Properties

Label 1014.4.b.e.337.2
Level $1014$
Weight $4$
Character 1014.337
Analytic conductor $59.828$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1014,4,Mod(337,1014)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1014.337"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1014, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1014.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,-8,0,0,0,0,18,80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.8279367458\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1014.337
Dual form 1014.4.b.e.337.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -3.00000 q^{3} -4.00000 q^{4} -20.0000i q^{5} -6.00000i q^{6} +32.0000i q^{7} -8.00000i q^{8} +9.00000 q^{9} +40.0000 q^{10} -50.0000i q^{11} +12.0000 q^{12} -64.0000 q^{14} +60.0000i q^{15} +16.0000 q^{16} +30.0000 q^{17} +18.0000i q^{18} -120.000i q^{19} +80.0000i q^{20} -96.0000i q^{21} +100.000 q^{22} +20.0000 q^{23} +24.0000i q^{24} -275.000 q^{25} -27.0000 q^{27} -128.000i q^{28} +82.0000 q^{29} -120.000 q^{30} -44.0000i q^{31} +32.0000i q^{32} +150.000i q^{33} +60.0000i q^{34} +640.000 q^{35} -36.0000 q^{36} +306.000i q^{37} +240.000 q^{38} -160.000 q^{40} +108.000i q^{41} +192.000 q^{42} +356.000 q^{43} +200.000i q^{44} -180.000i q^{45} +40.0000i q^{46} +178.000i q^{47} -48.0000 q^{48} -681.000 q^{49} -550.000i q^{50} -90.0000 q^{51} +198.000 q^{53} -54.0000i q^{54} -1000.00 q^{55} +256.000 q^{56} +360.000i q^{57} +164.000i q^{58} -94.0000i q^{59} -240.000i q^{60} -62.0000 q^{61} +88.0000 q^{62} +288.000i q^{63} -64.0000 q^{64} -300.000 q^{66} -140.000i q^{67} -120.000 q^{68} -60.0000 q^{69} +1280.00i q^{70} -778.000i q^{71} -72.0000i q^{72} -62.0000i q^{73} -612.000 q^{74} +825.000 q^{75} +480.000i q^{76} +1600.00 q^{77} -1096.00 q^{79} -320.000i q^{80} +81.0000 q^{81} -216.000 q^{82} -462.000i q^{83} +384.000i q^{84} -600.000i q^{85} +712.000i q^{86} -246.000 q^{87} -400.000 q^{88} -1224.00i q^{89} +360.000 q^{90} -80.0000 q^{92} +132.000i q^{93} -356.000 q^{94} -2400.00 q^{95} -96.0000i q^{96} +614.000i q^{97} -1362.00i q^{98} -450.000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 8 q^{4} + 18 q^{9} + 80 q^{10} + 24 q^{12} - 128 q^{14} + 32 q^{16} + 60 q^{17} + 200 q^{22} + 40 q^{23} - 550 q^{25} - 54 q^{27} + 164 q^{29} - 240 q^{30} + 1280 q^{35} - 72 q^{36} + 480 q^{38}+ \cdots - 4800 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) −3.00000 −0.577350
\(4\) −4.00000 −0.500000
\(5\) − 20.0000i − 1.78885i −0.447214 0.894427i \(-0.647584\pi\)
0.447214 0.894427i \(-0.352416\pi\)
\(6\) − 6.00000i − 0.408248i
\(7\) 32.0000i 1.72784i 0.503631 + 0.863919i \(0.331997\pi\)
−0.503631 + 0.863919i \(0.668003\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) 9.00000 0.333333
\(10\) 40.0000 1.26491
\(11\) − 50.0000i − 1.37051i −0.728305 0.685253i \(-0.759692\pi\)
0.728305 0.685253i \(-0.240308\pi\)
\(12\) 12.0000 0.288675
\(13\) 0 0
\(14\) −64.0000 −1.22177
\(15\) 60.0000i 1.03280i
\(16\) 16.0000 0.250000
\(17\) 30.0000 0.428004 0.214002 0.976833i \(-0.431350\pi\)
0.214002 + 0.976833i \(0.431350\pi\)
\(18\) 18.0000i 0.235702i
\(19\) − 120.000i − 1.44894i −0.689306 0.724471i \(-0.742084\pi\)
0.689306 0.724471i \(-0.257916\pi\)
\(20\) 80.0000i 0.894427i
\(21\) − 96.0000i − 0.997567i
\(22\) 100.000 0.969094
\(23\) 20.0000 0.181317 0.0906584 0.995882i \(-0.471103\pi\)
0.0906584 + 0.995882i \(0.471103\pi\)
\(24\) 24.0000i 0.204124i
\(25\) −275.000 −2.20000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) − 128.000i − 0.863919i
\(29\) 82.0000 0.525070 0.262535 0.964923i \(-0.415442\pi\)
0.262535 + 0.964923i \(0.415442\pi\)
\(30\) −120.000 −0.730297
\(31\) − 44.0000i − 0.254924i −0.991843 0.127462i \(-0.959317\pi\)
0.991843 0.127462i \(-0.0406830\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 150.000i 0.791262i
\(34\) 60.0000i 0.302645i
\(35\) 640.000 3.09085
\(36\) −36.0000 −0.166667
\(37\) 306.000i 1.35962i 0.733386 + 0.679812i \(0.237939\pi\)
−0.733386 + 0.679812i \(0.762061\pi\)
\(38\) 240.000 1.02456
\(39\) 0 0
\(40\) −160.000 −0.632456
\(41\) 108.000i 0.411385i 0.978617 + 0.205692i \(0.0659446\pi\)
−0.978617 + 0.205692i \(0.934055\pi\)
\(42\) 192.000 0.705387
\(43\) 356.000 1.26255 0.631273 0.775561i \(-0.282533\pi\)
0.631273 + 0.775561i \(0.282533\pi\)
\(44\) 200.000i 0.685253i
\(45\) − 180.000i − 0.596285i
\(46\) 40.0000i 0.128210i
\(47\) 178.000i 0.552425i 0.961097 + 0.276212i \(0.0890793\pi\)
−0.961097 + 0.276212i \(0.910921\pi\)
\(48\) −48.0000 −0.144338
\(49\) −681.000 −1.98542
\(50\) − 550.000i − 1.55563i
\(51\) −90.0000 −0.247108
\(52\) 0 0
\(53\) 198.000 0.513158 0.256579 0.966523i \(-0.417405\pi\)
0.256579 + 0.966523i \(0.417405\pi\)
\(54\) − 54.0000i − 0.136083i
\(55\) −1000.00 −2.45164
\(56\) 256.000 0.610883
\(57\) 360.000i 0.836547i
\(58\) 164.000i 0.371280i
\(59\) − 94.0000i − 0.207420i −0.994608 0.103710i \(-0.966929\pi\)
0.994608 0.103710i \(-0.0330713\pi\)
\(60\) − 240.000i − 0.516398i
\(61\) −62.0000 −0.130136 −0.0650679 0.997881i \(-0.520726\pi\)
−0.0650679 + 0.997881i \(0.520726\pi\)
\(62\) 88.0000 0.180258
\(63\) 288.000i 0.575946i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −300.000 −0.559507
