Properties

Label 1024.2.a.b
Level $1024$
Weight $2$
Character orbit 1024.a
Self dual yes
Analytic conductor $8.177$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1024 = 2^{10} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1024.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(8.17668116698\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 16)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} - \beta q^{5} - 2 q^{7} - q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{3} - \beta q^{5} - 2 q^{7} - q^{9} - \beta q^{11} - \beta q^{13} - 2 q^{15} + 2 q^{17} + 3 \beta q^{19} - 2 \beta q^{21} - 6 q^{23} - 3 q^{25} - 4 \beta q^{27} - 3 \beta q^{29} - 8 q^{31} - 2 q^{33} + 2 \beta q^{35} + 3 \beta q^{37} - 2 q^{39} - 5 \beta q^{43} + \beta q^{45} - 8 q^{47} - 3 q^{49} + 2 \beta q^{51} + 5 \beta q^{53} + 2 q^{55} + 6 q^{57} - 3 \beta q^{59} + 9 \beta q^{61} + 2 q^{63} + 2 q^{65} + 5 \beta q^{67} - 6 \beta q^{69} - 10 q^{71} + 4 q^{73} - 3 \beta q^{75} + 2 \beta q^{77} - 5 q^{81} - \beta q^{83} - 2 \beta q^{85} - 6 q^{87} + 4 q^{89} + 2 \beta q^{91} - 8 \beta q^{93} - 6 q^{95} - 2 q^{97} + \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{7} - 2 q^{9} - 4 q^{15} + 4 q^{17} - 12 q^{23} - 6 q^{25} - 16 q^{31} - 4 q^{33} - 4 q^{39} - 16 q^{47} - 6 q^{49} + 4 q^{55} + 12 q^{57} + 4 q^{63} + 4 q^{65} - 20 q^{71} + 8 q^{73} - 10 q^{81} - 12 q^{87} + 8 q^{89} - 12 q^{95} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −1.41421 0 1.41421 0 −2.00000 0 −1.00000 0
1.2 0 1.41421 0 −1.41421 0 −2.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1024.2.a.b 2
3.b odd 2 1 9216.2.a.d 2
4.b odd 2 1 1024.2.a.e 2
8.b even 2 1 inner 1024.2.a.b 2
8.d odd 2 1 1024.2.a.e 2
12.b even 2 1 9216.2.a.s 2
16.e even 4 2 1024.2.b.e 2
16.f odd 4 2 1024.2.b.b 2
24.f even 2 1 9216.2.a.s 2
24.h odd 2 1 9216.2.a.d 2
32.g even 8 2 16.2.e.a 2
32.g even 8 2 128.2.e.b 2
32.h odd 8 2 64.2.e.a 2
32.h odd 8 2 128.2.e.a 2
96.o even 8 2 576.2.k.a 2
96.o even 8 2 1152.2.k.a 2
96.p odd 8 2 144.2.k.a 2
96.p odd 8 2 1152.2.k.b 2
160.u even 8 2 1600.2.q.b 2
160.v odd 8 2 400.2.q.b 2
160.y odd 8 2 1600.2.l.a 2
160.z even 8 2 400.2.l.c 2
160.ba even 8 2 1600.2.q.a 2
160.bb odd 8 2 400.2.q.a 2
224.v odd 8 2 784.2.m.b 2
224.bc odd 24 4 784.2.x.c 4
224.bd even 24 4 784.2.x.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
16.2.e.a 2 32.g even 8 2
64.2.e.a 2 32.h odd 8 2
128.2.e.a 2 32.h odd 8 2
128.2.e.b 2 32.g even 8 2
144.2.k.a 2 96.p odd 8 2
400.2.l.c 2 160.z even 8 2
400.2.q.a 2 160.bb odd 8 2
400.2.q.b 2 160.v odd 8 2
576.2.k.a 2 96.o even 8 2
784.2.m.b 2 224.v odd 8 2
784.2.x.c 4 224.bc odd 24 4
784.2.x.f 4 224.bd even 24 4
1024.2.a.b 2 1.a even 1 1 trivial
1024.2.a.b 2 8.b even 2 1 inner
1024.2.a.e 2 4.b odd 2 1
1024.2.a.e 2 8.d odd 2 1
1024.2.b.b 2 16.f odd 4 2
1024.2.b.e 2 16.e even 4 2
1152.2.k.a 2 96.o even 8 2
1152.2.k.b 2 96.p odd 8 2
1600.2.l.a 2 160.y odd 8 2
1600.2.q.a 2 160.ba even 8 2
1600.2.q.b 2 160.u even 8 2
9216.2.a.d 2 3.b odd 2 1
9216.2.a.d 2 24.h odd 2 1
9216.2.a.s 2 12.b even 2 1
9216.2.a.s 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1024))\):

\( T_{3}^{2} - 2 \) Copy content Toggle raw display
\( T_{5}^{2} - 2 \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2 \) Copy content Toggle raw display
$5$ \( T^{2} - 2 \) Copy content Toggle raw display
$7$ \( (T + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 2 \) Copy content Toggle raw display
$13$ \( T^{2} - 2 \) Copy content Toggle raw display
$17$ \( (T - 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 18 \) Copy content Toggle raw display
$23$ \( (T + 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 18 \) Copy content Toggle raw display
$31$ \( (T + 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 18 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 50 \) Copy content Toggle raw display
$47$ \( (T + 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 50 \) Copy content Toggle raw display
$59$ \( T^{2} - 18 \) Copy content Toggle raw display
$61$ \( T^{2} - 162 \) Copy content Toggle raw display
$67$ \( T^{2} - 50 \) Copy content Toggle raw display
$71$ \( (T + 10)^{2} \) Copy content Toggle raw display
$73$ \( (T - 4)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 2 \) Copy content Toggle raw display
$89$ \( (T - 4)^{2} \) Copy content Toggle raw display
$97$ \( (T + 2)^{2} \) Copy content Toggle raw display
show more
show less