Properties

Label 1024.2.g.a
Level $1024$
Weight $2$
Character orbit 1024.g
Analytic conductor $8.177$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1024 = 2^{10} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1024.g (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.17668116698\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{48})\)
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{15} q^{3} + ( - \beta_{9} - \beta_{8} + \beta_{3} - 1) q^{5} + (\beta_{15} - \beta_{13} - \beta_{7} - \beta_{5}) q^{7} + ( - 2 \beta_{11} - \beta_{8} - \beta_{2} - \beta_1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{15} q^{3} + ( - \beta_{9} - \beta_{8} + \beta_{3} - 1) q^{5} + (\beta_{15} - \beta_{13} - \beta_{7} - \beta_{5}) q^{7} + ( - 2 \beta_{11} - \beta_{8} - \beta_{2} - \beta_1) q^{9} + (\beta_{12} - \beta_{10} - \beta_{7} - 2 \beta_{5}) q^{11} + (\beta_{11} + 2 \beta_{3} + \beta_{2} + 2 \beta_1) q^{13} + (\beta_{14} + \beta_{12} - \beta_{10} - \beta_{7} + \beta_{6}) q^{15} + (\beta_{9} - \beta_{8} - \beta_{4} - \beta_{3} + 3 \beta_1 + 1) q^{17} + ( - \beta_{14} - 2 \beta_{13} + \beta_{12} + 2 \beta_{10} + 2 \beta_{7} + \beta_{6} + \beta_{5}) q^{19} + ( - 4 \beta_{11} - 2 \beta_{9} + \beta_{8} - 2 \beta_{4} + 3 \beta_{3} - 2 \beta_{2} + \cdots + 1) q^{21}+ \cdots + ( - \beta_{15} - \beta_{13} - 4 \beta_{12} - \beta_{10} + 4 \beta_{7} + 2 \beta_{6} - 2 \beta_{5}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{5} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 8 q^{5} - 16 q^{9} + 8 q^{13} - 16 q^{21} - 32 q^{25} + 24 q^{29} - 80 q^{33} - 40 q^{37} - 16 q^{41} - 24 q^{45} + 56 q^{53} - 16 q^{57} - 8 q^{61} - 32 q^{65} + 64 q^{69} + 32 q^{73} - 64 q^{77} + 48 q^{85} + 32 q^{89} - 80 q^{93} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{48}^{6} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{48}^{10} + \zeta_{48}^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{48}^{12} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{48}^{14} + \zeta_{48}^{8} + \zeta_{48}^{4} + \zeta_{48}^{2} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \zeta_{48}^{15} + \zeta_{48}^{5} + \zeta_{48} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \zeta_{48}^{13} + \zeta_{48}^{9} + \zeta_{48}^{3} - \zeta_{48} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{48}^{15} - \zeta_{48}^{5} + \zeta_{48} \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( -\zeta_{48}^{10} + \zeta_{48}^{2} \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( -\zeta_{48}^{14} - \zeta_{48}^{8} + \zeta_{48}^{4} - \zeta_{48}^{2} \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( -\zeta_{48}^{15} + \zeta_{48}^{5} - \zeta_{48} \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( -\zeta_{48}^{14} + \zeta_{48}^{8} - \zeta_{48}^{4} - \zeta_{48}^{2} \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( -\zeta_{48}^{13} + \zeta_{48}^{9} - \zeta_{48}^{3} - \zeta_{48} \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( -\zeta_{48}^{13} + \zeta_{48}^{9} + \zeta_{48}^{3} - \zeta_{48} \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( -\zeta_{48}^{15} + \zeta_{48}^{13} + \zeta_{48}^{11} + \zeta_{48}^{7} + \zeta_{48} \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( -\zeta_{48}^{13} - \zeta_{48}^{11} + \zeta_{48}^{7} + \zeta_{48}^{5} \) Copy content Toggle raw display