\(67\) − 140.000i − 0.255279i −0.991821 0.127640i \(-0.959260\pi\)
0.991821 0.127640i \(-0.0407401\pi\)
\(68\) −120.000 −0.214002
\(69\) −60.0000 −0.104683
\(70\) 1280.00i 2.18556i
\(71\) − 778.000i − 1.30045i −0.759744 0.650223i \(-0.774676\pi\)
0.759744 0.650223i \(-0.225324\pi\)
\(72\) − 72.0000i − 0.117851i
\(73\) − 62.0000i − 0.0994048i −0.998764 0.0497024i \(-0.984173\pi\)
0.998764 0.0497024i \(-0.0158273\pi\)
\(74\) −612.000 −0.961399
\(75\) 825.000 1.27017
\(76\) 480.000i 0.724471i
\(77\) 1600.00 2.36801
\(78\) 0 0
\(79\) −1096.00 −1.56088 −0.780441 0.625230i \(-0.785005\pi\)
−0.780441 + 0.625230i \(0.785005\pi\)
\(80\) − 320.000i − 0.447214i
\(81\) 81.0000 0.111111
\(82\) −216.000 −0.290893
\(83\) − 462.000i − 0.610977i −0.952196 0.305488i \(-0.901180\pi\)
0.952196 0.305488i \(-0.0988197\pi\)
\(84\) 384.000i 0.498784i
\(85\) − 600.000i − 0.765637i
\(86\) 712.000i 0.892755i
\(87\) −246.000 −0.303149
\(88\) −400.000 −0.484547
\(89\) − 1224.00i − 1.45779i −0.684623 0.728897i \(-0.740033\pi\)
0.684623 0.728897i \(-0.259967\pi\)
\(90\) 360.000 0.421637
\(91\) 0 0
\(92\) −80.0000 −0.0906584
\(93\) 132.000i 0.147180i
\(94\) −356.000 −0.390623
\(95\) −2400.00 −2.59195
\(96\) − 96.0000i − 0.102062i
\(97\) 614.000i 0.642704i 0.946960 + 0.321352i \(0.104137\pi\)
−0.946960 + 0.321352i \(0.895863\pi\)
\(98\) − 1362.00i − 1.40391i
\(99\) − 450.000i − 0.456835i
\(100\) 1100.00 1.10000
\(101\) −1058.00 −1.04233 −0.521163 0.853457i \(-0.674502\pi\)
−0.521163 + 0.853457i \(0.674502\pi\)
\(102\) − 180.000i − 0.174732i
\(103\) −1768.00 −1.69132 −0.845661 0.533720i \(-0.820794\pi\)
−0.845661 + 0.533720i \(0.820794\pi\)
\(104\) 0 0
\(105\) −1920.00 −1.78450
\(106\) 396.000i 0.362858i
\(107\) −1808.00 −1.63351 −0.816757 0.576982i \(-0.804230\pi\)
−0.816757 + 0.576982i \(0.804230\pi\)
\(108\) 108.000 0.0962250
\(109\) − 1886.00i − 1.65730i −0.559765 0.828652i \(-0.689109\pi\)
0.559765 0.828652i \(-0.310891\pi\)
\(110\) − 2000.00i − 1.73357i
\(111\) − 918.000i − 0.784979i
\(112\) 512.000i 0.431959i
\(113\) 1246.00 1.03729 0.518645 0.854990i \(-0.326437\pi\)
0.518645 + 0.854990i \(0.326437\pi\)
\(114\) −720.000 −0.591528
\(115\) − 400.000i − 0.324349i
\(116\) −328.000 −0.262535
\(117\) 0 0
\(118\) 188.000 0.146668
\(119\) 960.000i 0.739521i
\(120\) 480.000 0.365148
\(121\) −1169.00 −0.878287
\(122\) − 124.000i − 0.0920199i
\(123\) − 324.000i − 0.237513i
\(124\) 176.000i 0.127462i
\(125\) 3000.00i 2.14663i
\(126\) −576.000 −0.407255
\(127\) −1624.00 −1.13470 −0.567349 0.823477i \(-0.692031\pi\)
−0.567349 + 0.823477i \(0.692031\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) −1068.00 −0.728931
\(130\) 0 0
\(131\) −2072.00 −1.38192 −0.690960 0.722893i \(-0.742812\pi\)
−0.690960 + 0.722893i \(0.742812\pi\)
\(132\) − 600.000i − 0.395631i
\(133\) 3840.00 2.50354
\(134\) 280.000 0.180510
\(135\) 540.000i 0.344265i
\(136\) − 240.000i − 0.151322i
\(137\) 756.000i 0.471456i 0.971819 + 0.235728i \(0.0757474\pi\)
−0.971819 + 0.235728i \(0.924253\pi\)
\(138\) − 120.000i − 0.0740223i
\(139\) 172.000 0.104956 0.0524779 0.998622i \(-0.483288\pi\)
0.0524779 + 0.998622i \(0.483288\pi\)
\(140\) −2560.00 −1.54542
\(141\) − 534.000i − 0.318943i
\(142\) 1556.00 0.919554
\(143\) 0 0
\(144\) 144.000 0.0833333
\(145\) − 1640.00i − 0.939273i
\(146\) 124.000 0.0702898
\(147\) 2043.00 1.14628
\(148\) − 1224.00i − 0.679812i
\(149\) 1272.00i 0.699371i 0.936867 + 0.349686i \(0.113712\pi\)
−0.936867 + 0.349686i \(0.886288\pi\)
\(150\) 1650.00i 0.898146i
\(151\) − 1404.00i − 0.756662i −0.925670 0.378331i \(-0.876498\pi\)
0.925670 0.378331i \(-0.123502\pi\)
\(152\) −960.000 −0.512278
\(153\) 270.000 0.142668
\(154\) 3200.00i 1.67444i
\(155\) −880.000 −0.456021
\(156\) 0 0
\(157\) −2170.00 −1.10309 −0.551544 0.834146i \(-0.685961\pi\)
−0.551544 + 0.834146i \(0.685961\pi\)
\(158\) − 2192.00i − 1.10371i
\(159\) −594.000 −0.296272
\(160\) 640.000 0.316228
\(161\) 640.000i 0.313286i
\(162\) 162.000i 0.0785674i
\(163\) − 248.000i − 0.119171i −0.998223 0.0595855i \(-0.981022\pi\)
0.998223 0.0595855i \(-0.0189779\pi\)
\(164\) − 432.000i − 0.205692i
\(165\) 3000.00 1.41545
\(166\) 924.000 0.432026
\(167\) − 102.000i − 0.0472635i −0.999721 0.0236317i \(-0.992477\pi\)
0.999721 0.0236317i \(-0.00752291\pi\)
\(168\) −768.000 −0.352693
\(169\) 0 0
\(170\) 1200.00 0.541387
\(171\) − 1080.00i − 0.482980i
\(172\) −1424.00 −0.631273
\(173\) −682.000 −0.299720 −0.149860 0.988707i \(-0.547882\pi\)
−0.149860 + 0.988707i \(0.547882\pi\)
\(174\) − 492.000i − 0.214359i
\(175\) − 8800.00i − 3.80124i
\(176\) − 800.000i − 0.342627i
\(177\) 282.000i 0.119754i
\(178\) 2448.00 1.03082
\(179\) 612.000 0.255548 0.127774 0.991803i \(-0.459217\pi\)
0.127774 + 0.991803i \(0.459217\pi\)
\(180\) 720.000i 0.298142i
\(181\) 66.0000 0.0271035 0.0135518 0.999908i \(-0.495686\pi\)
0.0135518 + 0.999908i \(0.495686\pi\)
\(182\) 0 0
\(183\) 186.000 0.0751340
\(184\) − 160.000i − 0.0641052i
\(185\) 6120.00 2.43217
\(186\) −264.000 −0.104072
\(187\) − 1500.00i − 0.586582i
\(188\) − 712.000i − 0.276212i
\(189\) − 864.000i − 0.332522i
\(190\) − 4800.00i − 1.83278i
\(191\) 608.000 0.230332 0.115166 0.993346i \(-0.463260\pi\)
0.115166 + 0.993346i \(0.463260\pi\)
\(192\) 192.000 0.0721688
