Properties

Label 1014.4.b.h.337.2
Level $1014$
Weight $4$
Character 1014.337
Analytic conductor $59.828$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,4,Mod(337,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.337");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1014.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.8279367458\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1014.337
Dual form 1014.4.b.h.337.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +3.00000 q^{3} -4.00000 q^{4} -10.0000i q^{5} +6.00000i q^{6} -8.00000i q^{7} -8.00000i q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+2.00000i q^{2} +3.00000 q^{3} -4.00000 q^{4} -10.0000i q^{5} +6.00000i q^{6} -8.00000i q^{7} -8.00000i q^{8} +9.00000 q^{9} +20.0000 q^{10} +40.0000i q^{11} -12.0000 q^{12} +16.0000 q^{14} -30.0000i q^{15} +16.0000 q^{16} -130.000 q^{17} +18.0000i q^{18} +20.0000i q^{19} +40.0000i q^{20} -24.0000i q^{21} -80.0000 q^{22} -24.0000i q^{24} +25.0000 q^{25} +27.0000 q^{27} +32.0000i q^{28} -18.0000 q^{29} +60.0000 q^{30} +184.000i q^{31} +32.0000i q^{32} +120.000i q^{33} -260.000i q^{34} -80.0000 q^{35} -36.0000 q^{36} -74.0000i q^{37} -40.0000 q^{38} -80.0000 q^{40} +362.000i q^{41} +48.0000 q^{42} -76.0000 q^{43} -160.000i q^{44} -90.0000i q^{45} -452.000i q^{47} +48.0000 q^{48} +279.000 q^{49} +50.0000i q^{50} -390.000 q^{51} +382.000 q^{53} +54.0000i q^{54} +400.000 q^{55} -64.0000 q^{56} +60.0000i q^{57} -36.0000i q^{58} +464.000i q^{59} +120.000i q^{60} +358.000 q^{61} -368.000 q^{62} -72.0000i q^{63} -64.0000 q^{64} -240.000 q^{66} +700.000i q^{67} +520.000 q^{68} -160.000i q^{70} +748.000i q^{71} -72.0000i q^{72} +1058.00i q^{73} +148.000 q^{74} +75.0000 q^{75} -80.0000i q^{76} +320.000 q^{77} -976.000 q^{79} -160.000i q^{80} +81.0000 q^{81} -724.000 q^{82} +1008.00i q^{83} +96.0000i q^{84} +1300.00i q^{85} -152.000i q^{86} -54.0000 q^{87} +320.000 q^{88} -386.000i q^{89} +180.000 q^{90} +552.000i q^{93} +904.000 q^{94} +200.000 q^{95} +96.0000i q^{96} +614.000i q^{97} +558.000i q^{98} +360.000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 8 q^{4} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{3} - 8 q^{4} + 18 q^{9} + 40 q^{10} - 24 q^{12} + 32 q^{14} + 32 q^{16} - 260 q^{17} - 160 q^{22} + 50 q^{25} + 54 q^{27} - 36 q^{29} + 120 q^{30} - 160 q^{35} - 72 q^{36} - 80 q^{38} - 160 q^{40} + 96 q^{42} - 152 q^{43} + 96 q^{48} + 558 q^{49} - 780 q^{51} + 764 q^{53} + 800 q^{55} - 128 q^{56} + 716 q^{61} - 736 q^{62} - 128 q^{64} - 480 q^{66} + 1040 q^{68} + 296 q^{74} + 150 q^{75} + 640 q^{77} - 1952 q^{79} + 162 q^{81} - 1448 q^{82} - 108 q^{87} + 640 q^{88} + 360 q^{90} + 1808 q^{94} + 400 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 3.00000 0.577350
\(4\) −4.00000 −0.500000
\(5\) − 10.0000i − 0.894427i −0.894427 0.447214i \(-0.852416\pi\)
0.894427 0.447214i \(-0.147584\pi\)
\(6\) 6.00000i 0.408248i
\(7\) − 8.00000i − 0.431959i −0.976398 0.215980i \(-0.930705\pi\)
0.976398 0.215980i \(-0.0692945\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) 9.00000 0.333333
\(10\) 20.0000 0.632456
\(11\) 40.0000i 1.09640i 0.836346 + 0.548202i \(0.184688\pi\)
−0.836346 + 0.548202i \(0.815312\pi\)
\(12\) −12.0000 −0.288675
\(13\) 0 0
\(14\) 16.0000 0.305441
\(15\) − 30.0000i − 0.516398i
\(16\) 16.0000 0.250000
\(17\) −130.000 −1.85468 −0.927342 0.374215i \(-0.877912\pi\)
−0.927342 + 0.374215i \(0.877912\pi\)
\(18\) 18.0000i 0.235702i
\(19\) 20.0000i 0.241490i 0.992684 + 0.120745i \(0.0385284\pi\)
−0.992684 + 0.120745i \(0.961472\pi\)
\(20\) 40.0000i 0.447214i
\(21\) − 24.0000i − 0.249392i
\(22\) −80.0000 −0.775275
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) − 24.0000i − 0.204124i
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 32.0000i 0.215980i
\(29\) −18.0000 −0.115259 −0.0576296 0.998338i \(-0.518354\pi\)
−0.0576296 + 0.998338i \(0.518354\pi\)
\(30\) 60.0000 0.365148
\(31\) 184.000i 1.06604i 0.846101 + 0.533022i \(0.178944\pi\)
−0.846101 + 0.533022i \(0.821056\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 120.000i 0.633010i
\(34\) − 260.000i − 1.31146i
\(35\) −80.0000 −0.386356
\(36\) −36.0000 −0.166667
\(37\) − 74.0000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) −40.0000 −0.170759
\(39\) 0 0
\(40\) −80.0000 −0.316228
\(41\) 362.000i 1.37890i 0.724333 + 0.689450i \(0.242148\pi\)
−0.724333 + 0.689450i \(0.757852\pi\)
\(42\) 48.0000 0.176347
\(43\) −76.0000 −0.269532 −0.134766 0.990877i \(-0.543028\pi\)
−0.134766 + 0.990877i \(0.543028\pi\)
\(44\) − 160.000i − 0.548202i
\(45\) − 90.0000i − 0.298142i
\(46\) 0 0
\(47\) − 452.000i − 1.40279i −0.712774 0.701393i \(-0.752562\pi\)
0.712774 0.701393i \(-0.247438\pi\)
\(48\) 48.0000 0.144338
\(49\) 279.000 0.813411
\(50\) 50.0000i 0.141421i
\(51\) −390.000 −1.07080
\(52\) 0 0
\(53\) 382.000 0.990033 0.495016 0.868884i \(-0.335162\pi\)
0.495016 + 0.868884i \(0.335162\pi\)
\(54\) 54.0000i 0.136083i
\(55\) 400.000 0.980654
\(56\) −64.0000 −0.152721
\(57\) 60.0000i 0.139424i
\(58\) − 36.0000i − 0.0815005i
\(59\) 464.000i 1.02386i 0.859028 + 0.511929i \(0.171069\pi\)
−0.859028 + 0.511929i \(0.828931\pi\)
\(60\) 120.000i 0.258199i
