Properties

Label 1014.4.b.c
Level $1014$
Weight $4$
Character orbit 1014.b
Analytic conductor $59.828$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1014,4,Mod(337,1014)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1014, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1014.337"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1014.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,-8,0,0,0,0,18,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.8279367458\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - 3 q^{3} - 4 q^{4} + 3 \beta q^{5} - 3 \beta q^{6} - 10 \beta q^{7} - 4 \beta q^{8} + 9 q^{9} - 12 q^{10} - 12 \beta q^{11} + 12 q^{12} + 40 q^{14} - 9 \beta q^{15} + 16 q^{16} + 30 q^{17} + \cdots - 108 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 8 q^{4} + 18 q^{9} - 24 q^{10} + 24 q^{12} + 80 q^{14} + 32 q^{16} + 60 q^{17} + 96 q^{22} + 144 q^{23} + 178 q^{25} - 54 q^{27} - 564 q^{29} + 72 q^{30} + 240 q^{35} - 72 q^{36} + 64 q^{38}+ \cdots + 192 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.00000i
1.00000i
2.00000i −3.00000 −4.00000 6.00000i 6.00000i 20.0000i 8.00000i 9.00000 −12.0000
337.2 2.00000i −3.00000 −4.00000 6.00000i 6.00000i 20.0000i 8.00000i 9.00000 −12.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.4.b.c 2
13.b even 2 1 inner 1014.4.b.c 2
13.d odd 4 1 78.4.a.e 1
13.d odd 4 1 1014.4.a.b 1
39.f even 4 1 234.4.a.b 1
52.f even 4 1 624.4.a.i 1
65.g odd 4 1 1950.4.a.c 1
104.j odd 4 1 2496.4.a.k 1
104.m even 4 1 2496.4.a.b 1
156.l odd 4 1 1872.4.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.4.a.e 1 13.d odd 4 1
234.4.a.b 1 39.f even 4 1
624.4.a.i 1 52.f even 4 1
1014.4.a.b 1 13.d odd 4 1
1014.4.b.c 2 1.a even 1 1 trivial
1014.4.b.c 2 13.b even 2 1 inner
1872.4.a.e 1 156.l odd 4 1
1950.4.a.c 1 65.g odd 4 1
2496.4.a.b 1 104.m even 4 1
2496.4.a.k 1 104.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1014, [\chi])\):

\( T_{5}^{2} + 36 \) Copy content Toggle raw display
\( T_{7}^{2} + 400 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 36 \) Copy content Toggle raw display
$7$ \( T^{2} + 400 \) Copy content Toggle raw display
$11$ \( T^{2} + 576 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 30)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 256 \) Copy content Toggle raw display
$23$ \( (T - 72)^{2} \) Copy content Toggle raw display
$29$ \( (T + 282)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 26896 \) Copy content Toggle raw display
$37$ \( T^{2} + 12100 \) Copy content Toggle raw display
$41$ \( T^{2} + 15876 \) Copy content Toggle raw display
$43$ \( (T + 164)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 41616 \) Copy content Toggle raw display
$53$ \( (T + 738)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 14400 \) Copy content Toggle raw display
$61$ \( (T - 614)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 719104 \) Copy content Toggle raw display
$71$ \( T^{2} + 17424 \) Copy content Toggle raw display
$73$ \( T^{2} + 47524 \) Copy content Toggle raw display
$79$ \( (T + 1096)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 304704 \) Copy content Toggle raw display
$89$ \( T^{2} + 44100 \) Copy content Toggle raw display
$97$ \( T^{2} + 2979076 \) Copy content Toggle raw display
show more
show less