\(193\) − 1370.00i − 0.510957i −0.966815 0.255479i \(-0.917767\pi\)
0.966815 0.255479i \(-0.0822331\pi\)
\(194\) −1228.00 −0.454460
\(195\) 0 0
\(196\) 2724.00 0.992711
\(197\) − 4908.00i − 1.77503i −0.460781 0.887514i \(-0.652431\pi\)
0.460781 0.887514i \(-0.347569\pi\)
\(198\) 900.000 0.323031
\(199\) 328.000 0.116841 0.0584204 0.998292i \(-0.481394\pi\)
0.0584204 + 0.998292i \(0.481394\pi\)
\(200\) 2200.00i 0.777817i
\(201\) 420.000i 0.147386i
\(202\) − 2116.00i − 0.737036i
\(203\) 2624.00i 0.907235i
\(204\) 360.000 0.123554
\(205\) 2160.00 0.735907
\(206\) − 3536.00i − 1.19595i
\(207\) 180.000 0.0604390
\(208\) 0 0
\(209\) −6000.00 −1.98578
\(210\) − 3840.00i − 1.26183i
\(211\) 1316.00 0.429371 0.214685 0.976683i \(-0.431127\pi\)
0.214685 + 0.976683i \(0.431127\pi\)
\(212\) −792.000 −0.256579
\(213\) 2334.00i 0.750812i
\(214\) − 3616.00i − 1.15507i
\(215\) − 7120.00i − 2.25851i
\(216\) 216.000i 0.0680414i
\(217\) 1408.00 0.440467
\(218\) 3772.00 1.17189
\(219\) 186.000i 0.0573914i
\(220\) 4000.00 1.22582
\(221\) 0 0
\(222\) 1836.00 0.555064
\(223\) − 1932.00i − 0.580163i −0.957002 0.290081i \(-0.906318\pi\)
0.957002 0.290081i \(-0.0936824\pi\)
\(224\) −1024.00 −0.305441
\(225\) −2475.00 −0.733333
\(226\) 2492.00i 0.733475i
\(227\) 4998.00i 1.46136i 0.682720 + 0.730680i \(0.260797\pi\)
−0.682720 + 0.730680i \(0.739203\pi\)
\(228\) − 1440.00i − 0.418273i
\(229\) 78.0000i 0.0225082i 0.999937 + 0.0112541i \(0.00358237\pi\)
−0.999937 + 0.0112541i \(0.996418\pi\)
\(230\) 800.000 0.229350
\(231\) −4800.00 −1.36717
\(232\) − 656.000i − 0.185640i
\(233\) 1282.00 0.360458 0.180229 0.983625i \(-0.442316\pi\)
0.180229 + 0.983625i \(0.442316\pi\)
\(234\) 0 0
\(235\) 3560.00 0.988208
\(236\) 376.000i 0.103710i
\(237\) 3288.00 0.901175
\(238\) −1920.00 −0.522921
\(239\) 294.000i 0.0795702i 0.999208 + 0.0397851i \(0.0126673\pi\)
−0.999208 + 0.0397851i \(0.987333\pi\)
\(240\) 960.000i 0.258199i
\(241\) 4962.00i 1.32627i 0.748501 + 0.663134i \(0.230774\pi\)
−0.748501 + 0.663134i \(0.769226\pi\)
\(242\) − 2338.00i − 0.621043i
\(243\) −243.000 −0.0641500
\(244\) 248.000 0.0650679
\(245\) 13620.0i 3.55163i
\(246\) 648.000 0.167947
\(247\) 0 0
\(248\) −352.000 −0.0901291
\(249\) 1386.00i 0.352748i
\(250\) −6000.00 −1.51789
\(251\) −744.000 −0.187095 −0.0935475 0.995615i \(-0.529821\pi\)
−0.0935475 + 0.995615i \(0.529821\pi\)
\(252\) − 1152.00i − 0.287973i
\(253\) − 1000.00i − 0.248496i
\(254\) − 3248.00i − 0.802353i
\(255\) 1800.00i 0.442041i
\(256\) 256.000 0.0625000
\(257\) 1026.00 0.249028 0.124514 0.992218i \(-0.460263\pi\)
0.124514 + 0.992218i \(0.460263\pi\)
\(258\) − 2136.00i − 0.515432i
\(259\) −9792.00 −2.34921
\(260\) 0 0
\(261\) 738.000 0.175023
\(262\) − 4144.00i − 0.977165i
\(263\) −5532.00 −1.29703 −0.648513 0.761204i \(-0.724609\pi\)
−0.648513 + 0.761204i \(0.724609\pi\)
\(264\) 1200.00 0.279753
\(265\) − 3960.00i − 0.917966i
\(266\) 7680.00i 1.77027i
\(267\) 3672.00i 0.841658i
\(268\) 560.000i 0.127640i
\(269\) −3534.00 −0.801010 −0.400505 0.916294i \(-0.631165\pi\)
−0.400505 + 0.916294i \(0.631165\pi\)
\(270\) −1080.00 −0.243432
\(271\) − 2392.00i − 0.536176i −0.963394 0.268088i \(-0.913608\pi\)
0.963394 0.268088i \(-0.0863918\pi\)
\(272\) 480.000 0.107001
\(273\) 0 0
\(274\) −1512.00 −0.333370
\(275\) 13750.0i 3.01511i
\(276\) 240.000 0.0523417
\(277\) −6102.00 −1.32359 −0.661794 0.749686i \(-0.730204\pi\)
−0.661794 + 0.749686i \(0.730204\pi\)
\(278\) 344.000i 0.0742149i
\(279\) − 396.000i − 0.0849746i
\(280\) − 5120.00i − 1.09278i
\(281\) 7540.00i 1.60071i 0.599528 + 0.800354i \(0.295355\pi\)
−0.599528 + 0.800354i \(0.704645\pi\)
\(282\) 1068.00 0.225527
\(283\) 2756.00 0.578895 0.289447 0.957194i \(-0.406528\pi\)
0.289447 + 0.957194i \(0.406528\pi\)
\(284\) 3112.00i 0.650223i
\(285\) 7200.00 1.49646
\(286\) 0 0
\(287\) −3456.00 −0.710806
\(288\) 288.000i 0.0589256i
\(289\) −4013.00 −0.816813
\(290\) 3280.00 0.664166
\(291\) − 1842.00i − 0.371065i
\(292\) 248.000i 0.0497024i
\(293\) − 968.000i − 0.193007i −0.995333 0.0965037i \(-0.969234\pi\)
0.995333 0.0965037i \(-0.0307660\pi\)
\(294\) 4086.00i 0.810545i
\(295\) −1880.00 −0.371043
\(296\) 2448.00 0.480700
\(297\) 1350.00i 0.263754i
\(298\) −2544.00 −0.494530
\(299\) 0 0
\(300\) −3300.00 −0.635085
\(301\) 11392.0i 2.18147i
\(302\) 2808.00 0.535041
\(303\) 3174.00 0.601787
\(304\) − 1920.00i − 0.362235i
\(305\) 1240.00i 0.232794i
\(306\) 540.000i 0.100882i
\(307\) 6436.00i 1.19649i 0.801314 + 0.598244i \(0.204135\pi\)
−0.801314 + 0.598244i \(0.795865\pi\)
\(308\) −6400.00 −1.18401
\(309\) 5304.00 0.976485
\(310\) − 1760.00i − 0.322456i
\(311\) −7932.00 −1.44625 −0.723123 0.690719i \(-0.757294\pi\)
−0.723123 + 0.690719i \(0.757294\pi\)
\(312\) 0 0
\(313\) 10358.0 1.87051 0.935254 0.353978i \(-0.115171\pi\)
0.935254 + 0.353978i \(0.115171\pi\)
\(314\) − 4340.00i − 0.780001i
\(315\) 5760.00 1.03028
\(316\) 4384.00 0.780441
\(317\) − 2820.00i − 0.499643i −0.968292 0.249822i \(-0.919628\pi\)
0.968292 0.249822i \(-0.0803720\pi\)
\(318\) − 1188.00i − 0.209496i
\(319\) − 4100.00i − 0.719611i
\(320\) 1280.00i 0.223607i
\(321\) 5424.00 0.943110
\(322\) −1280.00 −0.221527
\(323\) − 3600.00i − 0.620153i
\(324\) −324.000 −0.0555556
\(325\) 0 0
\(326\) 496.000 0.0842666