\(61\) 358.000 0.751430 0.375715 0.926735i \(-0.377397\pi\)
0.375715 + 0.926735i \(0.377397\pi\)
\(62\) −368.000 −0.753807
\(63\) − 72.0000i − 0.143986i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −240.000 −0.447605
\(67\) 700.000i 1.27640i 0.769872 + 0.638199i \(0.220320\pi\)
−0.769872 + 0.638199i \(0.779680\pi\)
\(68\) 520.000 0.927342
\(69\) 0 0
\(70\) − 160.000i − 0.273195i
\(71\) 748.000i 1.25030i 0.780505 + 0.625150i \(0.214962\pi\)
−0.780505 + 0.625150i \(0.785038\pi\)
\(72\) − 72.0000i − 0.117851i
\(73\) 1058.00i 1.69629i 0.529760 + 0.848147i \(0.322282\pi\)
−0.529760 + 0.848147i \(0.677718\pi\)
\(74\) 148.000 0.232495
\(75\) 75.0000 0.115470
\(76\) − 80.0000i − 0.120745i
\(77\) 320.000 0.473602
\(78\) 0 0
\(79\) −976.000 −1.38998 −0.694991 0.719018i \(-0.744592\pi\)
−0.694991 + 0.719018i \(0.744592\pi\)
\(80\) − 160.000i − 0.223607i
\(81\) 81.0000 0.111111
\(82\) −724.000 −0.975030
\(83\) 1008.00i 1.33304i 0.745487 + 0.666520i \(0.232217\pi\)
−0.745487 + 0.666520i \(0.767783\pi\)
\(84\) 96.0000i 0.124696i
\(85\) 1300.00i 1.65888i
\(86\) − 152.000i − 0.190588i
\(87\) −54.0000 −0.0665449
\(88\) 320.000 0.387638
\(89\) − 386.000i − 0.459729i −0.973223 0.229865i \(-0.926172\pi\)
0.973223 0.229865i \(-0.0738284\pi\)
\(90\) 180.000 0.210819
\(91\) 0 0
\(92\) 0 0
\(93\) 552.000i 0.615481i
\(94\) 904.000 0.991920
\(95\) 200.000 0.215995
\(96\) 96.0000i 0.102062i
\(97\) 614.000i 0.642704i 0.946960 + 0.321352i \(0.104137\pi\)
−0.946960 + 0.321352i \(0.895863\pi\)
\(98\) 558.000i 0.575168i
\(99\) 360.000i 0.365468i
\(100\) −100.000 −0.100000
\(101\) −518.000 −0.510326 −0.255163 0.966898i \(-0.582129\pi\)
−0.255163 + 0.966898i \(0.582129\pi\)
\(102\) − 780.000i − 0.757172i
\(103\) −112.000 −0.107143 −0.0535713 0.998564i \(-0.517060\pi\)
−0.0535713 + 0.998564i \(0.517060\pi\)
\(104\) 0 0
\(105\) −240.000 −0.223063
\(106\) 764.000i 0.700059i
\(107\) −372.000 −0.336099 −0.168050 0.985779i \(-0.553747\pi\)
−0.168050 + 0.985779i \(0.553747\pi\)
\(108\) −108.000 −0.0962250
\(109\) − 934.000i − 0.820743i −0.911918 0.410371i \(-0.865399\pi\)
0.911918 0.410371i \(-0.134601\pi\)
\(110\) 800.000i 0.693427i
\(111\) − 222.000i − 0.189832i
\(112\) − 128.000i − 0.107990i
\(113\) 1914.00 1.59340 0.796699 0.604376i \(-0.206578\pi\)
0.796699 + 0.604376i \(0.206578\pi\)
\(114\) −120.000 −0.0985880
\(115\) 0 0
\(116\) 72.0000 0.0576296
\(117\) 0 0
\(118\) −928.000 −0.723977
\(119\) 1040.00i 0.801148i
\(120\) −240.000 −0.182574
\(121\) −269.000 −0.202104
\(122\) 716.000i 0.531341i
\(123\) 1086.00i 0.796108i
\(124\) − 736.000i − 0.533022i
\(125\) − 1500.00i − 1.07331i
\(126\) 144.000 0.101814
\(127\) −1296.00 −0.905523 −0.452761 0.891632i \(-0.649561\pi\)
−0.452761 + 0.891632i \(0.649561\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) −228.000 −0.155615
\(130\) 0 0
\(131\) −892.000 −0.594919 −0.297460 0.954734i \(-0.596139\pi\)
−0.297460 + 0.954734i \(0.596139\pi\)
\(132\) − 480.000i − 0.316505i
\(133\) 160.000 0.104314
\(134\) −1400.00 −0.902549
\(135\) − 270.000i − 0.172133i
\(136\) 1040.00i 0.655730i
\(137\) 2326.00i 1.45054i 0.688466 + 0.725269i \(0.258284\pi\)
−0.688466 + 0.725269i \(0.741716\pi\)
\(138\) 0 0
\(139\) 1932.00 1.17892 0.589461 0.807797i \(-0.299340\pi\)
0.589461 + 0.807797i \(0.299340\pi\)
\(140\) 320.000 0.193178
\(141\) − 1356.00i − 0.809899i
\(142\) −1496.00 −0.884095
\(143\) 0 0
\(144\) 144.000 0.0833333
\(145\) 180.000i 0.103091i
\(146\) −2116.00 −1.19946
\(147\) 837.000 0.469623
\(148\) 296.000i 0.164399i
\(149\) − 882.000i − 0.484941i −0.970159 0.242471i \(-0.922042\pi\)
0.970159 0.242471i \(-0.0779578\pi\)
\(150\) 150.000i 0.0816497i
\(151\) − 1776.00i − 0.957145i −0.878048 0.478572i \(-0.841154\pi\)
0.878048 0.478572i \(-0.158846\pi\)
\(152\) 160.000 0.0853797
\(153\) −1170.00 −0.618228
\(154\) 640.000i 0.334887i
\(155\) 1840.00 0.953499
\(156\) 0 0
\(157\) −2410.00 −1.22509 −0.612544 0.790436i \(-0.709854\pi\)
−0.612544 + 0.790436i \(0.709854\pi\)
\(158\) − 1952.00i − 0.982866i
\(159\) 1146.00 0.571596
\(160\) 320.000 0.158114
\(161\) 0 0
\(162\) 162.000i 0.0785674i
\(163\) 3212.00i 1.54346i 0.635953 + 0.771728i \(0.280607\pi\)
−0.635953 + 0.771728i \(0.719393\pi\)
\(164\) − 1448.00i − 0.689450i
\(165\) 1200.00 0.566181
\(166\) −2016.00 −0.942602
\(167\) 1668.00i 0.772896i 0.922311 + 0.386448i \(0.126298\pi\)
−0.922311 + 0.386448i \(0.873702\pi\)
\(168\) −192.000 −0.0881733
\(169\) 0 0
\(170\) −2600.00 −1.17301
\(171\) 180.000i 0.0804967i
\(172\) 304.000 0.134766
\(173\) −3598.00 −1.58122 −0.790609 0.612321i \(-0.790236\pi\)
−0.790609 + 0.612321i \(0.790236\pi\)
\(174\) − 108.000i − 0.0470544i
\(175\) − 200.000i − 0.0863919i
\(176\) 640.000i 0.274101i
\(177\) 1392.00i 0.591125i
\(178\) 772.000 0.325078
\(179\) −1068.00 −0.445956 −0.222978 0.974824i \(-0.571578\pi\)
−0.222978 + 0.974824i \(0.571578\pi\)
\(180\) 360.000i 0.149071i
\(181\) 4786.00 1.96542 0.982709 0.185158i \(-0.0592797\pi\)
0.982709 + 0.185158i \(0.0592797\pi\)
\(182\) 0 0
\(183\) 1074.00 0.433838
\(184\) 0 0
\(185\) −740.000 −0.294086
\(186\) −1104.00 −0.435211
\(187\) − 5200.00i − 2.03348i
\(188\) 1808.00i 0.701393i
\(189\) − 216.000i − 0.0831306i
\(190\) 400.000i 0.152732i