\(\zeta_{48}\)\(=\) \( ( \beta_{7} + \beta_{5} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{2}\)\(=\) \( ( \beta_{8} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{3}\)\(=\) \( ( \beta_{13} - \beta_{12} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{4}\)\(=\) \( ( \beta_{9} + \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{5}\)\(=\) \( ( \beta_{10} + \beta_{5} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{6}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{48}^{7}\)\(=\) \( ( \beta_{15} + \beta_{14} - \beta_{10} - \beta_{7} - \beta_{5} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{8}\)\(=\) \( ( \beta_{11} + \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{9}\)\(=\) \( ( \beta_{12} + \beta_{7} + \beta_{6} + \beta_{5} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{10}\)\(=\) \( ( -\beta_{8} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{11}\)\(=\) \( ( -\beta_{15} + \beta_{14} + \beta_{13} - \beta_{7} - \beta_{6} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{12}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display
\(\zeta_{48}^{13}\)\(=\) \( ( -\beta_{13} + \beta_{6} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{14}\)\(=\) \( ( -\beta_{11} - \beta_{9} - \beta_{8} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{15}\)\(=\) \( ( -\beta_{10} - \beta_{7} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1024\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(1023\)
\(\chi(n)\) \(-\beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
0.793353 0.608761i
0.130526 + 0.991445i
−0.130526 0.991445i
−0.793353 + 0.608761i
−0.991445 0.130526i
−0.608761 + 0.793353i
0.608761 0.793353i
0.991445 + 0.130526i
−0.991445 + 0.130526i
−0.608761 0.793353i
0.608761 + 0.793353i
0.991445 0.130526i
0.793353 + 0.608761i
0.130526 0.991445i
−0.130526 + 0.991445i
−0.793353 0.608761i
0 −1.12197 + 2.70868i 0 0.366025 0.151613i 0 −3.06528 + 3.06528i 0 −3.95680 3.95680i 0
129.2 0 −0.184592 + 0.445644i 0 −1.36603 + 0.565826i 0 0.135131 0.135131i 0 1.95680 + 1.95680i 0
129.3 0 0.184592 0.445644i 0 −1.36603 + 0.565826i 0 −0.135131 + 0.135131i 0 1.95680 + 1.95680i 0
129.4 0 1.12197 2.70868i 0 0.366025 0.151613i 0 3.06528 3.06528i 0 −3.95680 3.95680i 0
385.1 0 −1.40211 + 0.580775i 0 −1.36603 + 3.29788i 0 1.02642 + 1.02642i 0 −0.492694 + 0.492694i 0
385.2 0 −0.860919 + 0.356604i 0 0.366025 0.883663i 0 −2.35207 2.35207i 0 −1.50731 + 1.50731i 0
385.3 0 0.860919 0.356604i 0 0.366025 0.883663i 0 2.35207 + 2.35207i 0 −1.50731 + 1.50731i 0
385.4 0 1.40211 0.580775i 0 −1.36603 + 3.29788i 0 −1.02642 1.02642i 0 −0.492694 + 0.492694i 0
641.1 0 −1.40211 0.580775i 0 −1.36603 3.29788i 0 1.02642 1.02642i 0 −0.492694 0.492694i 0
641.2 0 −0.860919 0.356604i 0 0.366025 + 0.883663i 0 −2.35207 + 2.35207i 0 −1.50731 1.50731i 0
641.3 0 0.860919 + 0.356604i 0 0.366025 + 0.883663i 0 2.35207 2.35207i 0 −1.50731 1.50731i 0
641.4 0 1.40211 + 0.580775i 0 −1.36603 3.29788i 0 −1.02642 + 1.02642i 0 −0.492694 0.492694i 0
897.1 0 −1.12197 2.70868i 0 0.366025 + 0.151613i 0 −3.06528 3.06528i 0 −3.95680 + 3.95680i 0
897.2 0 −0.184592 0.445644i 0 −1.36603 0.565826i 0 0.135131 + 0.135131i 0 1.95680 1.95680i 0
897.3 0 0.184592 + 0.445644i 0 −1.36603 0.565826i 0 −0.135131 0.135131i 0 1.95680 1.95680i 0
897.4 0 1.12197 + 2.70868i 0 0.366025 + 0.151613i 0 3.06528 + 3.06528i 0 −3.95680 + 3.95680i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 897.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
32.g even 8 1 inner
32.h odd 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1024.2.g.a 16
4.b odd 2 1 inner 1024.2.g.a 16
8.b even 2 1 1024.2.g.f yes 16
8.d odd 2 1 1024.2.g.f yes 16
16.e even 4 1 1024.2.g.d yes 16
16.e even 4 1 1024.2.g.g yes 16
16.f odd 4 1 1024.2.g.d yes 16
16.f odd 4 1 1024.2.g.g yes 16
32.g even 8 1 inner 1024.2.g.a 16
32.g even 8 1 1024.2.g.d yes 16
32.g even 8 1 1024.2.g.f yes 16