\(327\) 5658.00i 0.956844i
\(328\) 864.000 0.145446
\(329\) −5696.00 −0.954500
\(330\) 6000.00i 1.00088i
\(331\) − 4180.00i − 0.694120i −0.937843 0.347060i \(-0.887180\pi\)
0.937843 0.347060i \(-0.112820\pi\)
\(332\) 1848.00i 0.305488i
\(333\) 2754.00i 0.453208i
\(334\) 204.000 0.0334203
\(335\) −2800.00 −0.456658
\(336\) − 1536.00i − 0.249392i
\(337\) 5026.00 0.812414 0.406207 0.913781i \(-0.366851\pi\)
0.406207 + 0.913781i \(0.366851\pi\)
\(338\) 0 0
\(339\) −3738.00 −0.598880
\(340\) 2400.00i 0.382818i
\(341\) −2200.00 −0.349374
\(342\) 2160.00 0.341519
\(343\) − 10816.0i − 1.70265i
\(344\) − 2848.00i − 0.446378i
\(345\) 1200.00i 0.187263i
\(346\) − 1364.00i − 0.211934i
\(347\) −7332.00 −1.13430 −0.567150 0.823614i \(-0.691954\pi\)
−0.567150 + 0.823614i \(0.691954\pi\)
\(348\) 984.000 0.151575
\(349\) 8162.00i 1.25187i 0.779876 + 0.625934i \(0.215282\pi\)
−0.779876 + 0.625934i \(0.784718\pi\)
\(350\) 17600.0 2.68788
\(351\) 0 0
\(352\) 1600.00 0.242274
\(353\) 1244.00i 0.187568i 0.995593 + 0.0937839i \(0.0298963\pi\)
−0.995593 + 0.0937839i \(0.970104\pi\)
\(354\) −564.000 −0.0846787
\(355\) −15560.0 −2.32631
\(356\) 4896.00i 0.728897i
\(357\) − 2880.00i − 0.426963i
\(358\) 1224.00i 0.180699i
\(359\) − 9558.00i − 1.40516i −0.711605 0.702579i \(-0.752032\pi\)
0.711605 0.702579i \(-0.247968\pi\)
\(360\) −1440.00 −0.210819
\(361\) −7541.00 −1.09943
\(362\) 132.000i 0.0191651i
\(363\) 3507.00 0.507079
\(364\) 0 0
\(365\) −1240.00 −0.177821
\(366\) 372.000i 0.0531277i
\(367\) −11032.0 −1.56912 −0.784558 0.620055i \(-0.787110\pi\)
−0.784558 + 0.620055i \(0.787110\pi\)
\(368\) 320.000 0.0453292
\(369\) 972.000i 0.137128i
\(370\) 12240.0i 1.71980i
\(371\) 6336.00i 0.886654i
\(372\) − 528.000i − 0.0735901i
\(373\) 5474.00 0.759874 0.379937 0.925012i \(-0.375946\pi\)
0.379937 + 0.925012i \(0.375946\pi\)
\(374\) 3000.00 0.414776
\(375\) − 9000.00i − 1.23935i
\(376\) 1424.00 0.195312
\(377\) 0 0
\(378\) 1728.00 0.235129
\(379\) − 7040.00i − 0.954144i −0.878864 0.477072i \(-0.841698\pi\)
0.878864 0.477072i \(-0.158302\pi\)
\(380\) 9600.00 1.29597
\(381\) 4872.00 0.655118
\(382\) 1216.00i 0.162869i
\(383\) − 1830.00i − 0.244148i −0.992521 0.122074i \(-0.961045\pi\)
0.992521 0.122074i \(-0.0389545\pi\)
\(384\) 384.000i 0.0510310i
\(385\) − 32000.0i − 4.23603i
\(386\) 2740.00 0.361301
\(387\) 3204.00 0.420849
\(388\) − 2456.00i − 0.321352i
\(389\) −10158.0 −1.32399 −0.661994 0.749509i \(-0.730289\pi\)
−0.661994 + 0.749509i \(0.730289\pi\)
\(390\) 0 0
\(391\) 600.000 0.0776044
\(392\) 5448.00i 0.701953i
\(393\) 6216.00 0.797852
\(394\) 9816.00 1.25513
\(395\) 21920.0i 2.79219i
\(396\) 1800.00i 0.228418i
\(397\) 12658.0i 1.60022i 0.599854 + 0.800109i \(0.295225\pi\)
−0.599854 + 0.800109i \(0.704775\pi\)
\(398\) 656.000i 0.0826189i
\(399\) −11520.0 −1.44542
\(400\) −4400.00 −0.550000
\(401\) − 15720.0i − 1.95765i −0.204689 0.978827i \(-0.565618\pi\)
0.204689 0.978827i \(-0.434382\pi\)
\(402\) −840.000 −0.104217
\(403\) 0 0
\(404\) 4232.00 0.521163
\(405\) − 1620.00i − 0.198762i
\(406\) −5248.00 −0.641512
\(407\) 15300.0 1.86337
\(408\) 720.000i 0.0873660i
\(409\) 7654.00i 0.925345i 0.886529 + 0.462672i \(0.153109\pi\)
−0.886529 + 0.462672i \(0.846891\pi\)
\(410\) 4320.00i 0.520365i
\(411\) − 2268.00i − 0.272195i
\(412\) 7072.00 0.845661
\(413\) 3008.00 0.358387
\(414\) 360.000i 0.0427368i
\(415\) −9240.00 −1.09295
\(416\) 0 0
\(417\) −516.000 −0.0605962
\(418\) − 12000.0i − 1.40416i
\(419\) −1848.00 −0.215467 −0.107734 0.994180i \(-0.534359\pi\)
−0.107734 + 0.994180i \(0.534359\pi\)
\(420\) 7680.00 0.892251
\(421\) − 12542.0i − 1.45192i −0.687735 0.725962i \(-0.741395\pi\)
0.687735 0.725962i \(-0.258605\pi\)
\(422\) 2632.00i 0.303611i
\(423\) 1602.00i 0.184142i
\(424\) − 1584.00i − 0.181429i
\(425\) −8250.00 −0.941609
\(426\) −4668.00 −0.530905
\(427\) − 1984.00i − 0.224854i
\(428\) 7232.00 0.816757
\(429\) 0 0
\(430\) 14240.0 1.59701
\(431\) − 5238.00i − 0.585396i −0.956205 0.292698i \(-0.905447\pi\)
0.956205 0.292698i \(-0.0945530\pi\)
\(432\) −432.000 −0.0481125
\(433\) 8258.00 0.916522 0.458261 0.888818i \(-0.348472\pi\)
0.458261 + 0.888818i \(0.348472\pi\)
\(434\) 2816.00i 0.311457i
\(435\) 4920.00i 0.542290i
\(436\) 7544.00i 0.828652i
\(437\) − 2400.00i − 0.262718i
\(438\) −372.000 −0.0405818
\(439\) 6304.00 0.685361 0.342681 0.939452i \(-0.388665\pi\)
0.342681 + 0.939452i \(0.388665\pi\)
\(440\) 8000.00i 0.866784i
\(441\) −6129.00 −0.661808
\(442\) 0 0
\(443\) 12744.0 1.36678 0.683392 0.730051i \(-0.260504\pi\)
0.683392 + 0.730051i \(0.260504\pi\)
\(444\) 3672.00i 0.392490i
\(445\) −24480.0 −2.60778
\(446\) 3864.00 0.410237
\(447\) − 3816.00i − 0.403782i
\(448\) − 2048.00i − 0.215980i
\(449\) 11776.0i 1.23774i 0.785495 + 0.618868i \(0.212409\pi\)
−0.785495 + 0.618868i \(0.787591\pi\)
\(450\) − 4950.00i − 0.518545i
\(451\) 5400.00 0.563805
\(452\) −4984.00 −0.518645
\(453\) 4212.00i 0.436859i
\(454\) −9996.00 −1.03334
\(455\) 0 0
\(456\) 2880.00 0.295764
\(457\) 2134.00i 0.218434i 0.994018 + 0.109217i \(0.0348343\pi\)
−0.994018 + 0.109217i \(0.965166\pi\)
\(458\) −156.000 −0.0159157
\(459\) −810.000 −0.0823694
\(460\) 1600.00i 0.162175i
\(461\) 2724.00i 0.275205i 0.990488 + 0.137602i \(0.0439396\pi\)
