Properties

Label 1014.4.a.j.1.1
Level $1014$
Weight $4$
Character 1014.1
Self dual yes
Analytic conductor $59.828$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,4,Mod(1,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1014.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.8279367458\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1014.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.00000 q^{3} +4.00000 q^{4} -10.0000 q^{5} +6.00000 q^{6} +8.00000 q^{7} +8.00000 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{2} +3.00000 q^{3} +4.00000 q^{4} -10.0000 q^{5} +6.00000 q^{6} +8.00000 q^{7} +8.00000 q^{8} +9.00000 q^{9} -20.0000 q^{10} -40.0000 q^{11} +12.0000 q^{12} +16.0000 q^{14} -30.0000 q^{15} +16.0000 q^{16} +130.000 q^{17} +18.0000 q^{18} +20.0000 q^{19} -40.0000 q^{20} +24.0000 q^{21} -80.0000 q^{22} +24.0000 q^{24} -25.0000 q^{25} +27.0000 q^{27} +32.0000 q^{28} -18.0000 q^{29} -60.0000 q^{30} +184.000 q^{31} +32.0000 q^{32} -120.000 q^{33} +260.000 q^{34} -80.0000 q^{35} +36.0000 q^{36} +74.0000 q^{37} +40.0000 q^{38} -80.0000 q^{40} +362.000 q^{41} +48.0000 q^{42} +76.0000 q^{43} -160.000 q^{44} -90.0000 q^{45} +452.000 q^{47} +48.0000 q^{48} -279.000 q^{49} -50.0000 q^{50} +390.000 q^{51} +382.000 q^{53} +54.0000 q^{54} +400.000 q^{55} +64.0000 q^{56} +60.0000 q^{57} -36.0000 q^{58} -464.000 q^{59} -120.000 q^{60} +358.000 q^{61} +368.000 q^{62} +72.0000 q^{63} +64.0000 q^{64} -240.000 q^{66} +700.000 q^{67} +520.000 q^{68} -160.000 q^{70} +748.000 q^{71} +72.0000 q^{72} -1058.00 q^{73} +148.000 q^{74} -75.0000 q^{75} +80.0000 q^{76} -320.000 q^{77} -976.000 q^{79} -160.000 q^{80} +81.0000 q^{81} +724.000 q^{82} +1008.00 q^{83} +96.0000 q^{84} -1300.00 q^{85} +152.000 q^{86} -54.0000 q^{87} -320.000 q^{88} +386.000 q^{89} -180.000 q^{90} +552.000 q^{93} +904.000 q^{94} -200.000 q^{95} +96.0000 q^{96} +614.000 q^{97} -558.000 q^{98} -360.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 3.00000 0.577350
\(4\) 4.00000 0.500000
\(5\) −10.0000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 6.00000 0.408248
\(7\) 8.00000 0.431959 0.215980 0.976398i \(-0.430705\pi\)
0.215980 + 0.976398i \(0.430705\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) −20.0000 −0.632456
\(11\) −40.0000 −1.09640 −0.548202 0.836346i \(-0.684688\pi\)
−0.548202 + 0.836346i \(0.684688\pi\)
\(12\) 12.0000 0.288675
\(13\) 0 0
\(14\) 16.0000 0.305441
\(15\) −30.0000 −0.516398
\(16\) 16.0000 0.250000
\(17\) 130.000 1.85468 0.927342 0.374215i \(-0.122088\pi\)
0.927342 + 0.374215i \(0.122088\pi\)
\(18\) 18.0000 0.235702
\(19\) 20.0000 0.241490 0.120745 0.992684i \(-0.461472\pi\)
0.120745 + 0.992684i \(0.461472\pi\)
\(20\) −40.0000 −0.447214
\(21\) 24.0000 0.249392
\(22\) −80.0000 −0.775275
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 24.0000 0.204124