32.g even 8 1 1024.2.g.g yes 16
32.h odd 8 1 inner 1024.2.g.a 16
32.h odd 8 1 1024.2.g.d yes 16
32.h odd 8 1 1024.2.g.f yes 16
32.h odd 8 1 1024.2.g.g yes 16
64.i even 16 1 4096.2.a.i 8
64.i even 16 1 4096.2.a.s 8
64.j odd 16 1 4096.2.a.i 8
64.j odd 16 1 4096.2.a.s 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1024.2.g.a 16 1.a even 1 1 trivial
1024.2.g.a 16 4.b odd 2 1 inner
1024.2.g.a 16 32.g even 8 1 inner
1024.2.g.a 16 32.h odd 8 1 inner
1024.2.g.d yes 16 16.e even 4 1
1024.2.g.d yes 16 16.f odd 4 1
1024.2.g.d yes 16 32.g even 8 1
1024.2.g.d yes 16 32.h odd 8 1
1024.2.g.f yes 16 8.b even 2 1
1024.2.g.f yes 16 8.d odd 2 1
1024.2.g.f yes 16 32.g even 8 1
1024.2.g.f yes 16 32.h odd 8 1
1024.2.g.g yes 16 16.e even 4 1
1024.2.g.g yes 16 16.f odd 4 1
1024.2.g.g yes 16 32.g even 8 1
1024.2.g.g yes 16 32.h odd 8 1
4096.2.a.i 8 64.i even 16 1
4096.2.a.i 8 64.j odd 16 1
4096.2.a.s 8 64.i even 16 1
4096.2.a.s 8 64.j odd 16 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1024, [\chi])\):

\( T_{3}^{16} + 8T_{3}^{14} + 32T_{3}^{12} - 208T_{3}^{10} + 568T_{3}^{8} - 416T_{3}^{6} + 128T_{3}^{4} + 64T_{3}^{2} + 16 \) Copy content Toggle raw display
\( T_{5}^{8} + 4T_{5}^{7} + 16T_{5}^{6} + 16T_{5}^{5} + 8T_{5}^{3} + 16T_{5}^{2} - 16T_{5} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} + 8 T^{14} + 32 T^{12} - 208 T^{10} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( (T^{8} + 4 T^{7} + 16 T^{6} + 16 T^{5} + \cdots + 4)^{2} \) Copy content Toggle raw display
$7$ \( T^{16} + 480 T^{12} + 45344 T^{8} + \cdots + 256 \) Copy content Toggle raw display
$11$ \( T^{16} - 8 T^{14} + 32 T^{12} + \cdots + 406586896 \) Copy content Toggle raw display
$13$ \( (T^{8} - 4 T^{7} + 16 T^{6} + 8 T^{5} + \cdots + 2116)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} + 72 T^{6} + 1664 T^{4} + \cdots + 40000)^{2} \) Copy content Toggle raw display
$19$ \( T^{16} - 24 T^{14} + 288 T^{12} + \cdots + 4477456 \) Copy content Toggle raw display
$23$ \( T^{16} + 4704 T^{12} + \cdots + 6505390336 \) Copy content Toggle raw display
$29$ \( (T^{8} - 12 T^{7} + 16 T^{6} + \cdots + 1119364)^{2} \) Copy content Toggle raw display
$31$ \( (T^{8} - 224 T^{6} + 15680 T^{4} + \cdots + 1024)^{2} \) Copy content Toggle raw display
$37$ \( (T^{8} + 20 T^{7} + 160 T^{6} + 680 T^{5} + \cdots + 8836)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} + 8 T^{7} + 32 T^{6} - 144 T^{5} + \cdots + 8464)^{2} \) Copy content Toggle raw display
$43$ \( T^{16} - 280 T^{14} + \cdots + 1749006250000 \) Copy content Toggle raw display
$47$ \( (T^{8} + 256 T^{6} + 17984 T^{4} + \cdots + 1364224)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} - 28 T^{7} + 432 T^{6} + \cdots + 21316)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} + 216 T^{14} + \cdots + 36030006250000 \) Copy content Toggle raw display
$61$ \( (T^{8} + 4 T^{7} + 144 T^{6} + 760 T^{5} + \cdots + 2500)^{2} \) Copy content Toggle raw display
$67$ \( T^{16} + 24 T^{14} + \cdots + 78650008458256 \) Copy content Toggle raw display
$71$ \( T^{16} + 16608 T^{12} + \cdots + 355196928256 \) Copy content Toggle raw display
$73$ \( (T^{8} - 16 T^{7} + 128 T^{6} + \cdots + 2062096)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} + 128 T^{6} + 4928 T^{4} + \cdots + 160000)^{2} \) Copy content Toggle raw display
$83$ \( T^{16} - 168 T^{14} + \cdots + 21848556971536 \) Copy content Toggle raw display
$89$ \( (T^{8} - 16 T^{7} + 128 T^{6} + \cdots + 85264)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 4 T^{3} - 148 T^{2} - 304 T + 376)^{4} \) Copy content Toggle raw display
show more
show less