\(191\) −1312.00 −0.497031 −0.248516 0.968628i \(-0.579943\pi\)
−0.248516 + 0.968628i \(0.579943\pi\)
\(192\) −192.000 −0.0721688
\(193\) − 350.000i − 0.130537i −0.997868 0.0652683i \(-0.979210\pi\)
0.997868 0.0652683i \(-0.0207903\pi\)
\(194\) −1228.00 −0.454460
\(195\) 0 0
\(196\) −1116.00 −0.406706
\(197\) 342.000i 0.123688i 0.998086 + 0.0618439i \(0.0196981\pi\)
−0.998086 + 0.0618439i \(0.980302\pi\)
\(198\) −720.000 −0.258425
\(199\) 3368.00 1.19975 0.599877 0.800092i \(-0.295216\pi\)
0.599877 + 0.800092i \(0.295216\pi\)
\(200\) − 200.000i − 0.0707107i
\(201\) 2100.00i 0.736928i
\(202\) − 1036.00i − 0.360855i
\(203\) 144.000i 0.0497873i
\(204\) 1560.00 0.535401
\(205\) 3620.00 1.23333
\(206\) − 224.000i − 0.0757613i
\(207\) 0 0
\(208\) 0 0
\(209\) −800.000 −0.264771
\(210\) − 480.000i − 0.157729i
\(211\) −2004.00 −0.653844 −0.326922 0.945051i \(-0.606011\pi\)
−0.326922 + 0.945051i \(0.606011\pi\)
\(212\) −1528.00 −0.495016
\(213\) 2244.00i 0.721861i
\(214\) − 744.000i − 0.237658i
\(215\) 760.000i 0.241077i
\(216\) − 216.000i − 0.0680414i
\(217\) 1472.00 0.460488
\(218\) 1868.00 0.580353
\(219\) 3174.00i 0.979356i
\(220\) −1600.00 −0.490327
\(221\) 0 0
\(222\) 444.000 0.134231
\(223\) 5608.00i 1.68403i 0.539451 + 0.842017i \(0.318632\pi\)
−0.539451 + 0.842017i \(0.681368\pi\)
\(224\) 256.000 0.0763604
\(225\) 225.000 0.0666667
\(226\) 3828.00i 1.12670i
\(227\) 1928.00i 0.563726i 0.959455 + 0.281863i \(0.0909524\pi\)
−0.959455 + 0.281863i \(0.909048\pi\)
\(228\) − 240.000i − 0.0697122i
\(229\) − 3938.00i − 1.13638i −0.822898 0.568189i \(-0.807644\pi\)
0.822898 0.568189i \(-0.192356\pi\)
\(230\) 0 0
\(231\) 960.000 0.273434
\(232\) 144.000i 0.0407503i
\(233\) −2562.00 −0.720353 −0.360176 0.932884i \(-0.617283\pi\)
−0.360176 + 0.932884i \(0.617283\pi\)
\(234\) 0 0
\(235\) −4520.00 −1.25469
\(236\) − 1856.00i − 0.511929i
\(237\) −2928.00 −0.802506
\(238\) −2080.00 −0.566497
\(239\) − 7164.00i − 1.93891i −0.245260 0.969457i \(-0.578873\pi\)
0.245260 0.969457i \(-0.421127\pi\)
\(240\) − 480.000i − 0.129099i
\(241\) − 6182.00i − 1.65236i −0.563410 0.826178i \(-0.690511\pi\)
0.563410 0.826178i \(-0.309489\pi\)
\(242\) − 538.000i − 0.142909i
\(243\) 243.000 0.0641500
\(244\) −1432.00 −0.375715
\(245\) − 2790.00i − 0.727537i
\(246\) −2172.00 −0.562934
\(247\) 0 0
\(248\) 1472.00 0.376904
\(249\) 3024.00i 0.769631i
\(250\) 3000.00 0.758947
\(251\) 1396.00 0.351055 0.175527 0.984475i \(-0.443837\pi\)
0.175527 + 0.984475i \(0.443837\pi\)
\(252\) 288.000i 0.0719932i
\(253\) 0 0
\(254\) − 2592.00i − 0.640301i
\(255\) 3900.00i 0.957755i
\(256\) 256.000 0.0625000
\(257\) −6906.00 −1.67620 −0.838102 0.545514i \(-0.816335\pi\)
−0.838102 + 0.545514i \(0.816335\pi\)
\(258\) − 456.000i − 0.110036i
\(259\) −592.000 −0.142027
\(260\) 0 0
\(261\) −162.000 −0.0384197
\(262\) − 1784.00i − 0.420671i
\(263\) −6848.00 −1.60557 −0.802787 0.596266i \(-0.796650\pi\)
−0.802787 + 0.596266i \(0.796650\pi\)
\(264\) 960.000 0.223803
\(265\) − 3820.00i − 0.885512i
\(266\) 320.000i 0.0737611i
\(267\) − 1158.00i − 0.265425i
\(268\) − 2800.00i − 0.638199i
\(269\) −6034.00 −1.36766 −0.683828 0.729643i \(-0.739686\pi\)
−0.683828 + 0.729643i \(0.739686\pi\)
\(270\) 540.000 0.121716
\(271\) 4832.00i 1.08311i 0.840665 + 0.541556i \(0.182164\pi\)
−0.840665 + 0.541556i \(0.817836\pi\)
\(272\) −2080.00 −0.463671
\(273\) 0 0
\(274\) −4652.00 −1.02568
\(275\) 1000.00i 0.219281i
\(276\) 0 0
\(277\) 4082.00 0.885428 0.442714 0.896663i \(-0.354016\pi\)
0.442714 + 0.896663i \(0.354016\pi\)
\(278\) 3864.00i 0.833623i
\(279\) 1656.00i 0.355348i
\(280\) 640.000i 0.136598i
\(281\) 3350.00i 0.711189i 0.934640 + 0.355595i \(0.115722\pi\)
−0.934640 + 0.355595i \(0.884278\pi\)
\(282\) 2712.00 0.572685
\(283\) −7796.00 −1.63754 −0.818770 0.574121i \(-0.805344\pi\)
−0.818770 + 0.574121i \(0.805344\pi\)
\(284\) − 2992.00i − 0.625150i
\(285\) 600.000 0.124705
\(286\) 0 0
\(287\) 2896.00 0.595629
\(288\) 288.000i 0.0589256i
\(289\) 11987.0 2.43985
\(290\) −360.000 −0.0728963
\(291\) 1842.00i 0.371065i
\(292\) − 4232.00i − 0.848147i
\(293\) 3922.00i 0.781999i 0.920391 + 0.390999i \(0.127871\pi\)
−0.920391 + 0.390999i \(0.872129\pi\)
\(294\) 1674.00i 0.332074i
\(295\) 4640.00 0.915767
\(296\) −592.000 −0.116248
\(297\) 1080.00i 0.211003i
\(298\) 1764.00 0.342905
\(299\) 0 0
\(300\) −300.000 −0.0577350
\(301\) 608.000i 0.116427i
\(302\) 3552.00 0.676803
\(303\) −1554.00 −0.294637
\(304\) 320.000i 0.0603726i
\(305\) − 3580.00i − 0.672099i
\(306\) − 2340.00i − 0.437153i
\(307\) 5956.00i 1.10725i 0.832765 + 0.553627i \(0.186757\pi\)
−0.832765 + 0.553627i \(0.813243\pi\)
\(308\) −1280.00 −0.236801
\(309\) −336.000 −0.0618588
\(310\) 3680.00i 0.674226i
\(311\) −2352.00 −0.428841 −0.214421 0.976741i \(-0.568786\pi\)
−0.214421 + 0.976741i \(0.568786\pi\)
\(312\) 0 0
\(313\) 8442.00 1.52450 0.762252 0.647280i \(-0.224093\pi\)
0.762252 + 0.647280i \(0.224093\pi\)
\(314\) − 4820.00i − 0.866269i
\(315\) −720.000 −0.128785
\(316\) 3904.00 0.694991
\(317\) 5550.00i 0.983341i 0.870781 + 0.491670i \(0.163614\pi\)
−0.870781 + 0.491670i \(0.836386\pi\)
\(318\) 2292.00i 0.404179i
\(319\) − 720.000i − 0.126371i
\(320\) 640.000i 0.111803i
\(321\) −1116.00 −0.194047