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 32.0000 0.215980
\(29\) −18.0000 −0.115259 −0.0576296 0.998338i \(-0.518354\pi\)
−0.0576296 + 0.998338i \(0.518354\pi\)
\(30\) −60.0000 −0.365148
\(31\) 184.000 1.06604 0.533022 0.846101i \(-0.321056\pi\)
0.533022 + 0.846101i \(0.321056\pi\)
\(32\) 32.0000 0.176777
\(33\) −120.000 −0.633010
\(34\) 260.000 1.31146
\(35\) −80.0000 −0.386356
\(36\) 36.0000 0.166667
\(37\) 74.0000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 40.0000 0.170759
\(39\) 0 0
\(40\) −80.0000 −0.316228
\(41\) 362.000 1.37890 0.689450 0.724333i \(-0.257852\pi\)
0.689450 + 0.724333i \(0.257852\pi\)
\(42\) 48.0000 0.176347
\(43\) 76.0000 0.269532 0.134766 0.990877i \(-0.456972\pi\)
0.134766 + 0.990877i \(0.456972\pi\)
\(44\) −160.000 −0.548202
\(45\) −90.0000 −0.298142
\(46\) 0 0
\(47\) 452.000 1.40279 0.701393 0.712774i \(-0.252562\pi\)
0.701393 + 0.712774i \(0.252562\pi\)
\(48\) 48.0000 0.144338
\(49\) −279.000 −0.813411
\(50\) −50.0000 −0.141421
\(51\) 390.000 1.07080
\(52\) 0 0
\(53\) 382.000 0.990033 0.495016 0.868884i \(-0.335162\pi\)
0.495016 + 0.868884i \(0.335162\pi\)
\(54\) 54.0000 0.136083
\(55\) 400.000 0.980654
\(56\) 64.0000 0.152721
\(57\) 60.0000 0.139424
\(58\) −36.0000 −0.0815005
\(59\) −464.000 −1.02386 −0.511929 0.859028i \(-0.671069\pi\)
−0.511929 + 0.859028i \(0.671069\pi\)
\(60\) −120.000 −0.258199
\(61\) 358.000 0.751430 0.375715 0.926735i \(-0.377397\pi\)
0.375715 + 0.926735i \(0.377397\pi\)
\(62\) 368.000 0.753807
\(63\) 72.0000 0.143986
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −240.000 −0.447605
\(67\) 700.000 1.27640 0.638199 0.769872i \(-0.279680\pi\)
0.638199 + 0.769872i \(0.279680\pi\)
\(68\) 520.000 0.927342
\(69\) 0 0
\(70\) −160.000 −0.273195
\(71\) 748.000 1.25030 0.625150 0.780505i \(-0.285038\pi\)
0.625150 + 0.780505i \(0.285038\pi\)
\(72\) 72.0000 0.117851
\(73\) −1058.00 −1.69629 −0.848147 0.529760i \(-0.822282\pi\)
−0.848147 + 0.529760i \(0.822282\pi\)
\(74\) 148.000 0.232495
\(75\) −75.0000 −0.115470
\(76\) 80.0000 0.120745
\(77\) −320.000 −0.473602
\(78\) 0 0
\(79\) −976.000 −1.38998 −0.694991 0.719018i \(-0.744592\pi\)
−0.694991 + 0.719018i \(0.744592\pi\)
\(80\) −160.000 −0.223607
\(81\) 81.0000 0.111111
\(82\) 724.000 0.975030
\(83\) 1008.00 1.33304 0.666520 0.745487i \(-0.267783\pi\)
0.666520 + 0.745487i \(0.267783\pi\)
\(84\) 96.0000 0.124696
\(85\) −1300.00 −1.65888
\(86\) 152.000 0.190588
\(87\) −54.0000 −0.0665449
\(88\) −320.000 −0.387638
\(89\) 386.000 0.459729 0.229865 0.973223i \(-0.426172\pi\)
0.229865 + 0.973223i \(0.426172\pi\)
\(90\) −180.000 −0.210819
\(91\) 0 0
\(92\) 0 0
\(93\) 552.000 0.615481
\(94\) 904.000 0.991920
\(95\) −200.000 −0.215995
\(96\) 96.0000 0.102062
\(97\) 614.000 0.642704 0.321352 0.946960i \(-0.395863\pi\)
