Properties

Label 1014.4.q
Level $1014$
Weight $4$
Character orbit 1014.q
Rep. character $\chi_{1014}(55,\cdot)$
Character field $\Q(\zeta_{39})$
Dimension $2208$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1014.q (of order \(39\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 169 \)
Character field: \(\Q(\zeta_{39})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1014, [\chi])\).

Total New Old
Modular forms 13200 2208 10992
Cusp forms 13008 2208 10800
Eisenstein series 192 0 192

Trace form

\( 2208 q - 4 q^{2} + 6 q^{3} + 368 q^{4} - 20 q^{5} + 26 q^{7} + 32 q^{8} + 828 q^{9} + 60 q^{10} - 68 q^{11} - 48 q^{12} - 82 q^{13} - 16 q^{14} - 24 q^{15} + 1472 q^{16} + 66 q^{17} + 72 q^{18} - 104 q^{19}+ \cdots + 1224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1014, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1014, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1014, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)