\(322\) 0 0
\(323\) − 2600.00i − 0.447888i
\(324\) −324.000 −0.0555556
\(325\) 0 0
\(326\) −6424.00 −1.09139
\(327\) − 2802.00i − 0.473856i
\(328\) 2896.00 0.487515
\(329\) −3616.00 −0.605947
\(330\) 2400.00i 0.400350i
\(331\) − 140.000i − 0.0232480i −0.999932 0.0116240i \(-0.996300\pi\)
0.999932 0.0116240i \(-0.00370012\pi\)
\(332\) − 4032.00i − 0.666520i
\(333\) − 666.000i − 0.109599i
\(334\) −3336.00 −0.546520
\(335\) 7000.00 1.14164
\(336\) − 384.000i − 0.0623480i
\(337\) 6174.00 0.997980 0.498990 0.866608i \(-0.333704\pi\)
0.498990 + 0.866608i \(0.333704\pi\)
\(338\) 0 0
\(339\) 5742.00 0.919949
\(340\) − 5200.00i − 0.829440i
\(341\) −7360.00 −1.16882
\(342\) −360.000 −0.0569198
\(343\) − 4976.00i − 0.783320i
\(344\) 608.000i 0.0952941i
\(345\) 0 0
\(346\) − 7196.00i − 1.11809i
\(347\) −2988.00 −0.462260 −0.231130 0.972923i \(-0.574242\pi\)
−0.231130 + 0.972923i \(0.574242\pi\)
\(348\) 216.000 0.0332725
\(349\) − 162.000i − 0.0248472i −0.999923 0.0124236i \(-0.996045\pi\)
0.999923 0.0124236i \(-0.00395465\pi\)
\(350\) 400.000 0.0610883
\(351\) 0 0
\(352\) −1280.00 −0.193819
\(353\) 10754.0i 1.62147i 0.585416 + 0.810733i \(0.300931\pi\)
−0.585416 + 0.810733i \(0.699069\pi\)
\(354\) −2784.00 −0.417989
\(355\) 7480.00 1.11830
\(356\) 1544.00i 0.229865i
\(357\) 3120.00i 0.462543i
\(358\) − 2136.00i − 0.315338i
\(359\) 3588.00i 0.527486i 0.964593 + 0.263743i \(0.0849570\pi\)
−0.964593 + 0.263743i \(0.915043\pi\)
\(360\) −720.000 −0.105409
\(361\) 6459.00 0.941682
\(362\) 9572.00i 1.38976i
\(363\) −807.000 −0.116685
\(364\) 0 0
\(365\) 10580.0 1.51721
\(366\) 2148.00i 0.306770i
\(367\) 11272.0 1.60325 0.801626 0.597826i \(-0.203968\pi\)
0.801626 + 0.597826i \(0.203968\pi\)
\(368\) 0 0
\(369\) 3258.00i 0.459633i
\(370\) − 1480.00i − 0.207950i
\(371\) − 3056.00i − 0.427654i
\(372\) − 2208.00i − 0.307741i
\(373\) −10914.0 −1.51503 −0.757514 0.652819i \(-0.773586\pi\)
−0.757514 + 0.652819i \(0.773586\pi\)
\(374\) 10400.0 1.43789
\(375\) − 4500.00i − 0.619677i
\(376\) −3616.00 −0.495960
\(377\) 0 0
\(378\) 432.000 0.0587822
\(379\) − 8100.00i − 1.09781i −0.835886 0.548904i \(-0.815045\pi\)
0.835886 0.548904i \(-0.184955\pi\)
\(380\) −800.000 −0.107998
\(381\) −3888.00 −0.522804
\(382\) − 2624.00i − 0.351454i
\(383\) − 6180.00i − 0.824499i −0.911071 0.412250i \(-0.864743\pi\)
0.911071 0.412250i \(-0.135257\pi\)
\(384\) − 384.000i − 0.0510310i
\(385\) − 3200.00i − 0.423603i
\(386\) 700.000 0.0923033
\(387\) −684.000 −0.0898441
\(388\) − 2456.00i − 0.321352i
\(389\) 7522.00 0.980413 0.490206 0.871606i \(-0.336921\pi\)
0.490206 + 0.871606i \(0.336921\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 2232.00i − 0.287584i
\(393\) −2676.00 −0.343477
\(394\) −684.000 −0.0874605
\(395\) 9760.00i 1.24324i
\(396\) − 1440.00i − 0.182734i
\(397\) 6078.00i 0.768378i 0.923254 + 0.384189i \(0.125519\pi\)
−0.923254 + 0.384189i \(0.874481\pi\)
\(398\) 6736.00i 0.848355i
\(399\) 480.000 0.0602257
\(400\) 400.000 0.0500000
\(401\) 1830.00i 0.227895i 0.993487 + 0.113947i \(0.0363495\pi\)
−0.993487 + 0.113947i \(0.963650\pi\)
\(402\) −4200.00 −0.521087
\(403\) 0 0
\(404\) 2072.00 0.255163
\(405\) − 810.000i − 0.0993808i
\(406\) −288.000 −0.0352049
\(407\) 2960.00 0.360496
\(408\) 3120.00i 0.378586i
\(409\) − 12434.0i − 1.50323i −0.659601 0.751616i \(-0.729275\pi\)
0.659601 0.751616i \(-0.270725\pi\)
\(410\) 7240.00i 0.872093i
\(411\) 6978.00i 0.837468i
\(412\) 448.000 0.0535713
\(413\) 3712.00 0.442265
\(414\) 0 0
\(415\) 10080.0 1.19231
\(416\) 0 0
\(417\) 5796.00 0.680651
\(418\) − 1600.00i − 0.187221i
\(419\) −14188.0 −1.65425 −0.827123 0.562021i \(-0.810024\pi\)
−0.827123 + 0.562021i \(0.810024\pi\)
\(420\) 960.000 0.111531
\(421\) − 8638.00i − 0.999977i −0.866032 0.499989i \(-0.833338\pi\)
0.866032 0.499989i \(-0.166662\pi\)
\(422\) − 4008.00i − 0.462337i
\(423\) − 4068.00i − 0.467596i
\(424\) − 3056.00i − 0.350029i
\(425\) −3250.00 −0.370937
\(426\) −4488.00 −0.510433
\(427\) − 2864.00i − 0.324587i
\(428\) 1488.00 0.168050
\(429\) 0 0
\(430\) −1520.00 −0.170467
\(431\) − 4292.00i − 0.479671i −0.970813 0.239836i \(-0.922906\pi\)
0.970813 0.239836i \(-0.0770936\pi\)
\(432\) 432.000 0.0481125
\(433\) 5982.00 0.663918 0.331959 0.943294i \(-0.392290\pi\)
0.331959 + 0.943294i \(0.392290\pi\)
\(434\) 2944.00i 0.325614i
\(435\) 540.000i 0.0595196i
\(436\) 3736.00i 0.410371i
\(437\) 0 0
\(438\) −6348.00 −0.692510
\(439\) −256.000 −0.0278319 −0.0139160 0.999903i \(-0.504430\pi\)
−0.0139160 + 0.999903i \(0.504430\pi\)
\(440\) − 3200.00i − 0.346714i
\(441\) 2511.00 0.271137
\(442\) 0 0
\(443\) 12556.0 1.34662 0.673311 0.739359i \(-0.264872\pi\)
0.673311 + 0.739359i \(0.264872\pi\)
\(444\) 888.000i 0.0949158i
\(445\) −3860.00 −0.411194
\(446\) −11216.0 −1.19079
\(447\) − 2646.00i − 0.279981i
\(448\) 512.000i 0.0539949i
\(449\) 5574.00i 0.585865i 0.956133 + 0.292932i \(0.0946311\pi\)
−0.956133 + 0.292932i \(0.905369\pi\)
\(450\) 450.000i 0.0471405i
\(451\) −14480.0 −1.51183
\(452\) −7656.00 −0.796699
\(453\) − 5328.00i − 0.552608i
\(454\) −3856.00 −0.398615
\(455\) 0 0
\(456\) 480.000 0.0492940
\(457\) − 1266.00i − 0.129586i −0.997899 0.0647932i \(-0.979361\pi\)
0.997899 0.0647932i \(-0.0206388\pi\)