0.321352 + 0.946960i \(0.395863\pi\)
\(98\) −558.000 −0.575168
\(99\) −360.000 −0.365468
\(100\) −100.000 −0.100000
\(101\) 518.000 0.510326 0.255163 0.966898i \(-0.417871\pi\)
0.255163 + 0.966898i \(0.417871\pi\)
\(102\) 780.000 0.757172
\(103\) 112.000 0.107143 0.0535713 0.998564i \(-0.482940\pi\)
0.0535713 + 0.998564i \(0.482940\pi\)
\(104\) 0 0
\(105\) −240.000 −0.223063
\(106\) 764.000 0.700059
\(107\) −372.000 −0.336099 −0.168050 0.985779i \(-0.553747\pi\)
−0.168050 + 0.985779i \(0.553747\pi\)
\(108\) 108.000 0.0962250
\(109\) −934.000 −0.820743 −0.410371 0.911918i \(-0.634601\pi\)
−0.410371 + 0.911918i \(0.634601\pi\)
\(110\) 800.000 0.693427
\(111\) 222.000 0.189832
\(112\) 128.000 0.107990
\(113\) 1914.00 1.59340 0.796699 0.604376i \(-0.206578\pi\)
0.796699 + 0.604376i \(0.206578\pi\)
\(114\) 120.000 0.0985880
\(115\) 0 0
\(116\) −72.0000 −0.0576296
\(117\) 0 0
\(118\) −928.000 −0.723977
\(119\) 1040.00 0.801148
\(120\) −240.000 −0.182574
\(121\) 269.000 0.202104
\(122\) 716.000 0.531341
\(123\) 1086.00 0.796108
\(124\) 736.000 0.533022
\(125\) 1500.00 1.07331
\(126\) 144.000 0.101814
\(127\) 1296.00 0.905523 0.452761 0.891632i \(-0.350439\pi\)
0.452761 + 0.891632i \(0.350439\pi\)
\(128\) 128.000 0.0883883
\(129\) 228.000 0.155615
\(130\) 0 0
\(131\) −892.000 −0.594919 −0.297460 0.954734i \(-0.596139\pi\)
−0.297460 + 0.954734i \(0.596139\pi\)
\(132\) −480.000 −0.316505
\(133\) 160.000 0.104314
\(134\) 1400.00 0.902549
\(135\) −270.000 −0.172133
\(136\) 1040.00 0.655730
\(137\) −2326.00 −1.45054 −0.725269 0.688466i \(-0.758284\pi\)
−0.725269 + 0.688466i \(0.758284\pi\)
\(138\) 0 0
\(139\) 1932.00 1.17892 0.589461 0.807797i \(-0.299340\pi\)
0.589461 + 0.807797i \(0.299340\pi\)
\(140\) −320.000 −0.193178
\(141\) 1356.00 0.809899
\(142\) 1496.00 0.884095
\(143\) 0 0
\(144\) 144.000 0.0833333
\(145\) 180.000 0.103091
\(146\) −2116.00 −1.19946
\(147\) −837.000 −0.469623
\(148\) 296.000 0.164399
\(149\) −882.000 −0.484941 −0.242471 0.970159i \(-0.577958\pi\)
−0.242471 + 0.970159i \(0.577958\pi\)
\(150\) −150.000 −0.0816497
\(151\) 1776.00 0.957145 0.478572 0.878048i \(-0.341154\pi\)
0.478572 + 0.878048i \(0.341154\pi\)
\(152\) 160.000 0.0853797
\(153\) 1170.00 0.618228
\(154\) −640.000 −0.334887
\(155\) −1840.00 −0.953499
\(156\) 0 0
\(157\) −2410.00 −1.22509 −0.612544 0.790436i \(-0.709854\pi\)
−0.612544 + 0.790436i \(0.709854\pi\)
\(158\) −1952.00 −0.982866
\(159\) 1146.00 0.571596
\(160\) −320.000 −0.158114
\(161\) 0 0
\(162\) 162.000 0.0785674
\(163\) −3212.00 −1.54346 −0.771728 0.635953i \(-0.780607\pi\)
−0.771728 + 0.635953i \(0.780607\pi\)
\(164\) 1448.00 0.689450
\(165\) 1200.00 0.566181
\(166\) 2016.00 0.942602
\(167\) −1668.00 −0.772896 −0.386448 0.922311i \(-0.626298\pi\)
−0.386448 + 0.922311i \(0.626298\pi\)
\(168\) 192.000 0.0881733
\(169\) 0 0
