\cdots\!62$$$$T^{8} -$$$$14\!\cdots\!28$$$$T^{10} +$$$$25\!\cdots\!42$$$$T^{12} -$$$$36\!\cdots\!72$$$$T^{14} +$$$$39\!\cdots\!93$$$$T^{16} -$$$$30\!\cdots\!24$$$$T^{18} +$$$$13\!\cdots\!01$$$$T^{20}$$
$61$ $$1 - 1146824 T^{2} + 509607070653 T^{4} - 80080659050426912 T^{6} -$$$$14\!\cdots\!54$$$$T^{8} +$$$$80\!\cdots\!72$$$$T^{10} -$$$$77\!\cdots\!94$$$$T^{12} -$$$$21\!\cdots\!52$$$$T^{14} +$$$$69\!\cdots\!93$$$$T^{16} -$$$$80\!\cdots\!84$$$$T^{18} +$$$$36\!\cdots\!01$$$$T^{20}$$
$67$ $$1 - 2130652 T^{2} + 2127009110445 T^{4} - 1334413095892987440 T^{6} +$$$$59\!\cdots\!58$$$$T^{8} -$$$$20\!\cdots\!52$$$$T^{10} +$$$$53\!\cdots\!02$$$$T^{12} -$$$$10\!\cdots\!40$$$$T^{14} +$$$$15\!\cdots\!05$$$$T^{16} -$$$$14\!\cdots\!92$$$$T^{18} +$$$$60\!\cdots\!49$$$$T^{20}$$
$71$ $$( 1 + 1734 T + 2753587 T^{2} + 2611066280 T^{3} + 2272726706522 T^{4} + 1414434499369348 T^{5} + 813433888257995542 T^{6} +$$$$33\!\cdots\!80$$$$T^{7} +$$$$12\!\cdots\!97$$$$T^{8} +$$$$28\!\cdots\!94$$$$T^{9} +$$$$58\!\cdots\!51$$$$T^{10} )^{2}$$
$73$ $$( 1 - 148 T + 1578093 T^{2} - 253463696 T^{3} + 1105903969594 T^{4} - 150341055768952 T^{5} + 430215444539549098 T^{6} - 38357732326510304144 T^{7} +$$$$92\!\cdots\!09$$$$T^{8} -$$$$33\!\cdots\!08$$$$T^{9} +$$$$89\!\cdots\!57$$$$T^{10} )^{2}$$
$79$ $$( 1 - 2208 T + 3816107 T^{2} - 4320867712 T^{3} + 4245684014154 T^{4} - 3176789940661184 T^{5} + 2093287800654474006 T^{6} -$$$$10\!\cdots\!52$$$$T^{7} +$$$$45\!\cdots\!33$$$$T^{8} -$$$$13\!\cdots\!28$$$$T^{9} +$$$$29\!\cdots\!99$$$$T^{10} )^{2}$$
$83$ $$1 - 2541516 T^{2} + 3317268679373 T^{4} - 2806354404035135728 T^{6} +$$$$18\!\cdots\!66$$$$T^{8} -$$$$10\!\cdots\!48$$$$T^{10} +$$$$59\!\cdots\!54$$$$T^{12} -$$$$29\!\cdots\!08$$$$T^{14} +$$$$11\!\cdots\!57$$$$T^{16} -$$$$29\!\cdots\!36$$$$T^{18} +$$$$37\!\cdots\!49$$$$T^{20}$$
$89$ $$( 1 + 44 T + 1822557 T^{2} + 625587056 T^{3} + 1619388326906 T^{4} + 839474353817096 T^{5} + 1141618569430595914 T^{6} +$$$$31\!\cdots\!16$$$$T^{7} +$$$$63\!\cdots\!13$$$$T^{8} +$$$$10\!\cdots\!24$$$$T^{9} +$$$$17\!\cdots\!49$$$$T^{10} )^{2}$$
$97$ $$( 1 + 2 T + 2565789 T^{2} - 723000584 T^{3} + 3231145430658 T^{4} - 1257303020547316 T^{5} + 2948979193634928834 T^{6} -$$$$60\!\cdots\!36$$$$T^{7} +$$$$19\!\cdots\!13$$$$T^{8} +$$$$13\!\cdots\!82$$$$T^{9} +$$$$63\!\cdots\!93$$$$T^{10} )^{2}$$