\(458\) 7876.00 0.803540
\(459\) −3510.00 −0.356934
\(460\) 0 0
\(461\) − 7554.00i − 0.763178i −0.924332 0.381589i \(-0.875377\pi\)
0.924332 0.381589i \(-0.124623\pi\)
\(462\) 1920.00i 0.193347i
\(463\) − 6752.00i − 0.677737i −0.940834 0.338868i \(-0.889956\pi\)
0.940834 0.338868i \(-0.110044\pi\)
\(464\) −288.000 −0.0288148
\(465\) 5520.00 0.550503
\(466\) − 5124.00i − 0.509366i
\(467\) −7924.00 −0.785180 −0.392590 0.919714i \(-0.628421\pi\)
−0.392590 + 0.919714i \(0.628421\pi\)
\(468\) 0 0
\(469\) 5600.00 0.551352
\(470\) − 9040.00i − 0.887200i
\(471\) −7230.00 −0.707305
\(472\) 3712.00 0.361989
\(473\) − 3040.00i − 0.295517i
\(474\) − 5856.00i − 0.567458i
\(475\) 500.000i 0.0482980i
\(476\) − 4160.00i − 0.400574i
\(477\) 3438.00 0.330011
\(478\) 14328.0 1.37102
\(479\) − 11084.0i − 1.05729i −0.848844 0.528644i \(-0.822701\pi\)
0.848844 0.528644i \(-0.177299\pi\)
\(480\) 960.000 0.0912871
\(481\) 0 0
\(482\) 12364.0 1.16839
\(483\) 0 0
\(484\) 1076.00 0.101052
\(485\) 6140.00 0.574852
\(486\) 486.000i 0.0453609i
\(487\) − 4432.00i − 0.412388i −0.978511 0.206194i \(-0.933892\pi\)
0.978511 0.206194i \(-0.0661078\pi\)
\(488\) − 2864.00i − 0.265670i
\(489\) 9636.00i 0.891114i
\(490\) 5580.00 0.514446
\(491\) 1140.00 0.104781 0.0523905 0.998627i \(-0.483316\pi\)
0.0523905 + 0.998627i \(0.483316\pi\)
\(492\) − 4344.00i − 0.398054i
\(493\) 2340.00 0.213769
\(494\) 0 0
\(495\) 3600.00 0.326885
\(496\) 2944.00i 0.266511i
\(497\) 5984.00 0.540079
\(498\) −6048.00 −0.544212
\(499\) − 1764.00i − 0.158251i −0.996865 0.0791257i \(-0.974787\pi\)
0.996865 0.0791257i \(-0.0252129\pi\)
\(500\) 6000.00i 0.536656i
\(501\) 5004.00i 0.446232i
\(502\) 2792.00i 0.248233i
\(503\) 16976.0 1.50482 0.752408 0.658697i \(-0.228892\pi\)
0.752408 + 0.658697i \(0.228892\pi\)
\(504\) −576.000 −0.0509069
\(505\) 5180.00i 0.456449i
\(506\) 0 0
\(507\) 0 0
\(508\) 5184.00 0.452761
\(509\) − 9474.00i − 0.825005i −0.910956 0.412503i \(-0.864655\pi\)
0.910956 0.412503i \(-0.135345\pi\)
\(510\) −7800.00 −0.677235
\(511\) 8464.00 0.732731
\(512\) 512.000i 0.0441942i
\(513\) 540.000i 0.0464748i
\(514\) − 13812.0i − 1.18526i
\(515\) 1120.00i 0.0958313i
\(516\) 912.000 0.0778073
\(517\) 18080.0 1.53802
\(518\) − 1184.00i − 0.100429i
\(519\) −10794.0 −0.912917
\(520\) 0 0
\(521\) 14114.0 1.18684 0.593422 0.804892i \(-0.297777\pi\)
0.593422 + 0.804892i \(0.297777\pi\)
\(522\) − 324.000i − 0.0271668i
\(523\) 20284.0 1.69590 0.847952 0.530074i \(-0.177836\pi\)
0.847952 + 0.530074i \(0.177836\pi\)
\(524\) 3568.00 0.297460
\(525\) − 600.000i − 0.0498784i
\(526\) − 13696.0i − 1.13531i
\(527\) − 23920.0i − 1.97718i
\(528\) 1920.00i 0.158252i
\(529\) −12167.0 −1.00000
\(530\) 7640.00 0.626152
\(531\) 4176.00i 0.341286i
\(532\) −640.000 −0.0521570
\(533\) 0 0
\(534\) 2316.00 0.187684
\(535\) 3720.00i 0.300616i
\(536\) 5600.00 0.451275
\(537\) −3204.00 −0.257473
\(538\) − 12068.0i − 0.967079i
\(539\) 11160.0i 0.891828i
\(540\) 1080.00i 0.0860663i
\(541\) − 14362.0i − 1.14135i −0.821176 0.570675i \(-0.806682\pi\)
0.821176 0.570675i \(-0.193318\pi\)
\(542\) −9664.00 −0.765875
\(543\) 14358.0 1.13473
\(544\) − 4160.00i − 0.327865i
\(545\) −9340.00 −0.734095
\(546\) 0 0
\(547\) −20956.0 −1.63805 −0.819025 0.573757i \(-0.805485\pi\)
−0.819025 + 0.573757i \(0.805485\pi\)
\(548\) − 9304.00i − 0.725269i
\(549\) 3222.00 0.250477
\(550\) −2000.00 −0.155055
\(551\) − 360.000i − 0.0278340i
\(552\) 0 0
\(553\) 7808.00i 0.600416i
\(554\) 8164.00i 0.626092i
\(555\) −2220.00 −0.169791
\(556\) −7728.00 −0.589461
\(557\) − 4134.00i − 0.314476i −0.987561 0.157238i \(-0.949741\pi\)
0.987561 0.157238i \(-0.0502590\pi\)
\(558\) −3312.00 −0.251269
\(559\) 0 0
\(560\) −1280.00 −0.0965891
\(561\) − 15600.0i − 1.17403i
\(562\) −6700.00 −0.502887
\(563\) 16228.0 1.21479 0.607397 0.794399i \(-0.292214\pi\)
0.607397 + 0.794399i \(0.292214\pi\)
\(564\) 5424.00i 0.404950i
\(565\) − 19140.0i − 1.42518i
\(566\) − 15592.0i − 1.15792i
\(567\) − 648.000i − 0.0479955i
\(568\) 5984.00 0.442048
\(569\) −2514.00 −0.185224 −0.0926119 0.995702i \(-0.529522\pi\)
−0.0926119 + 0.995702i \(0.529522\pi\)
\(570\) 1200.00i 0.0881798i
\(571\) 11612.0 0.851046 0.425523 0.904948i \(-0.360090\pi\)
0.425523 + 0.904948i \(0.360090\pi\)
\(572\) 0 0
\(573\) −3936.00 −0.286961
\(574\) 5792.00i 0.421173i
\(575\) 0 0
\(576\) −576.000 −0.0416667
\(577\) − 6354.00i − 0.458441i −0.973375 0.229221i \(-0.926382\pi\)
0.973375 0.229221i \(-0.0736177\pi\)
\(578\) 23974.0i 1.72524i
\(579\) − 1050.00i − 0.0753653i
\(580\) − 720.000i − 0.0515455i
\(581\) 8064.00 0.575819
\(582\) −3684.00 −0.262383
\(583\) 15280.0i 1.08548i
\(584\) 8464.00 0.599731
\(585\) 0 0
\(586\) −7844.00 −0.552957
\(587\) 13240.0i 0.930960i 0.885059 + 0.465480i \(0.154118\pi\)
−0.885059 + 0.465480i \(0.845882\pi\)
\(588\) −3348.00 −0.234812
\(589\) −3680.00 −0.257439
\(590\) 9280.00i 0.647545i
\(591\) 1026.00i 0.0714112i
\(592\) − 1184.00i − 0.0821995i
\(593\) − 1146.00i − 0.0793602i −0.999212 0.0396801i \(-0.987366\pi\)
0.999212 0.0396801i \(-0.0126339\pi\)
\(594\) −2160.00 −0.149202
\(595\) 10400.0 0.716569
\(596\) 3528.00i 0.242471i
\(597\) 10104.0 0.692679
\(598\) 0 0