\(170\) −2600.00 −1.17301
\(171\) 180.000 0.0804967
\(172\) 304.000 0.134766
\(173\) 3598.00 1.58122 0.790609 0.612321i \(-0.209764\pi\)
0.790609 + 0.612321i \(0.209764\pi\)
\(174\) −108.000 −0.0470544
\(175\) −200.000 −0.0863919
\(176\) −640.000 −0.274101
\(177\) −1392.00 −0.591125
\(178\) 772.000 0.325078
\(179\) 1068.00 0.445956 0.222978 0.974824i \(-0.428422\pi\)
0.222978 + 0.974824i \(0.428422\pi\)
\(180\) −360.000 −0.149071
\(181\) −4786.00 −1.96542 −0.982709 0.185158i \(-0.940720\pi\)
−0.982709 + 0.185158i \(0.940720\pi\)
\(182\) 0 0
\(183\) 1074.00 0.433838
\(184\) 0 0
\(185\) −740.000 −0.294086
\(186\) 1104.00 0.435211
\(187\) −5200.00 −2.03348
\(188\) 1808.00 0.701393
\(189\) 216.000 0.0831306
\(190\) −400.000 −0.152732
\(191\) −1312.00 −0.497031 −0.248516 0.968628i \(-0.579943\pi\)
−0.248516 + 0.968628i \(0.579943\pi\)
\(192\) 192.000 0.0721688
\(193\) 350.000 0.130537 0.0652683 0.997868i \(-0.479210\pi\)
0.0652683 + 0.997868i \(0.479210\pi\)
\(194\) 1228.00 0.454460
\(195\) 0 0
\(196\) −1116.00 −0.406706
\(197\) 342.000 0.123688 0.0618439 0.998086i \(-0.480302\pi\)
0.0618439 + 0.998086i \(0.480302\pi\)
\(198\) −720.000 −0.258425
\(199\) −3368.00 −1.19975 −0.599877 0.800092i \(-0.704784\pi\)
−0.599877 + 0.800092i \(0.704784\pi\)
\(200\) −200.000 −0.0707107
\(201\) 2100.00 0.736928
\(202\) 1036.00 0.360855
\(203\) −144.000 −0.0497873
\(204\) 1560.00 0.535401
\(205\) −3620.00 −1.23333
\(206\) 224.000 0.0757613
\(207\) 0 0
\(208\) 0 0
\(209\) −800.000 −0.264771
\(210\) −480.000 −0.157729
\(211\) −2004.00 −0.653844 −0.326922 0.945051i \(-0.606011\pi\)
−0.326922 + 0.945051i \(0.606011\pi\)
\(212\) 1528.00 0.495016
\(213\) 2244.00 0.721861
\(214\) −744.000 −0.237658
\(215\) −760.000 −0.241077
\(216\) 216.000 0.0680414
\(217\) 1472.00 0.460488
\(218\) −1868.00 −0.580353
\(219\) −3174.00 −0.979356
\(220\) 1600.00 0.490327
\(221\) 0 0
\(222\) 444.000 0.134231
\(223\) 5608.00 1.68403 0.842017 0.539451i \(-0.181368\pi\)
0.842017 + 0.539451i \(0.181368\pi\)
\(224\) 256.000 0.0763604
\(225\) −225.000 −0.0666667
\(226\) 3828.00 1.12670
\(227\) 1928.00 0.563726 0.281863 0.959455i \(-0.409048\pi\)
0.281863 + 0.959455i \(0.409048\pi\)
\(228\) 240.000 0.0697122
\(229\) 3938.00 1.13638 0.568189 0.822898i \(-0.307644\pi\)
0.568189 + 0.822898i \(0.307644\pi\)
\(230\) 0 0
\(231\) −960.000 −0.273434
\(232\) −144.000 −0.0407503
\(233\) 2562.00 0.720353 0.360176 0.932884i \(-0.382717\pi\)
0.360176 + 0.932884i \(0.382717\pi\)
\(234\) 0 0
\(235\) −4520.00 −1.25469
\(236\) −1856.00 −0.511929
\(237\) −2928.00 −0.802506
\(238\) 2080.00 0.566497
\(239\) −7164.00 −1.93891 −0.969457 0.245260i \(-0.921127\pi\)
−0.969457 + 0.245260i \(0.921127\pi\)
\(240\) −480.000 −0.129099
\(241\) 6182.00 1.65236 0.826178 0.563410i \(-0.190511\pi\)
0.826178 + 0.563410i \(0.190511\pi\)
\(242\) 538.000 0.142909
