Properties

Label 1014.6.a.o
Level $1014$
Weight $6$
Character orbit 1014.a
Self dual yes
Analytic conductor $162.629$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,6,Mod(1,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1014.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.629193290\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 727x - 6617 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} - 9 q^{3} + 16 q^{4} + (\beta_1 + 13) q^{5} + 36 q^{6} + ( - \beta_{2} + 57) q^{7} - 64 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} - 9 q^{3} + 16 q^{4} + (\beta_1 + 13) q^{5} + 36 q^{6} + ( - \beta_{2} + 57) q^{7} - 64 q^{8} + 81 q^{9} + ( - 4 \beta_1 - 52) q^{10} + ( - \beta_{2} + 7 \beta_1 + 52) q^{11} - 144 q^{12} + (4 \beta_{2} - 228) q^{14} + ( - 9 \beta_1 - 117) q^{15} + 256 q^{16} + ( - 10 \beta_{2} + 8 \beta_1 + 140) q^{17} - 324 q^{18} + ( - 5 \beta_{2} - 34 \beta_1 + 35) q^{19} + (16 \beta_1 + 208) q^{20} + (9 \beta_{2} - 513) q^{21} + (4 \beta_{2} - 28 \beta_1 - 208) q^{22} + ( - 16 \beta_{2} - 16 \beta_1 + 80) q^{23} + 576 q^{24} + ( - 10 \beta_{2} + 56 \beta_1 - 135) q^{25} - 729 q^{27} + ( - 16 \beta_{2} + 912) q^{28} + ( - 10 \beta_{2} + 56 \beta_1 + 3116) q^{29} + (36 \beta_1 + 468) q^{30} + (\beta_{2} - 66 \beta_1 - 2451) q^{31} - 1024 q^{32} + (9 \beta_{2} - 63 \beta_1 - 468) q^{33} + (40 \beta_{2} - 32 \beta_1 - 560) q^{34} + (16 \beta_{2} + 112 \beta_1 + 976) q^{35} + 1296 q^{36} + (6 \beta_{2} + 112 \beta_1 + 2554) q^{37} + (20 \beta_{2} + 136 \beta_1 - 140) q^{38} + ( - 64 \beta_1 - 832) q^{40} + (54 \beta_{2} - \beta_1 + 6029) q^{41} + ( - 36 \beta_{2} + 2052) q^{42} + ( - 118 \beta_{2} - 40 \beta_1 + 4086) q^{43} + ( - 16 \beta_{2} + 112 \beta_1 + 832) q^{44} + (81 \beta_1 + 1053) q^{45} + (64 \beta_{2} + 64 \beta_1 - 320) q^{46} + ( - 163 \beta_{2} + 7 \beta_1 + 1414) q^{47} - 2304 q^{48} + ( - 58 \beta_{2} - 136 \beta_1 + 571) q^{49} + (40 \beta_{2} - 224 \beta_1 + 540) q^{50} + (90 \beta_{2} - 72 \beta_1 - 1260) q^{51} + ( - 72 \beta_{2} + 528 \beta_1 - 7218) q^{53} + 2916 q^{54} + ( - 54 \beta_{2} + 408 \beta_1 + 20658) q^{55} + (64 \beta_{2} - 3648) q^{56} + (45 \beta_{2} + 306 \beta_1 - 315) q^{57} + (40 \beta_{2} - 224 \beta_1 - 12464) q^{58} + ( - 189 \beta_{2} - 263 \beta_1 - 422) q^{59} + ( - 144 \beta_1 - 1872) q^{60} + ( - 10 \beta_{2} - 616 \beta_1 - 324) q^{61} + ( - 4 \beta_{2} + 264 \beta_1 + 9804) q^{62} + ( - 81 \beta_{2} + 4617) q^{63} + 4096 q^{64} + ( - 36 \beta_{2} + 252 \beta_1 + 1872) q^{66} + ( - 121 \beta_{2} + 68 \beta_1 + 35621) q^{67} + ( - 160 \beta_{2} + 128 \beta_1 + 2240) q^{68} + (144 \beta_{2} + 144 \beta_1 - 720) q^{69} + ( - 64 \beta_{2} - 448 \beta_1 - 3904) q^{70} + (27 \beta_{2} + 651 \beta_1 - 23124) q^{71} - 5184 q^{72} + (56 \beta_{2} + 242 \beta_1 + 22226) q^{73} + ( - 24 \beta_{2} - 448 \beta_1 - 10216) q^{74} + (90 \beta_{2} - 504 \beta_1 + 1215) q^{75} + ( - 80 \beta_{2} - 544 \beta_1 + 560) q^{76} + (150 \beta_{2} + 648 \beta_1 + 18738) q^{77} + (280 \beta_{2} + 64 \beta_1 - 28336) q^{79} + (256 \beta_1 + 3328) q^{80} + 6561 q^{81} + ( - 216 \beta_{2} + 4 \beta_1 - 24116) q^{82} + (73 \beta_{2} - 201 \beta_1 - 13590) q^{83} + (144 \beta_{2} - 8208) q^{84} + (80 \beta_{2} + 1034 \beta_1 + 26738) q^{85} + (472 \beta_{2} + 160 \beta_1 - 16344) q^{86} + (90 \beta_{2} - 504 \beta_1 - 28044) q^{87} + (64 \beta_{2} - 448 \beta_1 - 3328) q^{88} + (194 \beta_{2} + 853 \beta_1 + 4159) q^{89} + ( - 324 \beta_1 - 4212) q^{90} + ( - 256 \beta_{2} - 256 \beta_1 + 1280) q^{92} + ( - 9 \beta_{2} + 594 \beta_1 + 22059) q^{93} + (652 \beta_{2} - 28 \beta_1 - 5656) q^{94} + (420 \beta_{2} - 1152 \beta_1 - 94284) q^{95} + 9216 q^{96} + ( - 556 \beta_{2} + 82 \beta_1 - 34250) q^{97} + (232 \beta_{2} + 544 \beta_1 - 2284) q^{98} + ( - 81 \beta_{2} + 567 \beta_1 + 4212) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 12 q^{2} - 27 q^{3} + 48 q^{4} + 40 q^{5} + 108 q^{6} + 170 q^{7} - 192 q^{8} + 243 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 12 q^{2} - 27 q^{3} + 48 q^{4} + 40 q^{5} + 108 q^{6} + 170 