−0.990488 + 0.137602i \(0.956060\pi\)
\(462\) − 9600.00i − 0.966737i
\(463\) 5648.00i 0.566922i 0.958984 + 0.283461i \(0.0914826\pi\)
−0.958984 + 0.283461i \(0.908517\pi\)
\(464\) 1312.00 0.131267
\(465\) 2640.00 0.263284
\(466\) 2564.00i 0.254882i
\(467\) 18224.0 1.80579 0.902897 0.429856i \(-0.141436\pi\)
0.902897 + 0.429856i \(0.141436\pi\)
\(468\) 0 0
\(469\) 4480.00 0.441081
\(470\) 7120.00i 0.698768i
\(471\) 6510.00 0.636868
\(472\) −752.000 −0.0733339
\(473\) − 17800.0i − 1.73033i
\(474\) 6576.00i 0.637227i
\(475\) 33000.0i 3.18767i
\(476\) − 3840.00i − 0.369761i
\(477\) 1782.00 0.171053
\(478\) −588.000 −0.0562646
\(479\) − 9066.00i − 0.864794i −0.901683 0.432397i \(-0.857668\pi\)
0.901683 0.432397i \(-0.142332\pi\)
\(480\) −1920.00 −0.182574
\(481\) 0 0
\(482\) −9924.00 −0.937813
\(483\) − 1920.00i − 0.180876i
\(484\) 4676.00 0.439144
\(485\) 12280.0 1.14970
\(486\) − 486.000i − 0.0453609i
\(487\) 8948.00i 0.832593i 0.909229 + 0.416296i \(0.136672\pi\)
−0.909229 + 0.416296i \(0.863328\pi\)
\(488\) 496.000i 0.0460100i
\(489\) 744.000i 0.0688034i
\(490\) −27240.0 −2.51138
\(491\) −8720.00 −0.801483 −0.400741 0.916191i \(-0.631247\pi\)
−0.400741 + 0.916191i \(0.631247\pi\)
\(492\) 1296.00i 0.118756i
\(493\) 2460.00 0.224732
\(494\) 0 0
\(495\) −9000.00 −0.817212
\(496\) − 704.000i − 0.0637309i
\(497\) 24896.0 2.24696
\(498\) −2772.00 −0.249430
\(499\) 6604.00i 0.592456i 0.955117 + 0.296228i \(0.0957289\pi\)
−0.955117 + 0.296228i \(0.904271\pi\)
\(500\) − 12000.0i − 1.07331i
\(501\) 306.000i 0.0272876i
\(502\) − 1488.00i − 0.132296i
\(503\) 3404.00 0.301743 0.150872 0.988553i \(-0.451792\pi\)
0.150872 + 0.988553i \(0.451792\pi\)
\(504\) 2304.00 0.203628
\(505\) 21160.0i 1.86457i
\(506\) 2000.00 0.175713
\(507\) 0 0
\(508\) 6496.00 0.567349
\(509\) − 76.0000i − 0.00661815i −0.999995 0.00330908i \(-0.998947\pi\)
0.999995 0.00330908i \(-0.00105331\pi\)
\(510\) −3600.00 −0.312570
\(511\) 1984.00 0.171755
\(512\) 512.000i 0.0441942i
\(513\) 3240.00i 0.278849i
\(514\) 2052.00i 0.176089i
\(515\) 35360.0i 3.02553i
\(516\) 4272.00 0.364466
\(517\) 8900.00 0.757102
\(518\) − 19584.0i − 1.66114i
\(519\) 2046.00 0.173043
\(520\) 0 0
\(521\) 12054.0 1.01362 0.506809 0.862058i \(-0.330825\pi\)
0.506809 + 0.862058i \(0.330825\pi\)
\(522\) 1476.00i 0.123760i
\(523\) 276.000 0.0230758 0.0115379 0.999933i \(-0.496327\pi\)
0.0115379 + 0.999933i \(0.496327\pi\)
\(524\) 8288.00 0.690960
\(525\) 26400.0i 2.19465i
\(526\) − 11064.0i − 0.917136i
\(527\) − 1320.00i − 0.109108i
\(528\) 2400.00i 0.197816i
\(529\) −11767.0 −0.967124
\(530\) 7920.00 0.649100
\(531\) − 846.000i − 0.0691399i
\(532\) −15360.0 −1.25177
\(533\) 0 0
\(534\) −7344.00 −0.595142
\(535\) 36160.0i 2.92212i
\(536\) −1120.00 −0.0902549
\(537\) −1836.00 −0.147540
\(538\) − 7068.00i − 0.566400i
\(539\) 34050.0i 2.72103i
\(540\) − 2160.00i − 0.172133i
\(541\) − 13778.0i − 1.09494i −0.836825 0.547470i \(-0.815591\pi\)
0.836825 0.547470i \(-0.184409\pi\)
\(542\) 4784.00 0.379134
\(543\) −198.000 −0.0156482
\(544\) 960.000i 0.0756611i
\(545\) −37720.0 −2.96467
\(546\) 0 0
\(547\) −10844.0 −0.847634 −0.423817 0.905748i \(-0.639310\pi\)
−0.423817 + 0.905748i \(0.639310\pi\)
\(548\) − 3024.00i − 0.235728i
\(549\) −558.000 −0.0433786
\(550\) −27500.0 −2.13201
\(551\) − 9840.00i − 0.760795i
\(552\) 480.000i 0.0370112i
\(553\) − 35072.0i − 2.69695i
\(554\) − 12204.0i − 0.935917i
\(555\) −18360.0 −1.40421
\(556\) −688.000 −0.0524779
\(557\) − 20544.0i − 1.56280i −0.624033 0.781398i \(-0.714507\pi\)
0.624033 0.781398i \(-0.285493\pi\)
\(558\) 792.000 0.0600861
\(559\) 0 0
\(560\) 10240.0 0.772712
\(561\) 4500.00i 0.338663i
\(562\) −15080.0 −1.13187
\(563\) −6988.00 −0.523107 −0.261553 0.965189i \(-0.584235\pi\)
−0.261553 + 0.965189i \(0.584235\pi\)
\(564\) 2136.00i 0.159471i
\(565\) − 24920.0i − 1.85556i
\(566\) 5512.00i 0.409340i
\(567\) 2592.00i 0.191982i
\(568\) −6224.00 −0.459777
\(569\) 706.000 0.0520159 0.0260080 0.999662i \(-0.491720\pi\)
0.0260080 + 0.999662i \(0.491720\pi\)
\(570\) 14400.0i 1.05816i
\(571\) 17532.0 1.28492 0.642462 0.766318i \(-0.277913\pi\)
0.642462 + 0.766318i \(0.277913\pi\)
\(572\) 0 0
\(573\) −1824.00 −0.132982
\(574\) − 6912.00i − 0.502616i
\(575\) −5500.00 −0.398897
\(576\) −576.000 −0.0416667
\(577\) − 14814.0i − 1.06883i −0.845222 0.534415i \(-0.820532\pi\)
0.845222 0.534415i \(-0.179468\pi\)
\(578\) − 8026.00i − 0.577574i
\(579\) 4110.00i 0.295001i
\(580\) 6560.00i 0.469637i
\(581\) 14784.0 1.05567
\(582\) 3684.00 0.262383
\(583\) − 9900.00i − 0.703287i
\(584\) −496.000 −0.0351449
\(585\) 0 0
\(586\) 1936.00 0.136477
\(587\) 14170.0i 0.996352i 0.867076 + 0.498176i \(0.165997\pi\)
−0.867076 + 0.498176i \(0.834003\pi\)
\(588\) −8172.00 −0.573142
\(589\) −5280.00 −0.369369
\(590\) − 3760.00i − 0.262367i
\(591\) 14724.0i 1.02481i
\(592\) 4896.00i 0.339906i
\(593\) 11744.0i 0.813269i 0.913591 + 0.406634i \(0.133298\pi\)
−0.913591 + 0.406634i \(0.866702\pi\)
\(594\) −2700.00 −0.186502
\(595\) 19200.0 1.32290
\(596\) − 5088.00i − 0.349686i
\(597\) −984.000 −0.0674580
\(598\) 0 0
\(599\) −15076.0 −1.02836 −0.514181 0.857682i \(-0.671904\pi\)
−0.514181 + 0.857682i \(0.671904\pi\)
\(600\) − 6600.00i − 0.449073i
