Properties

Label 1024.2.e
Level $1024$
Weight $2$
Character orbit 1024.e
Rep. character $\chi_{1024}(257,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $56$
Newform subspaces $16$
Sturm bound $256$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1024 = 2^{10} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1024.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 16 \)
Sturm bound: \(256\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(3\), \(5\), \(47\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1024, [\chi])\).

Total New Old
Modular forms 304 72 232
Cusp forms 208 56 152
Eisenstein series 96 16 80

Trace form

\( 56 q + 16 q^{17} - 16 q^{33} + 8 q^{49} - 16 q^{65} + 24 q^{81} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1024, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1024.2.e.a 1024.e 16.e $2$ $8.177$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-2}) \) 128.2.b.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(2 i-2)q^{3}-5 i q^{9}+(2 i+2)q^{11}+\cdots\)
1024.2.e.b 1024.e 16.e $2$ $8.177$ \(\Q(\sqrt{-1}) \) None 512.2.a.c \(0\) \(-2\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{3}+(-2 i-2)q^{5}-4 i q^{7}+\cdots\)
1024.2.e.c 1024.e 16.e $2$ $8.177$ \(\Q(\sqrt{-1}) \) None 512.2.a.c \(0\) \(-2\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{3}+(2 i+2)q^{5}+4 i q^{7}+\cdots\)
1024.2.e.d 1024.e 16.e $2$ $8.177$ \(\Q(\sqrt{-1}) \) None 512.2.a.c \(0\) \(2\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i+1)q^{3}+(-2 i-2)q^{5}+4 i q^{7}+\cdots\)
1024.2.e.e 1024.e 16.e $2$ $8.177$ \(\Q(\sqrt{-1}) \) None 512.2.a.c \(0\) \(2\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i+1)q^{3}+(2 i+2)q^{5}-4 i q^{7}+\cdots\)
1024.2.e.f 1024.e 16.e $2$ $8.177$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-2}) \) 128.2.b.a \(0\) \(4\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(-2 i+2)q^{3}-5 i q^{9}+(-2 i-2)q^{11}+\cdots\)
1024.2.e.g 1024.e 16.e $4$ $8.177$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-2}) \) 512.2.a.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(-\beta_{2}+\beta_1-1)q^{3}+(-2\beta_{3}+3\beta_{2}-2\beta_1)q^{9}+\cdots\)
1024.2.e.h 1024.e 16.e $4$ $8.177$ \(\Q(\zeta_{8})\) None 512.2.a.b \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(\beta_{2}-1)q^{3}-\beta_1 q^{5}+(-\beta_{3}-\beta_1)q^{7}+\cdots\)
1024.2.e.i 1024.e 16.e $4$ $8.177$ \(\Q(\zeta_{8})\) None 128.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta_1 q^{3}+\beta_{3} q^{5}+4\beta_{2} q^{7}+\beta_{2} q^{9}+\cdots\)
1024.2.e.j 1024.e 16.e $4$ $8.177$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-1}) \) 32.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q-\beta_1 q^{5}+3\beta_{2} q^{9}-3\beta_{3} q^{13}-2 q^{17}+\cdots\)
1024.2.e.k 1024.e 16.e $4$ $8.177$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-1}) \) 128.2.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+\beta_1 q^{5}+3\beta_{2} q^{9}-\beta_{3} q^{13}+2 q^{17}+\cdots\)
1024.2.e.l 1024.e 16.e $4$ $8.177$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-2}) \) 64.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+\beta_1 q^{3}+\beta_{2} q^{9}-3\beta_{3} q^{11}+6 q^{17}+\cdots\)
1024.2.e.m 1024.e 16.e $4$ $8.177$ \(\Q(\zeta_{8})\) None 128.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta_1 q^{3}-\beta_{3} q^{5}-4\beta_{2} q^{7}+\beta_{2} q^{9}+\cdots\)
1024.2.e.n 1024.e 16.e $4$ $8.177$ \(\Q(\zeta_{8})\) None 512.2.a.b \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta_{2}+1)q^{3}-\beta_1 q^{5}+(\beta_{3}+\beta_1)q^{7}+\cdots\)
1024.2.e.o 1024.e 16.e $4$ $8.177$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-2}) \) 512.2.a.a \(0\) \(4\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(\beta_{2}+\beta_1+1)q^{3}+(2\beta_{3}+3\beta_{2}+2\beta_1)q^{9}+\cdots\)
1024.2.e.p 1024.e 16.e $8$ $8.177$ \(\Q(\zeta_{24})\) None 512.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta_{7} q^{3}+\beta_1 q^{5}-\beta_{6} q^{7}-3\beta_{2} q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1024, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1024, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(256, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(512, [\chi])\)\(^{\oplus 2}\)