\(599\) 10464.0 0.713769 0.356884 0.934149i \(-0.383839\pi\)
0.356884 + 0.934149i \(0.383839\pi\)
\(600\) − 600.000i − 0.0408248i
\(601\) 6650.00 0.451346 0.225673 0.974203i \(-0.427542\pi\)
0.225673 + 0.974203i \(0.427542\pi\)
\(602\) −1216.00 −0.0823263
\(603\) 6300.00i 0.425466i
\(604\) 7104.00i 0.478572i
\(605\) 2690.00i 0.180767i
\(606\) − 3108.00i − 0.208340i
\(607\) −6664.00 −0.445607 −0.222803 0.974863i \(-0.571521\pi\)
−0.222803 + 0.974863i \(0.571521\pi\)
\(608\) −640.000 −0.0426898
\(609\) 432.000i 0.0287447i
\(610\) 7160.00 0.475246
\(611\) 0 0
\(612\) 4680.00 0.309114
\(613\) − 2134.00i − 0.140606i −0.997526 0.0703030i \(-0.977603\pi\)
0.997526 0.0703030i \(-0.0223966\pi\)
\(614\) −11912.0 −0.782947
\(615\) 10860.0 0.712061
\(616\) − 2560.00i − 0.167444i
\(617\) 714.000i 0.0465876i 0.999729 + 0.0232938i \(0.00741532\pi\)
−0.999729 + 0.0232938i \(0.992585\pi\)
\(618\) − 672.000i − 0.0437408i
\(619\) 29228.0i 1.89786i 0.315494 + 0.948928i \(0.397830\pi\)
−0.315494 + 0.948928i \(0.602170\pi\)
\(620\) −7360.00 −0.476750
\(621\) 0 0
\(622\) − 4704.00i − 0.303237i
\(623\) −3088.00 −0.198584
\(624\) 0 0
\(625\) −11875.0 −0.760000
\(626\) 16884.0i 1.07799i
\(627\) −2400.00 −0.152866
\(628\) 9640.00 0.612544
\(629\) 9620.00i 0.609816i
\(630\) − 1440.00i − 0.0910650i
\(631\) − 13536.0i − 0.853977i −0.904257 0.426989i \(-0.859574\pi\)
0.904257 0.426989i \(-0.140426\pi\)
\(632\) 7808.00i 0.491433i
\(633\) −6012.00 −0.377497
\(634\) −11100.0 −0.695327
\(635\) 12960.0i 0.809924i
\(636\) −4584.00 −0.285798
\(637\) 0 0
\(638\) 1440.00 0.0893576
\(639\) 6732.00i 0.416767i
\(640\) −1280.00 −0.0790569
\(641\) −17218.0 −1.06095 −0.530476 0.847700i \(-0.677987\pi\)
−0.530476 + 0.847700i \(0.677987\pi\)
\(642\) − 2232.00i − 0.137212i
\(643\) − 15044.0i − 0.922671i −0.887226 0.461335i \(-0.847370\pi\)
0.887226 0.461335i \(-0.152630\pi\)
\(644\) 0 0
\(645\) 2280.00i 0.139186i
\(646\) 5200.00 0.316705
\(647\) −25176.0 −1.52978 −0.764892 0.644158i \(-0.777208\pi\)
−0.764892 + 0.644158i \(0.777208\pi\)
\(648\) − 648.000i − 0.0392837i
\(649\) −18560.0 −1.12256
\(650\) 0 0
\(651\) 4416.00 0.265863
\(652\) − 12848.0i − 0.771728i
\(653\) −16034.0 −0.960887 −0.480443 0.877026i \(-0.659524\pi\)
−0.480443 + 0.877026i \(0.659524\pi\)
\(654\) 5604.00 0.335067
\(655\) 8920.00i 0.532112i
\(656\) 5792.00i 0.344725i
\(657\) 9522.00i 0.565432i
\(658\) − 7232.00i − 0.428469i
\(659\) 25356.0 1.49883 0.749415 0.662100i \(-0.230335\pi\)
0.749415 + 0.662100i \(0.230335\pi\)
\(660\) −4800.00 −0.283091
\(661\) 18310.0i 1.07742i 0.842490 + 0.538711i \(0.181089\pi\)
−0.842490 + 0.538711i \(0.818911\pi\)
\(662\) 280.000 0.0164388
\(663\) 0 0
\(664\) 8064.00 0.471301
\(665\) − 1600.00i − 0.0933013i
\(666\) 1332.00 0.0774984
\(667\) 0 0
\(668\) − 6672.00i − 0.386448i
\(669\) 16824.0i 0.972277i
\(670\) 14000.0i 0.807264i
\(671\) 14320.0i 0.823871i
\(672\) 768.000 0.0440867
\(673\) −24802.0 −1.42057 −0.710287 0.703912i \(-0.751435\pi\)
−0.710287 + 0.703912i \(0.751435\pi\)
\(674\) 12348.0i 0.705678i
\(675\) 675.000 0.0384900
\(676\) 0 0
\(677\) −22706.0 −1.28901 −0.644507 0.764598i \(-0.722937\pi\)
−0.644507 + 0.764598i \(0.722937\pi\)
\(678\) 11484.0i 0.650502i
\(679\) 4912.00 0.277622
\(680\) 10400.0 0.586503
\(681\) 5784.00i 0.325467i
\(682\) − 14720.0i − 0.826478i
\(683\) − 14792.0i − 0.828697i −0.910118 0.414349i \(-0.864009\pi\)
0.910118 0.414349i \(-0.135991\pi\)
\(684\) − 720.000i − 0.0402484i
\(685\) 23260.0 1.29740
\(686\) 9952.00 0.553891
\(687\) − 11814.0i − 0.656088i
\(688\) −1216.00 −0.0673831
\(689\) 0 0
\(690\) 0 0
\(691\) 1148.00i 0.0632011i 0.999501 + 0.0316006i \(0.0100604\pi\)
−0.999501 + 0.0316006i \(0.989940\pi\)
\(692\) 14392.0 0.790609
\(693\) 2880.00 0.157867
\(694\) − 5976.00i − 0.326867i
\(695\) − 19320.0i − 1.05446i
\(696\) 432.000i 0.0235272i
\(697\) − 47060.0i − 2.55742i
\(698\) 324.000 0.0175696
\(699\) −7686.00 −0.415896
\(700\) 800.000i 0.0431959i
\(701\) −14870.0 −0.801187 −0.400594 0.916256i \(-0.631196\pi\)
−0.400594 + 0.916256i \(0.631196\pi\)
\(702\) 0 0
\(703\) 1480.00 0.0794015
\(704\) − 2560.00i − 0.137051i
\(705\) −13560.0 −0.724396
\(706\) −21508.0 −1.14655
\(707\) 4144.00i 0.220440i
\(708\) − 5568.00i − 0.295563i
\(709\) − 6354.00i − 0.336572i −0.985738 0.168286i \(-0.946177\pi\)
0.985738 0.168286i \(-0.0538232\pi\)
\(710\) 14960.0i 0.790759i
\(711\) −8784.00 −0.463327
\(712\) −3088.00 −0.162539
\(713\) 0 0
\(714\) −6240.00 −0.327067
\(715\) 0 0
\(716\) 4272.00 0.222978
\(717\) − 21492.0i − 1.11943i
\(718\) −7176.00 −0.372989
\(719\) −9288.00 −0.481758 −0.240879 0.970555i \(-0.577436\pi\)
−0.240879 + 0.970555i \(0.577436\pi\)
\(720\) − 1440.00i − 0.0745356i
\(721\) 896.000i 0.0462813i
\(722\) 12918.0i 0.665870i
\(723\) − 18546.0i − 0.953988i
\(724\) −19144.0 −0.982709
\(725\) −450.000 −0.0230518
\(726\) − 1614.00i − 0.0825085i
\(727\) 21544.0 1.09907 0.549534 0.835471i \(-0.314805\pi\)
0.549534 + 0.835471i \(0.314805\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 21160.0i 1.07283i
\(731\) 9880.00 0.499897
\(732\) −4296.00 −0.216919
\(733\) − 19990.0i − 1.00730i −0.863909 0.503648i \(-0.831991\pi\)
0.863909 0.503648i \(-0.168009\pi\)
\(734\) 22544.0i 1.13367i