\(601\) 20230.0 1.37304 0.686522 0.727109i \(-0.259137\pi\)
0.686522 + 0.727109i \(0.259137\pi\)
\(602\) −22784.0 −1.54254
\(603\) − 1260.00i − 0.0850931i
\(604\) 5616.00i 0.378331i
\(605\) 23380.0i 1.57113i
\(606\) 6348.00i 0.425528i
\(607\) −28056.0 −1.87604 −0.938021 0.346577i \(-0.887344\pi\)
−0.938021 + 0.346577i \(0.887344\pi\)
\(608\) 3840.00 0.256139
\(609\) − 7872.00i − 0.523792i
\(610\) −2480.00 −0.164610
\(611\) 0 0
\(612\) −1080.00 −0.0713340
\(613\) 27446.0i 1.80837i 0.427136 + 0.904187i \(0.359522\pi\)
−0.427136 + 0.904187i \(0.640478\pi\)
\(614\) −12872.0 −0.846045
\(615\) −6480.00 −0.424876
\(616\) − 12800.0i − 0.837219i
\(617\) 8804.00i 0.574450i 0.957863 + 0.287225i \(0.0927328\pi\)
−0.957863 + 0.287225i \(0.907267\pi\)
\(618\) 10608.0i 0.690480i
\(619\) − 3508.00i − 0.227784i −0.993493 0.113892i \(-0.963668\pi\)
0.993493 0.113892i \(-0.0363318\pi\)
\(620\) 3520.00 0.228011
\(621\) −540.000 −0.0348945
\(622\) − 15864.0i − 1.02265i
\(623\) 39168.0 2.51883
\(624\) 0 0
\(625\) 25625.0 1.64000
\(626\) 20716.0i 1.32265i
\(627\) 18000.0 1.14649
\(628\) 8680.00 0.551544
\(629\) 9180.00i 0.581925i
\(630\) 11520.0i 0.728520i
\(631\) − 22084.0i − 1.39326i −0.717428 0.696632i \(-0.754681\pi\)
0.717428 0.696632i \(-0.245319\pi\)
\(632\) 8768.00i 0.551855i
\(633\) −3948.00 −0.247897
\(634\) 5640.00 0.353301
\(635\) 32480.0i 2.02981i
\(636\) 2376.00 0.148136
\(637\) 0 0
\(638\) 8200.00 0.508842
\(639\) − 7002.00i − 0.433482i
\(640\) −2560.00 −0.158114
\(641\) 7342.00 0.452405 0.226202 0.974080i \(-0.427369\pi\)
0.226202 + 0.974080i \(0.427369\pi\)
\(642\) 10848.0i 0.666879i
\(643\) 2996.00i 0.183749i 0.995771 + 0.0918746i \(0.0292859\pi\)
−0.995771 + 0.0918746i \(0.970714\pi\)
\(644\) − 2560.00i − 0.156643i
\(645\) 21360.0i 1.30395i
\(646\) 7200.00 0.438514
\(647\) −9344.00 −0.567775 −0.283888 0.958858i \(-0.591624\pi\)
−0.283888 + 0.958858i \(0.591624\pi\)
\(648\) − 648.000i − 0.0392837i
\(649\) −4700.00 −0.284270
\(650\) 0 0
\(651\) −4224.00 −0.254304
\(652\) 992.000i 0.0595855i
\(653\) −16686.0 −0.999960 −0.499980 0.866037i \(-0.666659\pi\)
−0.499980 + 0.866037i \(0.666659\pi\)
\(654\) −11316.0 −0.676591
\(655\) 41440.0i 2.47205i
\(656\) 1728.00i 0.102846i
\(657\) − 558.000i − 0.0331349i
\(658\) − 11392.0i − 0.674934i
\(659\) 31356.0 1.85350 0.926750 0.375679i \(-0.122590\pi\)
0.926750 + 0.375679i \(0.122590\pi\)
\(660\) −12000.0 −0.707726
\(661\) − 590.000i − 0.0347176i −0.999849 0.0173588i \(-0.994474\pi\)
0.999849 0.0173588i \(-0.00552576\pi\)
\(662\) 8360.00 0.490817
\(663\) 0 0
\(664\) −3696.00 −0.216013
\(665\) − 76800.0i − 4.47846i
\(666\) −5508.00 −0.320466
\(667\) 1640.00 0.0952040
\(668\) 408.000i 0.0236317i
\(669\) 5796.00i 0.334957i
\(670\) − 5600.00i − 0.322906i
\(671\) 3100.00i 0.178352i
\(672\) 3072.00 0.176347
\(673\) −5938.00 −0.340109 −0.170054 0.985435i \(-0.554394\pi\)
−0.170054 + 0.985435i \(0.554394\pi\)
\(674\) 10052.0i 0.574464i
\(675\) 7425.00 0.423390
\(676\) 0 0
\(677\) 9486.00 0.538518 0.269259 0.963068i \(-0.413221\pi\)
0.269259 + 0.963068i \(0.413221\pi\)
\(678\) − 7476.00i − 0.423472i
\(679\) −19648.0 −1.11049
\(680\) −4800.00 −0.270694
\(681\) − 14994.0i − 0.843717i
\(682\) − 4400.00i − 0.247045i
\(683\) − 26162.0i − 1.46568i −0.680400 0.732841i \(-0.738194\pi\)
0.680400 0.732841i \(-0.261806\pi\)
\(684\) 4320.00i 0.241490i
\(685\) 15120.0 0.843366
\(686\) 21632.0 1.20396
\(687\) − 234.000i − 0.0129951i
\(688\) 5696.00 0.315637
\(689\) 0 0
\(690\) −2400.00 −0.132415
\(691\) − 17348.0i − 0.955064i −0.878614 0.477532i \(-0.841532\pi\)
0.878614 0.477532i \(-0.158468\pi\)
\(692\) 2728.00 0.149860
\(693\) 14400.0 0.789337
\(694\) − 14664.0i − 0.802072i
\(695\) − 3440.00i − 0.187751i
\(696\) 1968.00i 0.107179i
\(697\) 3240.00i 0.176074i
\(698\) −16324.0 −0.885204
\(699\) −3846.00 −0.208110
\(700\) 35200.0i 1.90062i
\(701\) −30.0000 −0.00161638 −0.000808191 1.00000i \(-0.500257\pi\)
−0.000808191 1.00000i \(0.500257\pi\)
\(702\) 0 0
\(703\) 36720.0 1.97002
\(704\) 3200.00i 0.171313i
\(705\) −10680.0 −0.570542
\(706\) −2488.00 −0.132630
\(707\) − 33856.0i − 1.80097i
\(708\) − 1128.00i − 0.0598769i
\(709\) − 31466.0i − 1.66676i −0.552703 0.833378i \(-0.686404\pi\)
0.552703 0.833378i \(-0.313596\pi\)
\(710\) − 31120.0i − 1.64495i
\(711\) −9864.00 −0.520294
\(712\) −9792.00 −0.515408
\(713\) − 880.000i − 0.0462220i
\(714\) 5760.00 0.301908
\(715\) 0 0
\(716\) −2448.00 −0.127774
\(717\) − 882.000i − 0.0459399i
\(718\) 19116.0 0.993597
\(719\) 28892.0 1.49859 0.749297 0.662234i \(-0.230391\pi\)
0.749297 + 0.662234i \(0.230391\pi\)
\(720\) − 2880.00i − 0.149071i
\(721\) − 56576.0i − 2.92233i
\(722\) − 15082.0i − 0.777415i
\(723\) − 14886.0i − 0.765721i
\(724\) −264.000 −0.0135518
\(725\) −22550.0 −1.15515
\(726\) 7014.00i 0.358559i
\(727\) −13384.0 −0.682786 −0.341393 0.939921i \(-0.610899\pi\)
−0.341393 + 0.939921i \(0.610899\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) − 2480.00i − 0.125738i
\(731\) 10680.0 0.540375
\(732\) −744.000 −0.0375670
\(733\) 7130.00i 0.359280i 0.983732 + 0.179640i \(0.0574934\pi\)
−0.983732 + 0.179640i \(0.942507\pi\)
\(734\) − 22064.0i − 1.10953i
\(735\) − 40860.0i − 2.05054i
\(736\) 640.000i 0.0320526i
\(737\) −7000.00 −0.349862
\(738\) −1944.00 −0.0969643
