Properties

Label 1014.4.b.a
Level $1014$
Weight $4$
Character orbit 1014.b
Analytic conductor $59.828$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,4,Mod(337,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.337");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1014.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.8279367458\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - 3 q^{3} - 4 q^{4} + 8 \beta q^{5} - 3 \beta q^{6} + 14 \beta q^{7} - 4 \beta q^{8} + 9 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{2} - 3 q^{3} - 4 q^{4} + 8 \beta q^{5} - 3 \beta q^{6} + 14 \beta q^{7} - 4 \beta q^{8} + 9 q^{9} - 32 q^{10} + 17 \beta q^{11} + 12 q^{12} - 56 q^{14} - 24 \beta q^{15} + 16 q^{16} - 138 q^{17} + 9 \beta q^{18} - 54 \beta q^{19} - 32 \beta q^{20} - 42 \beta q^{21} - 68 q^{22} + 52 q^{23} + 12 \beta q^{24} - 131 q^{25} - 27 q^{27} - 56 \beta q^{28} - 190 q^{29} + 96 q^{30} + 88 \beta q^{31} + 16 \beta q^{32} - 51 \beta q^{33} - 138 \beta q^{34} - 448 q^{35} - 36 q^{36} + 171 \beta q^{37} + 216 q^{38} + 128 q^{40} - 120 \beta q^{41} + 168 q^{42} + 140 q^{43} - 68 \beta q^{44} + 72 \beta q^{45} + 52 \beta q^{46} + 227 \beta q^{47} - 48 q^{48} - 441 q^{49} - 131 \beta q^{50} + 414 q^{51} + 198 q^{53} - 27 \beta q^{54} - 544 q^{55} + 224 q^{56} + 162 \beta q^{57} - 190 \beta q^{58} - 77 \beta q^{59} + 96 \beta q^{60} + 34 q^{61} - 352 q^{62} + 126 \beta q^{63} - 64 q^{64} + 204 q^{66} + 328 \beta q^{67} + 552 q^{68} - 156 q^{69} - 448 \beta q^{70} - 275 \beta q^{71} - 36 \beta q^{72} + 307 \beta q^{73} - 684 q^{74} + 393 q^{75} + 216 \beta q^{76} - 952 q^{77} + 8 q^{79} + 128 \beta q^{80} + 81 q^{81} + 480 q^{82} - 381 \beta q^{83} + 168 \beta q^{84} - 1104 \beta q^{85} + 140 \beta q^{86} + 570 q^{87} + 272 q^{88} - 222 \beta q^{89} - 288 q^{90} - 208 q^{92} - 264 \beta q^{93} - 908 q^{94} + 1728 q^{95} - 48 \beta q^{96} - 511 \beta q^{97} - 441 \beta q^{98} + 153 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 8 q^{4} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{3} - 8 q^{4} + 18 q^{9} - 64 q^{10} + 24 q^{12} - 112 q^{14} + 32 q^{16} - 276 q^{17} - 136 q^{22} + 104 q^{23} - 262 q^{25} - 54 q^{27} - 380 q^{29} + 192 q^{30} - 896 q^{35} - 72 q^{36} + 432 q^{38} + 256 q^{40} + 336 q^{42} + 280 q^{43} - 96 q^{48} - 882 q^{49} + 828 q^{51} + 396 q^{53} - 1088 q^{55} + 448 q^{56} + 68 q^{61} - 704 q^{62} - 128 q^{64} + 408 q^{66} + 1104 q^{68} - 312 q^{69} - 1368 q^{74} + 786 q^{75} - 1904 q^{77} + 16 q^{79} + 162 q^{81} + 960 q^{82} + 1140 q^{87} + 544 q^{88} - 576 q^{90} - 416 q^{92} - 1816 q^{94} + 3456 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.00000i
1.00000i
2.00000i −3.00000 −4.00000 16.0000i 6.00000i 28.0000i 8.00000i 9.00000 −32.0000
337.2 2.00000i −3.00000 −4.00000 16.0000i 6.00000i 28.0000i 8.00000i 9.00000 −32.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.4.b.a 2
13.b even 2 1 inner 1014.4.b.a 2
13.d odd 4 1 78.4.a.a 1
13.d odd 4 1 1014.4.a.i 1
39.f even 4 1 234.4.a.k 1
52.f even 4 1 624.4.a.f 1
65.g odd 4 1 1950.4.a.o 1
104.j odd 4 1 2496.4.a.q 1
104.m even 4 1 2496.4.a.g 1
156.l odd 4 1 1872.4.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.4.a.a 1 13.d odd 4 1
234.4.a.k 1 39.f even 4 1
624.4.a.f 1 52.f even 4 1
1014.4.a.i 1 13.d odd 4 1
1014.4.b.a 2 1.a even 1 1 trivial
1014.4.b.a 2 13.b even 2 1 inner
1872.4.a.o 1 156.l odd 4 1
1950.4.a.o 1 65.g odd 4 1
2496.4.a.g 1 104.m even 4 1
2496.4.a.q 1 104.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1014, [\chi])\):

\( T_{5}^{2} + 256 \) Copy content Toggle raw display
\( T_{7}^{2} + 784 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 256 \) Copy content Toggle raw display
$7$ \( T^{2} + 784 \) Copy content Toggle raw display
$11$ \( T^{2} + 1156 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 138)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 11664 \) Copy content Toggle raw display
$23$ \( (T - 52)^{2} \) Copy content Toggle raw display
$29$ \( (T + 190)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 30976 \) Copy content Toggle raw display
$37$ \( T^{2} + 116964 \) Copy content Toggle raw display
$41$ \( T^{2} + 57600 \) Copy content Toggle raw display
$43$ \( (T - 140)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 206116 \) Copy content Toggle raw display
$53$ \( (T - 198)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 23716 \) Copy content Toggle raw display
$61$ \( (T - 34)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 430336 \) Copy content Toggle raw display
$71$ \( T^{2} + 302500 \) Copy content Toggle raw display
$73$ \( T^{2} + 376996 \) Copy content Toggle raw display
$79$ \( (T - 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 580644 \) Copy content Toggle raw display
$89$ \( T^{2} + 197136 \) Copy content Toggle raw display
$97$ \( T^{2} + 1044484 \) Copy content Toggle raw display
show more
show less