Properties

Label 1014.4.b.h
Level $1014$
Weight $4$
Character orbit 1014.b
Analytic conductor $59.828$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,4,Mod(337,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.337");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1014.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.8279367458\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + 3 q^{3} - 4 q^{4} + 5 \beta q^{5} - 3 \beta q^{6} + 4 \beta q^{7} + 4 \beta q^{8} + 9 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{2} + 3 q^{3} - 4 q^{4} + 5 \beta q^{5} - 3 \beta q^{6} + 4 \beta q^{7} + 4 \beta q^{8} + 9 q^{9} + 20 q^{10} - 20 \beta q^{11} - 12 q^{12} + 16 q^{14} + 15 \beta q^{15} + 16 q^{16} - 130 q^{17} - 9 \beta q^{18} - 10 \beta q^{19} - 20 \beta q^{20} + 12 \beta q^{21} - 80 q^{22} + 12 \beta q^{24} + 25 q^{25} + 27 q^{27} - 16 \beta q^{28} - 18 q^{29} + 60 q^{30} - 92 \beta q^{31} - 16 \beta q^{32} - 60 \beta q^{33} + 130 \beta q^{34} - 80 q^{35} - 36 q^{36} + 37 \beta q^{37} - 40 q^{38} - 80 q^{40} - 181 \beta q^{41} + 48 q^{42} - 76 q^{43} + 80 \beta q^{44} + 45 \beta q^{45} + 226 \beta q^{47} + 48 q^{48} + 279 q^{49} - 25 \beta q^{50} - 390 q^{51} + 382 q^{53} - 27 \beta q^{54} + 400 q^{55} - 64 q^{56} - 30 \beta q^{57} + 18 \beta q^{58} - 232 \beta q^{59} - 60 \beta q^{60} + 358 q^{61} - 368 q^{62} + 36 \beta q^{63} - 64 q^{64} - 240 q^{66} - 350 \beta q^{67} + 520 q^{68} + 80 \beta q^{70} - 374 \beta q^{71} + 36 \beta q^{72} - 529 \beta q^{73} + 148 q^{74} + 75 q^{75} + 40 \beta q^{76} + 320 q^{77} - 976 q^{79} + 80 \beta q^{80} + 81 q^{81} - 724 q^{82} - 504 \beta q^{83} - 48 \beta q^{84} - 650 \beta q^{85} + 76 \beta q^{86} - 54 q^{87} + 320 q^{88} + 193 \beta q^{89} + 180 q^{90} - 276 \beta q^{93} + 904 q^{94} + 200 q^{95} - 48 \beta q^{96} - 307 \beta q^{97} - 279 \beta q^{98} - 180 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 8 q^{4} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{3} - 8 q^{4} + 18 q^{9} + 40 q^{10} - 24 q^{12} + 32 q^{14} + 32 q^{16} - 260 q^{17} - 160 q^{22} + 50 q^{25} + 54 q^{27} - 36 q^{29} + 120 q^{30} - 160 q^{35} - 72 q^{36} - 80 q^{38} - 160 q^{40} + 96 q^{42} - 152 q^{43} + 96 q^{48} + 558 q^{49} - 780 q^{51} + 764 q^{53} + 800 q^{55} - 128 q^{56} + 716 q^{61} - 736 q^{62} - 128 q^{64} - 480 q^{66} + 1040 q^{68} + 296 q^{74} + 150 q^{75} + 640 q^{77} - 1952 q^{79} + 162 q^{81} - 1448 q^{82} - 108 q^{87} + 640 q^{88} + 360 q^{90} + 1808 q^{94} + 400 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.00000i
1.00000i
2.00000i 3.00000 −4.00000 10.0000i 6.00000i 8.00000i 8.00000i 9.00000 20.0000
337.2 2.00000i 3.00000 −4.00000 10.0000i 6.00000i 8.00000i 8.00000i 9.00000 20.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.4.b.h 2
13.b even 2 1 inner 1014.4.b.h 2
13.d odd 4 1 78.4.a.c 1
13.d odd 4 1 1014.4.a.j 1
39.f even 4 1 234.4.a.h 1
52.f even 4 1 624.4.a.d 1
65.g odd 4 1 1950.4.a.l 1
104.j odd 4 1 2496.4.a.a 1
104.m even 4 1 2496.4.a.j 1
156.l odd 4 1 1872.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.4.a.c 1 13.d odd 4 1
234.4.a.h 1 39.f even 4 1
624.4.a.d 1 52.f even 4 1
1014.4.a.j 1 13.d odd 4 1
1014.4.b.h 2 1.a even 1 1 trivial
1014.4.b.h 2 13.b even 2 1 inner
1872.4.a.d 1 156.l odd 4 1
1950.4.a.l 1 65.g odd 4 1
2496.4.a.a 1 104.j odd 4 1
2496.4.a.j 1 104.m even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1014, [\chi])\):

\( T_{5}^{2} + 100 \) Copy content Toggle raw display
\( T_{7}^{2} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 100 \) Copy content Toggle raw display
$7$ \( T^{2} + 64 \) Copy content Toggle raw display
$11$ \( T^{2} + 1600 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 130)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 400 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T + 18)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 33856 \) Copy content Toggle raw display
$37$ \( T^{2} + 5476 \) Copy content Toggle raw display
$41$ \( T^{2} + 131044 \) Copy content Toggle raw display
$43$ \( (T + 76)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 204304 \) Copy content Toggle raw display
$53$ \( (T - 382)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 215296 \) Copy content Toggle raw display
$61$ \( (T - 358)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 490000 \) Copy content Toggle raw display
$71$ \( T^{2} + 559504 \) Copy content Toggle raw display
$73$ \( T^{2} + 1119364 \) Copy content Toggle raw display
$79$ \( (T + 976)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 1016064 \) Copy content Toggle raw display
$89$ \( T^{2} + 148996 \) Copy content Toggle raw display
$97$ \( T^{2} + 376996 \) Copy content Toggle raw display
show more
show less