\(739\) 29268.0i 1.45689i 0.685105 + 0.728444i \(0.259756\pi\)
−0.685105 + 0.728444i \(0.740244\pi\)
\(740\) −24480.0 −1.21608
\(741\) 0 0
\(742\) −12672.0 −0.626959
\(743\) − 9898.00i − 0.488725i −0.969684 0.244362i \(-0.921421\pi\)
0.969684 0.244362i \(-0.0785786\pi\)
\(744\) 1056.00 0.0520361
\(745\) 25440.0 1.25107
\(746\) 10948.0i 0.537312i
\(747\) − 4158.00i − 0.203659i
\(748\) 6000.00i 0.293291i
\(749\) − 57856.0i − 2.82245i
\(750\) 18000.0 0.876356
\(751\) 15120.0 0.734669 0.367335 0.930089i \(-0.380270\pi\)
0.367335 + 0.930089i \(0.380270\pi\)
\(752\) 2848.00i 0.138106i
\(753\) 2232.00 0.108019
\(754\) 0 0
\(755\) −28080.0 −1.35356
\(756\) 3456.00i 0.166261i
\(757\) −5454.00 −0.261861 −0.130931 0.991392i \(-0.541797\pi\)
−0.130931 + 0.991392i \(0.541797\pi\)
\(758\) 14080.0 0.674682
\(759\) 3000.00i 0.143469i
\(760\) 19200.0i 0.916391i
\(761\) 11988.0i 0.571044i 0.958372 + 0.285522i \(0.0921670\pi\)
−0.958372 + 0.285522i \(0.907833\pi\)
\(762\) 9744.00i 0.463239i
\(763\) 60352.0 2.86355
\(764\) −2432.00 −0.115166
\(765\) − 5400.00i − 0.255212i
\(766\) 3660.00 0.172639
\(767\) 0 0
\(768\) −768.000 −0.0360844
\(769\) 1338.00i 0.0627432i 0.999508 + 0.0313716i \(0.00998753\pi\)
−0.999508 + 0.0313716i \(0.990012\pi\)
\(770\) 64000.0 2.99532
\(771\) −3078.00 −0.143776
\(772\) 5480.00i 0.255479i
\(773\) − 14408.0i − 0.670401i −0.942147 0.335200i \(-0.891196\pi\)
0.942147 0.335200i \(-0.108804\pi\)
\(774\) 6408.00i 0.297585i
\(775\) 12100.0i 0.560832i
\(776\) 4912.00 0.227230
\(777\) 29376.0 1.35632
\(778\) − 20316.0i − 0.936200i
\(779\) 12960.0 0.596072
\(780\) 0 0
\(781\) −38900.0 −1.78227
\(782\) 1200.00i 0.0548746i
\(783\) −2214.00 −0.101050
\(784\) −10896.0 −0.496356
\(785\) 43400.0i 1.97326i
\(786\) 12432.0i 0.564166i
\(787\) 10660.0i 0.482831i 0.970422 + 0.241415i \(0.0776117\pi\)
−0.970422 + 0.241415i \(0.922388\pi\)
\(788\) 19632.0i 0.887514i
\(789\) 16596.0 0.748838
\(790\) −43840.0 −1.97438
\(791\) 39872.0i 1.79227i
\(792\) −3600.00 −0.161516
\(793\) 0 0
\(794\) −25316.0 −1.13153
\(795\) 11880.0i 0.529988i
\(796\) −1312.00 −0.0584204
\(797\) −1974.00 −0.0877323 −0.0438662 0.999037i \(-0.513968\pi\)
−0.0438662 + 0.999037i \(0.513968\pi\)
\(798\) − 23040.0i − 1.02206i
\(799\) 5340.00i 0.236440i
\(800\) − 8800.00i − 0.388909i
\(801\) − 11016.0i − 0.485932i
\(802\) 31440.0 1.38427
\(803\) −3100.00 −0.136235
\(804\) − 1680.00i − 0.0736928i
\(805\) 12800.0 0.560423
\(806\) 0 0
\(807\) 10602.0 0.462464
\(808\) 8464.00i 0.368518i
\(809\) 31734.0 1.37912 0.689560 0.724229i \(-0.257804\pi\)
0.689560 + 0.724229i \(0.257804\pi\)
\(810\) 3240.00 0.140546
\(811\) − 38824.0i − 1.68100i −0.541808 0.840502i \(-0.682260\pi\)
0.541808 0.840502i \(-0.317740\pi\)
\(812\) − 10496.0i − 0.453617i
\(813\) 7176.00i 0.309561i
\(814\) 30600.0i 1.31760i
\(815\) −4960.00 −0.213179
\(816\) −1440.00 −0.0617771
\(817\) − 42720.0i − 1.82936i
\(818\) −15308.0 −0.654317
\(819\) 0 0
\(820\) −8640.00 −0.367954
\(821\) − 16736.0i − 0.711438i −0.934593 0.355719i \(-0.884236\pi\)
0.934593 0.355719i \(-0.115764\pi\)
\(822\) 4536.00 0.192471
\(823\) −42096.0 −1.78296 −0.891479 0.453062i \(-0.850332\pi\)
−0.891479 + 0.453062i \(0.850332\pi\)
\(824\) 14144.0i 0.597973i
\(825\) − 41250.0i − 1.74078i
\(826\) 6016.00i 0.253418i
\(827\) − 24858.0i − 1.04522i −0.852572 0.522610i \(-0.824958\pi\)
0.852572 0.522610i \(-0.175042\pi\)
\(828\) −720.000 −0.0302195
\(829\) −922.000 −0.0386277 −0.0193139 0.999813i \(-0.506148\pi\)
−0.0193139 + 0.999813i \(0.506148\pi\)
\(830\) − 18480.0i − 0.772832i
\(831\) 18306.0 0.764173
\(832\) 0 0
\(833\) −20430.0 −0.849769
\(834\) − 1032.00i − 0.0428480i
\(835\) −2040.00 −0.0845474
\(836\) 24000.0 0.992892
\(837\) 1188.00i 0.0490601i
\(838\) − 3696.00i − 0.152358i
\(839\) 14294.0i 0.588181i 0.955778 + 0.294090i \(0.0950167\pi\)
−0.955778 + 0.294090i \(0.904983\pi\)
\(840\) 15360.0i 0.630917i
\(841\) −17665.0 −0.724302
\(842\) 25084.0 1.02666
\(843\) − 22620.0i − 0.924169i
\(844\) −5264.00 −0.214685
\(845\) 0 0
\(846\) −3204.00 −0.130208
\(847\) − 37408.0i − 1.51754i
\(848\) 3168.00 0.128290
\(849\) −8268.00 −0.334225
\(850\) − 16500.0i − 0.665818i
\(851\) 6120.00i 0.246523i
\(852\) − 9336.00i − 0.375406i
\(853\) − 37966.0i − 1.52395i −0.647605 0.761976i \(-0.724229\pi\)
0.647605 0.761976i \(-0.275771\pi\)
\(854\) 3968.00 0.158996
\(855\) −21600.0 −0.863982
\(856\) 14464.0i 0.577534i
\(857\) −39038.0 −1.55602 −0.778012 0.628249i \(-0.783772\pi\)
−0.778012 + 0.628249i \(0.783772\pi\)
\(858\) 0 0
\(859\) 20564.0 0.816804 0.408402 0.912802i \(-0.366086\pi\)
0.408402 + 0.912802i \(0.366086\pi\)
\(860\) 28480.0i 1.12926i
\(861\) 10368.0 0.410384
\(862\) 10476.0 0.413937
\(863\) 39866.0i 1.57248i 0.617918 + 0.786242i \(0.287976\pi\)
−0.617918 + 0.786242i \(0.712024\pi\)
\(864\) − 864.000i − 0.0340207i
\(865\) 13640.0i 0.536155i
\(866\) 16516.0i 0.648079i
\(867\) 12039.0 0.471587
\(868\) −5632.00 −0.220233
\(869\) 54800.0i 2.13920i
\(870\) −9840.00 −0.383457
\(871\) 0 0
\(872\) −15088.0 −0.585945
\(873\) 5526.00i 0.214235i
\(874\) 4800.00 0.185769
\(875\) −96000.0 −3.70902
\(876\) − 744.000i − 0.0286957i
\(877\) 30990.0i 1.19322i 0.802530 + 0.596612i \(0.203487\pi\)
−0.802530 + 0.596612i \(0.796513\pi\)