\(735\) − 8370.00i − 0.420044i
\(736\) 0 0
\(737\) −28000.0 −1.39945
\(738\) −6516.00 −0.325010
\(739\) 532.000i 0.0264816i 0.999912 + 0.0132408i \(0.00421481\pi\)
−0.999912 + 0.0132408i \(0.995785\pi\)
\(740\) 2960.00 0.147043
\(741\) 0 0
\(742\) 6112.00 0.302397
\(743\) 25452.0i 1.25672i 0.777922 + 0.628360i \(0.216274\pi\)
−0.777922 + 0.628360i \(0.783726\pi\)
\(744\) 4416.00 0.217605
\(745\) −8820.00 −0.433745
\(746\) − 21828.0i − 1.07129i
\(747\) 9072.00i 0.444347i
\(748\) 20800.0i 1.01674i
\(749\) 2976.00i 0.145181i
\(750\) 9000.00 0.438178
\(751\) −6440.00 −0.312915 −0.156457 0.987685i \(-0.550007\pi\)
−0.156457 + 0.987685i \(0.550007\pi\)
\(752\) − 7232.00i − 0.350697i
\(753\) 4188.00 0.202682
\(754\) 0 0
\(755\) −17760.0 −0.856096
\(756\) 864.000i 0.0415653i
\(757\) −786.000 −0.0377380 −0.0188690 0.999822i \(-0.506007\pi\)
−0.0188690 + 0.999822i \(0.506007\pi\)
\(758\) 16200.0 0.776267
\(759\) 0 0
\(760\) − 1600.00i − 0.0763659i
\(761\) − 1498.00i − 0.0713567i −0.999363 0.0356784i \(-0.988641\pi\)
0.999363 0.0356784i \(-0.0113592\pi\)
\(762\) − 7776.00i − 0.369678i
\(763\) −7472.00 −0.354528
\(764\) 5248.00 0.248516
\(765\) 11700.0i 0.552960i
\(766\) 12360.0 0.583009
\(767\) 0 0
\(768\) 768.000 0.0360844
\(769\) − 14738.0i − 0.691113i −0.938398 0.345556i \(-0.887690\pi\)
0.938398 0.345556i \(-0.112310\pi\)
\(770\) 6400.00 0.299532
\(771\) −20718.0 −0.967757
\(772\) 1400.00i 0.0652683i
\(773\) 3822.00i 0.177837i 0.996039 + 0.0889184i \(0.0283410\pi\)
−0.996039 + 0.0889184i \(0.971659\pi\)
\(774\) − 1368.00i − 0.0635294i
\(775\) 4600.00i 0.213209i
\(776\) 4912.00 0.227230
\(777\) −1776.00 −0.0819995
\(778\) 15044.0i 0.693256i
\(779\) −7240.00 −0.332991
\(780\) 0 0
\(781\) −29920.0 −1.37083
\(782\) 0 0
\(783\) −486.000 −0.0221816
\(784\) 4464.00 0.203353
\(785\) 24100.0i 1.09575i
\(786\) − 5352.00i − 0.242875i
\(787\) − 11900.0i − 0.538995i −0.963001 0.269498i \(-0.913142\pi\)
0.963001 0.269498i \(-0.0868576\pi\)
\(788\) − 1368.00i − 0.0618439i
\(789\) −20544.0 −0.926978
\(790\) −19520.0 −0.879102
\(791\) − 15312.0i − 0.688283i
\(792\) 2880.00 0.129213
\(793\) 0 0
\(794\) −12156.0 −0.543325
\(795\) − 11460.0i − 0.511251i
\(796\) −13472.0 −0.599877
\(797\) 21274.0 0.945500 0.472750 0.881197i \(-0.343261\pi\)
0.472750 + 0.881197i \(0.343261\pi\)
\(798\) 960.000i 0.0425860i
\(799\) 58760.0i 2.60173i
\(800\) 800.000i 0.0353553i
\(801\) − 3474.00i − 0.153243i
\(802\) −3660.00 −0.161146
\(803\) −42320.0 −1.85983
\(804\) − 8400.00i − 0.368464i
\(805\) 0 0
\(806\) 0 0
\(807\) −18102.0 −0.789617
\(808\) 4144.00i 0.180427i
\(809\) −27566.0 −1.19798 −0.598992 0.800755i \(-0.704432\pi\)
−0.598992 + 0.800755i \(0.704432\pi\)
\(810\) 1620.00 0.0702728
\(811\) 11244.0i 0.486844i 0.969921 + 0.243422i \(0.0782699\pi\)
−0.969921 + 0.243422i \(0.921730\pi\)
\(812\) − 576.000i − 0.0248936i
\(813\) 14496.0i 0.625334i
\(814\) 5920.00i 0.254909i
\(815\) 32120.0 1.38051
\(816\) −6240.00 −0.267701
\(817\) − 1520.00i − 0.0650894i
\(818\) 24868.0 1.06295
\(819\) 0 0
\(820\) −14480.0 −0.616663
\(821\) − 13554.0i − 0.576173i −0.957604 0.288086i \(-0.906981\pi\)
0.957604 0.288086i \(-0.0930190\pi\)
\(822\) −13956.0 −0.592179
\(823\) −14384.0 −0.609228 −0.304614 0.952476i \(-0.598527\pi\)
−0.304614 + 0.952476i \(0.598527\pi\)
\(824\) 896.000i 0.0378806i
\(825\) 3000.00i 0.126602i
\(826\) 7424.00i 0.312729i
\(827\) − 2488.00i − 0.104615i −0.998631 0.0523073i \(-0.983342\pi\)
0.998631 0.0523073i \(-0.0166575\pi\)
\(828\) 0 0
\(829\) 20858.0 0.873858 0.436929 0.899496i \(-0.356066\pi\)
0.436929 + 0.899496i \(0.356066\pi\)
\(830\) 20160.0i 0.843089i
\(831\) 12246.0 0.511202
\(832\) 0 0
\(833\) −36270.0 −1.50862
\(834\) 11592.0i 0.481293i
\(835\) 16680.0 0.691300
\(836\) 3200.00 0.132386
\(837\) 4968.00i 0.205160i
\(838\) − 28376.0i − 1.16973i
\(839\) 23116.0i 0.951195i 0.879663 + 0.475598i \(0.157768\pi\)
−0.879663 + 0.475598i \(0.842232\pi\)
\(840\) 1920.00i 0.0788646i
\(841\) −24065.0 −0.986715
\(842\) 17276.0 0.707091
\(843\) 10050.0i 0.410605i
\(844\) 8016.00 0.326922
\(845\) 0 0
\(846\) 8136.00 0.330640
\(847\) 2152.00i 0.0873006i
\(848\) 6112.00 0.247508
\(849\) −23388.0 −0.945435
\(850\) − 6500.00i − 0.262292i
\(851\) 0 0
\(852\) − 8976.00i − 0.360930i
\(853\) 934.000i 0.0374907i 0.999824 + 0.0187453i \(0.00596718\pi\)
−0.999824 + 0.0187453i \(0.994033\pi\)
\(854\) 5728.00 0.229518
\(855\) 1800.00 0.0719985
\(856\) 2976.00i 0.118829i
\(857\) −12642.0 −0.503900 −0.251950 0.967740i \(-0.581072\pi\)
−0.251950 + 0.967740i \(0.581072\pi\)
\(858\) 0 0
\(859\) −22796.0 −0.905459 −0.452730 0.891648i \(-0.649550\pi\)
−0.452730 + 0.891648i \(0.649550\pi\)
\(860\) − 3040.00i − 0.120539i
\(861\) 8688.00 0.343886
\(862\) 8584.00 0.339179
\(863\) 76.0000i 0.00299776i 0.999999 + 0.00149888i \(0.000477109\pi\)
−0.999999 + 0.00149888i \(0.999523\pi\)
\(864\) 864.000i 0.0340207i
\(865\) 35980.0i 1.41429i
\(866\) 11964.0i 0.469461i
\(867\) 35961.0 1.40865
\(868\) −5888.00 −0.230244
\(869\) − 39040.0i − 1.52398i
\(870\) −1080.00 −0.0420867
\(871\) 0 0
\(872\) −7472.00 −0.290176
\(873\) 5526.00i 0.214235i
\(874\) 0 0
\(875\) −12000.0 −0.463627
\(876\) − 12696.0i − 0.489678i
\(877\) 46130.0i 1.77617i 0.459681 + 0.888084i \(0.347964\pi\)