q^{7} - 192 q^{8} + 243 q^{9} - 160 q^{10} + 162 q^{11} - 432 q^{12} - 680 q^{14} - 360 q^{15} + 768 q^{16} + 418 q^{17} - 972 q^{18} + 66 q^{19} + 640 q^{20} - 1530 q^{21} - 648 q^{22} + 208 q^{23} + 1728 q^{24} - 359 q^{25} - 2187 q^{27} + 2720 q^{28} + 9394 q^{29} + 1440 q^{30} - 7418 q^{31} - 3072 q^{32} - 1458 q^{33} - 1672 q^{34} + 3056 q^{35} + 3888 q^{36} + 7780 q^{37} - 264 q^{38} - 2560 q^{40} + 18140 q^{41} + 6120 q^{42} + 12100 q^{43} + 2592 q^{44} + 3240 q^{45} - 832 q^{46} + 4086 q^{47} - 6912 q^{48} + 1519 q^{49} + 1436 q^{50} - 3762 q^{51} - 21198 q^{53} + 8748 q^{54} + 62328 q^{55} - 10880 q^{56} - 594 q^{57} - 37576 q^{58} - 1718 q^{59} - 5760 q^{60} - 1598 q^{61} + 29672 q^{62} + 13770 q^{63} + 12288 q^{64} + 5832 q^{66} + 106810 q^{67} + 6688 q^{68} - 1872 q^{69} - 12224 q^{70} - 68694 q^{71} - 15552 q^{72} + 66976 q^{73} - 31120 q^{74} + 3231 q^{75} + 1056 q^{76} + 57012 q^{77} - 84664 q^{79} + 10240 q^{80} + 19683 q^{81} - 72560 q^{82} - 40898 q^{83} - 24480 q^{84} + 81328 q^{85} - 48400 q^{86} - 84546 q^{87} - 10368 q^{88} + 13524 q^{89} - 12960 q^{90} + 3328 q^{92} + 66762 q^{93} - 16344 q^{94} - 283584 q^{95} + 27648 q^{96} - 103224 q^{97} - 6076 q^{98} + 13122 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 727x - 6617 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} - 18\nu - 478 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 484 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta _1 + 2 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} + 484 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−11.2152
31.1537
−18.9385
−4.00000 −9.00000 16.0000 −37.1158 36.0000 176.407 −64.0000 81.0000 148.463
1.2 −4.00000 −9.00000 16.0000 −9.73803 36.0000 −105.184 −64.0000 81.0000 38.9521
1.3 −4.00000 −9.00000 16.0000 86.8538 36.0000 98.7774 −64.0000 81.0000 −347.415
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.6.a.o 3
13.b even 2 1 1014.6.a.q 3
13.d odd 4 2 78.6.b.a 6
39.f even 4 2 234.6.b.c 6
52.f even 4 2 624.6.c.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.6.b.a 6 13.d odd 4 2
234.6.b.c 6 39.f even 4 2
624.6.c.d 6 52.f even 4 2
1014.6.a.o 3 1.a even 1 1 trivial
1014.6.a.q 3 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1014))\):

\( T_{5}^{3} - 40T_{5}^{2} - 3708T_{5} - 31392 \) Copy content Toggle raw display
\( T_{7}^{3} - 170T_{7}^{2} - 11520T_{7} + 1832832 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{3} \) Copy content Toggle raw display
$3$ \( (T + 9)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 40 T^{2} + \cdots - 31392 \) Copy content Toggle raw display
$7$ \( T^{3} - 170 T^{2} + \cdots + 1832832 \) Copy content Toggle raw display
$11$ \( T^{3} - 162 T^{2} + \cdots - 29513160 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 1783218312 \) Copy content Toggle raw display
$19$ \( T^{3} - 66 T^{2} + \cdots - 14973984 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 2602266624 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 2546571960 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 4280450400 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 39144102912 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 20206815120 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 1729964364544 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 4517894971368 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 26960052479832 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 10593394872552 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 17380383329800 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 30813396636672 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 47139250910760 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 3323872221696 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 35835411156480 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 1086071695416 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 59175760270896 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 17578655448192 \) Copy content Toggle raw display
show more
show less