Defining parameters
Level: | \( N \) | = | \( 102 = 2 \cdot 3 \cdot 17 \) |
Weight: | \( k \) | = | \( 2 \) |
Character orbit: | \([\chi]\) | = | 102.h (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | = | \( 17 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Newforms: | \( 2 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(10\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(102, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 88 | 16 | 72 |
Cusp forms | 56 | 16 | 40 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(102, [\chi])\) into irreducible Hecke orbits
Label | Dim. | \(A\) | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||
102.2.h.a | \(8\) | \(0.814\) | \(\Q(\zeta_{16})\) | None | \(0\) | \(0\) | \(8\) | \(0\) | \(q-\zeta_{16}^{2}q^{2}+\zeta_{16}^{3}q^{3}+\zeta_{16}^{4}q^{4}+\cdots\) |
102.2.h.b | \(8\) | \(0.814\) | \(\Q(\zeta_{16})\) | None | \(0\) | \(0\) | \(8\) | \(0\) | \(q+\zeta_{16}^{6}q^{2}+\zeta_{16}q^{3}-\zeta_{16}^{4}q^{4}+(1+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(102, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(102, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 2}\)