\(878\) 12608.0i 0.484623i
\(879\) 2904.00i 0.111433i
\(880\) −16000.0 −0.612909
\(881\) 4458.00 0.170481 0.0852405 0.996360i \(-0.472834\pi\)
0.0852405 + 0.996360i \(0.472834\pi\)
\(882\) − 12258.0i − 0.467969i
\(883\) 3164.00 0.120586 0.0602928 0.998181i \(-0.480797\pi\)
0.0602928 + 0.998181i \(0.480797\pi\)
\(884\) 0 0
\(885\) 5640.00 0.214222
\(886\) 25488.0i 0.966463i
\(887\) −32512.0 −1.23072 −0.615359 0.788247i \(-0.710989\pi\)
−0.615359 + 0.788247i \(0.710989\pi\)
\(888\) −7344.00 −0.277532
\(889\) − 51968.0i − 1.96057i
\(890\) − 48960.0i − 1.84398i
\(891\) − 4050.00i − 0.152278i
\(892\) 7728.00i 0.290081i
\(893\) 21360.0 0.800431
\(894\) 7632.00 0.285517
\(895\) − 12240.0i − 0.457138i
\(896\) 4096.00 0.152721
\(897\) 0 0
\(898\) −23552.0 −0.875212
\(899\) − 3608.00i − 0.133853i
\(900\) 9900.00 0.366667
\(901\) 5940.00 0.219634
\(902\) 10800.0i 0.398670i
\(903\) − 34176.0i − 1.25948i
\(904\) − 9968.00i − 0.366738i
\(905\) − 1320.00i − 0.0484843i
\(906\) −8424.00 −0.308906
\(907\) −10500.0 −0.384396 −0.192198 0.981356i \(-0.561562\pi\)
−0.192198 + 0.981356i \(0.561562\pi\)
\(908\) − 19992.0i − 0.730680i
\(909\) −9522.00 −0.347442
\(910\) 0 0
\(911\) 9840.00 0.357864 0.178932 0.983861i \(-0.442736\pi\)
0.178932 + 0.983861i \(0.442736\pi\)
\(912\) 5760.00i 0.209137i
\(913\) −23100.0 −0.837348
\(914\) −4268.00 −0.154456
\(915\) − 3720.00i − 0.134404i
\(916\) − 312.000i − 0.0112541i
\(917\) − 66304.0i − 2.38773i
\(918\) − 1620.00i − 0.0582440i
\(919\) −35040.0 −1.25774 −0.628870 0.777511i \(-0.716482\pi\)
−0.628870 + 0.777511i \(0.716482\pi\)
\(920\) −3200.00 −0.114675
\(921\) − 19308.0i − 0.690793i
\(922\) −5448.00 −0.194599
\(923\) 0 0
\(924\) 19200.0 0.683586
\(925\) − 84150.0i − 2.99117i
\(926\) −11296.0 −0.400874
\(927\) −15912.0 −0.563774
\(928\) 2624.00i 0.0928201i
\(929\) 44172.0i 1.56000i 0.625782 + 0.779998i \(0.284780\pi\)
−0.625782 + 0.779998i \(0.715220\pi\)
\(930\) 5280.00i 0.186170i
\(931\) 81720.0i 2.87676i
\(932\) −5128.00 −0.180229
\(933\) 23796.0 0.834990
\(934\) 36448.0i 1.27689i
\(935\) −30000.0 −1.04931
\(936\) 0 0
\(937\) −54018.0 −1.88334 −0.941671 0.336535i \(-0.890745\pi\)
−0.941671 + 0.336535i \(0.890745\pi\)
\(938\) 8960.00i 0.311892i
\(939\) −31074.0 −1.07994
\(940\) −14240.0 −0.494104
\(941\) − 1672.00i − 0.0579231i −0.999581 0.0289616i \(-0.990780\pi\)
0.999581 0.0289616i \(-0.00922004\pi\)
\(942\) 13020.0i 0.450334i
\(943\) 2160.00i 0.0745910i
\(944\) − 1504.00i − 0.0518549i
\(945\) −17280.0 −0.594834
\(946\) 35600.0 1.22353
\(947\) − 5238.00i − 0.179738i −0.995954 0.0898691i \(-0.971355\pi\)
0.995954 0.0898691i \(-0.0286449\pi\)
\(948\) −13152.0 −0.450588
\(949\) 0 0
\(950\) −66000.0 −2.25402
\(951\) 8460.00i 0.288469i
\(952\) 7680.00 0.261460
\(953\) 50042.0 1.70096 0.850482 0.526004i \(-0.176310\pi\)
0.850482 + 0.526004i \(0.176310\pi\)
\(954\) 3564.00i 0.120953i
\(955\) − 12160.0i − 0.412030i
\(956\) − 1176.00i − 0.0397851i
\(957\) 12300.0i 0.415468i
\(958\) 18132.0 0.611501
\(959\) −24192.0 −0.814599
\(960\) − 3840.00i − 0.129099i
\(961\) 27855.0 0.935014
\(962\) 0 0
\(963\) −16272.0 −0.544505
\(964\) − 19848.0i − 0.663134i
\(965\) −27400.0 −0.914028
\(966\) 3840.00 0.127899
\(967\) 37676.0i 1.25293i 0.779452 + 0.626463i \(0.215498\pi\)
−0.779452 + 0.626463i \(0.784502\pi\)
\(968\) 9352.00i 0.310521i
\(969\) 10800.0i 0.358045i
\(970\) 24560.0i 0.812963i
\(971\) −17364.0 −0.573880 −0.286940 0.957949i \(-0.592638\pi\)
−0.286940 + 0.957949i \(0.592638\pi\)
\(972\) 972.000 0.0320750
\(973\) 5504.00i 0.181346i
\(974\) −17896.0 −0.588732
\(975\) 0 0
\(976\) −992.000 −0.0325340
\(977\) − 14904.0i − 0.488046i −0.969769 0.244023i \(-0.921533\pi\)
0.969769 0.244023i \(-0.0784673\pi\)
\(978\) −1488.00 −0.0486513
\(979\) −61200.0 −1.99792
\(980\) − 54480.0i − 1.77582i
\(981\) − 16974.0i − 0.552434i
\(982\) − 17440.0i − 0.566734i
\(983\) 18038.0i 0.585272i 0.956224 + 0.292636i \(0.0945325\pi\)
−0.956224 + 0.292636i \(0.905467\pi\)
\(984\) −2592.00 −0.0839735
\(985\) −98160.0 −3.17527
\(986\) 4920.00i 0.158909i
\(987\) 17088.0 0.551081
\(988\) 0 0
\(989\) 7120.00 0.228921
\(990\) − 18000.0i − 0.577856i
\(991\) 46176.0 1.48015 0.740075 0.672524i \(-0.234790\pi\)
0.740075 + 0.672524i \(0.234790\pi\)
\(992\) 1408.00 0.0450646
\(993\) 12540.0i 0.400750i
\(994\) 49792.0i 1.58884i
\(995\) − 6560.00i − 0.209011i
\(996\) − 5544.00i − 0.176374i
\(997\) 55838.0 1.77373 0.886864 0.462030i \(-0.152879\pi\)
0.886864 + 0.462030i \(0.152879\pi\)
\(998\) −13208.0 −0.418930
\(999\) − 8262.00i − 0.261660i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.4.b.e.337.2 2
13.5 odd 4 78.4.a.d.1.1 1
13.8 odd 4 1014.4.a.d.1.1 1
13.12 even 2 inner 1014.4.b.e.337.1 2
39.5 even 4 234.4.a.f.1.1 1
52.31 even 4 624.4.a.e.1.1 1
65.44 odd 4 1950.4.a.h.1.1 1
104.5 odd 4 2496.4.a.r.1.1 1
104.83 even 4 2496.4.a.i.1.1 1
156.83 odd 4 1872.4.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.4.a.d.1.1 1 13.5 odd 4
234.4.a.f.1.1 1 39.5 even 4
624.4.a.e.1.1 1 52.31 even 4
1014.4.a.d.1.1 1 13.8 odd 4
1014.4.b.e.337.1 2 13.12 even 2 inner
1014.4.b.e.337.2 2 1.1 even 1 trivial
1872.4.a.r.1.1 1 156.83 odd 4
1950.4.a.h.1.1 1 65.44 odd 4
2496.4.a.i.1.1 1 104.83 even 4
2496.4.a.r.1.1 1 104.5 odd 4