−0.459681 + 0.888084i \(0.652036\pi\)
\(878\) − 512.000i − 0.0196801i
\(879\) 11766.0i 0.451487i
\(880\) 6400.00 0.245164
\(881\) −6682.00 −0.255530 −0.127765 0.991804i \(-0.540780\pi\)
−0.127765 + 0.991804i \(0.540780\pi\)
\(882\) 5022.00i 0.191723i
\(883\) −47404.0 −1.80665 −0.903325 0.428957i \(-0.858881\pi\)
−0.903325 + 0.428957i \(0.858881\pi\)
\(884\) 0 0
\(885\) 13920.0 0.528718
\(886\) 25112.0i 0.952206i
\(887\) 33672.0 1.27463 0.637314 0.770604i \(-0.280045\pi\)
0.637314 + 0.770604i \(0.280045\pi\)
\(888\) −1776.00 −0.0671156
\(889\) 10368.0i 0.391149i
\(890\) − 7720.00i − 0.290758i
\(891\) 3240.00i 0.121823i
\(892\) − 22432.0i − 0.842017i
\(893\) 9040.00 0.338759
\(894\) 5292.00 0.197976
\(895\) 10680.0i 0.398875i
\(896\) −1024.00 −0.0381802
\(897\) 0 0
\(898\) −11148.0 −0.414269
\(899\) − 3312.00i − 0.122871i
\(900\) −900.000 −0.0333333
\(901\) −49660.0 −1.83620
\(902\) − 28960.0i − 1.06903i
\(903\) 1824.00i 0.0672192i
\(904\) − 15312.0i − 0.563351i
\(905\) − 47860.0i − 1.75792i
\(906\) 10656.0 0.390753
\(907\) 14540.0 0.532296 0.266148 0.963932i \(-0.414249\pi\)
0.266148 + 0.963932i \(0.414249\pi\)
\(908\) − 7712.00i − 0.281863i
\(909\) −4662.00 −0.170109
\(910\) 0 0
\(911\) −7840.00 −0.285127 −0.142564 0.989786i \(-0.545535\pi\)
−0.142564 + 0.989786i \(0.545535\pi\)
\(912\) 960.000i 0.0348561i
\(913\) −40320.0 −1.46155
\(914\) 2532.00 0.0916314
\(915\) − 10740.0i − 0.388037i
\(916\) 15752.0i 0.568189i
\(917\) 7136.00i 0.256981i
\(918\) − 7020.00i − 0.252391i
\(919\) 47720.0 1.71288 0.856440 0.516246i \(-0.172671\pi\)
0.856440 + 0.516246i \(0.172671\pi\)
\(920\) 0 0
\(921\) 17868.0i 0.639273i
\(922\) 15108.0 0.539648
\(923\) 0 0
\(924\) −3840.00 −0.136717
\(925\) − 1850.00i − 0.0657596i
\(926\) 13504.0 0.479232
\(927\) −1008.00 −0.0357142
\(928\) − 576.000i − 0.0203751i
\(929\) − 7502.00i − 0.264944i −0.991187 0.132472i \(-0.957709\pi\)
0.991187 0.132472i \(-0.0422914\pi\)
\(930\) 11040.0i 0.389264i
\(931\) 5580.00i 0.196431i
\(932\) 10248.0 0.360176
\(933\) −7056.00 −0.247592
\(934\) − 15848.0i − 0.555206i
\(935\) −52000.0 −1.81880
\(936\) 0 0
\(937\) 22058.0 0.769054 0.384527 0.923114i \(-0.374365\pi\)
0.384527 + 0.923114i \(0.374365\pi\)
\(938\) 11200.0i 0.389865i
\(939\) 25326.0 0.880173
\(940\) 18080.0 0.627345
\(941\) − 23338.0i − 0.808498i −0.914649 0.404249i \(-0.867533\pi\)
0.914649 0.404249i \(-0.132467\pi\)
\(942\) − 14460.0i − 0.500140i
\(943\) 0 0
\(944\) 7424.00i 0.255965i
\(945\) −2160.00 −0.0743543
\(946\) 6080.00 0.208962
\(947\) − 30488.0i − 1.04617i −0.852279 0.523087i \(-0.824780\pi\)
0.852279 0.523087i \(-0.175220\pi\)
\(948\) 11712.0 0.401253
\(949\) 0 0
\(950\) −1000.00 −0.0341519
\(951\) 16650.0i 0.567732i
\(952\) 8320.00 0.283249
\(953\) −9522.00 −0.323660 −0.161830 0.986819i \(-0.551740\pi\)
−0.161830 + 0.986819i \(0.551740\pi\)
\(954\) 6876.00i 0.233353i
\(955\) 13120.0i 0.444558i
\(956\) 28656.0i 0.969457i
\(957\) − 2160.00i − 0.0729602i
\(958\) 22168.0 0.747615
\(959\) 18608.0 0.626573
\(960\) 1920.00i 0.0645497i
\(961\) −4065.00 −0.136451
\(962\) 0 0
\(963\) −3348.00 −0.112033
\(964\) 24728.0i 0.826178i
\(965\) −3500.00 −0.116755
\(966\) 0 0
\(967\) 7616.00i 0.253272i 0.991949 + 0.126636i \(0.0404180\pi\)
−0.991949 + 0.126636i \(0.959582\pi\)
\(968\) 2152.00i 0.0714544i
\(969\) − 7800.00i − 0.258588i
\(970\) 12280.0i 0.406481i
\(971\) 51316.0 1.69599 0.847996 0.530002i \(-0.177809\pi\)
0.847996 + 0.530002i \(0.177809\pi\)
\(972\) −972.000 −0.0320750
\(973\) − 15456.0i − 0.509246i
\(974\) 8864.00 0.291603
\(975\) 0 0
\(976\) 5728.00 0.187857
\(977\) 48666.0i 1.59362i 0.604232 + 0.796808i \(0.293480\pi\)
−0.604232 + 0.796808i \(0.706520\pi\)
\(978\) −19272.0 −0.630113
\(979\) 15440.0 0.504050
\(980\) 11160.0i 0.363768i
\(981\) − 8406.00i − 0.273581i
\(982\) 2280.00i 0.0740914i
\(983\) 17388.0i 0.564182i 0.959388 + 0.282091i \(0.0910280\pi\)
−0.959388 + 0.282091i \(0.908972\pi\)
\(984\) 8688.00 0.281467
\(985\) 3420.00 0.110630
\(986\) 4680.00i 0.151158i
\(987\) −10848.0 −0.349844
\(988\) 0 0
\(989\) 0 0
\(990\) 7200.00i 0.231142i
\(991\) 11496.0 0.368499 0.184249 0.982880i \(-0.441015\pi\)
0.184249 + 0.982880i \(0.441015\pi\)
\(992\) −5888.00 −0.188452
\(993\) − 420.000i − 0.0134223i
\(994\) 11968.0i 0.381893i
\(995\) − 33680.0i − 1.07309i
\(996\) − 12096.0i − 0.384816i
\(997\) 48862.0 1.55213 0.776066 0.630652i \(-0.217212\pi\)
0.776066 + 0.630652i \(0.217212\pi\)
\(998\) 3528.00 0.111901
\(999\) − 1998.00i − 0.0632772i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.4.b.h.337.2 2
13.5 odd 4 1014.4.a.j.1.1 1
13.8 odd 4 78.4.a.c.1.1 1
13.12 even 2 inner 1014.4.b.h.337.1 2
39.8 even 4 234.4.a.h.1.1 1
52.47 even 4 624.4.a.d.1.1 1
65.34 odd 4 1950.4.a.l.1.1 1
104.21 odd 4 2496.4.a.a.1.1 1
104.99 even 4 2496.4.a.j.1.1 1
156.47 odd 4 1872.4.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.4.a.c.1.1 1 13.8 odd 4
234.4.a.h.1.1 1 39.8 even 4
624.4.a.d.1.1 1 52.47 even 4
1014.4.a.j.1.1 1 13.5 odd 4
1014.4.b.h.337.1 2 13.12 even 2 inner
1014.4.b.h.337.2 2 1.1 even 1 trivial
1872.4.a.d.1.1 1 156.47 odd 4
1950.4.a.l.1.1 1 65.34 odd 4
2496.4.a.a.1.1 1 104.21 odd 4
2496.4.a.j.1.1 1 104.99 even 4