\(243\) 243.000 0.0641500
\(244\) 1432.00 0.375715
\(245\) 2790.00 0.727537
\(246\) 2172.00 0.562934
\(247\) 0 0
\(248\) 1472.00 0.376904
\(249\) 3024.00 0.769631
\(250\) 3000.00 0.758947
\(251\) −1396.00 −0.351055 −0.175527 0.984475i \(-0.556163\pi\)
−0.175527 + 0.984475i \(0.556163\pi\)
\(252\) 288.000 0.0719932
\(253\) 0 0
\(254\) 2592.00 0.640301
\(255\) −3900.00 −0.957755
\(256\) 256.000 0.0625000
\(257\) 6906.00 1.67620 0.838102 0.545514i \(-0.183665\pi\)
0.838102 + 0.545514i \(0.183665\pi\)
\(258\) 456.000 0.110036
\(259\) 592.000 0.142027
\(260\) 0 0
\(261\) −162.000 −0.0384197
\(262\) −1784.00 −0.420671
\(263\) −6848.00 −1.60557 −0.802787 0.596266i \(-0.796650\pi\)
−0.802787 + 0.596266i \(0.796650\pi\)
\(264\) −960.000 −0.223803
\(265\) −3820.00 −0.885512
\(266\) 320.000 0.0737611
\(267\) 1158.00 0.265425
\(268\) 2800.00 0.638199
\(269\) −6034.00 −1.36766 −0.683828 0.729643i \(-0.739686\pi\)
−0.683828 + 0.729643i \(0.739686\pi\)
\(270\) −540.000 −0.121716
\(271\) −4832.00 −1.08311 −0.541556 0.840665i \(-0.682164\pi\)
−0.541556 + 0.840665i \(0.682164\pi\)
\(272\) 2080.00 0.463671
\(273\) 0 0
\(274\) −4652.00 −1.02568
\(275\) 1000.00 0.219281
\(276\) 0 0
\(277\) −4082.00 −0.885428 −0.442714 0.896663i \(-0.645984\pi\)
−0.442714 + 0.896663i \(0.645984\pi\)
\(278\) 3864.00 0.833623
\(279\) 1656.00 0.355348
\(280\) −640.000 −0.136598
\(281\) −3350.00 −0.711189 −0.355595 0.934640i \(-0.615722\pi\)
−0.355595 + 0.934640i \(0.615722\pi\)
\(282\) 2712.00 0.572685
\(283\) 7796.00 1.63754 0.818770 0.574121i \(-0.194656\pi\)
0.818770 + 0.574121i \(0.194656\pi\)
\(284\) 2992.00 0.625150
\(285\) −600.000 −0.124705
\(286\) 0 0
\(287\) 2896.00 0.595629
\(288\) 288.000 0.0589256
\(289\) 11987.0 2.43985
\(290\) 360.000 0.0728963
\(291\) 1842.00 0.371065
\(292\) −4232.00 −0.848147
\(293\) −3922.00 −0.781999 −0.390999 0.920391i \(-0.627871\pi\)
−0.390999 + 0.920391i \(0.627871\pi\)
\(294\) −1674.00 −0.332074
\(295\) 4640.00 0.915767
\(296\) 592.000 0.116248
\(297\) −1080.00 −0.211003
\(298\) −1764.00 −0.342905
\(299\) 0 0
\(300\) −300.000 −0.0577350
\(301\) 608.000 0.116427
\(302\) 3552.00 0.676803
\(303\) 1554.00 0.294637
\(304\) 320.000 0.0603726
\(305\) −3580.00 −0.672099
\(306\) 2340.00 0.437153
\(307\) −5956.00 −1.10725 −0.553627 0.832765i \(-0.686757\pi\)
−0.553627 + 0.832765i \(0.686757\pi\)
\(308\) −1280.00 −0.236801
\(309\) 336.000 0.0618588
\(310\) −3680.00 −0.674226
\(311\) 2352.00 0.428841 0.214421 0.976741i \(-0.431214\pi\)
0.214421 + 0.976741i \(0.431214\pi\)
\(312\) 0 0
\(313\) 8442.00 1.52450 0.762252 0.647280i \(-0.224093\pi\)
0.762252 + 0.647280i \(0.224093\pi\)
\(314\) −4820.00 −0.866269
\(315\) −720.000 −0.128785
\(316\) −3904.00 −0.694991
\(317\) 5550.00 0.983341 0.491670 0.870781i \(-0.336386\pi\)
0.491670 + 0.870781i \(0.336386\pi\)
\(318\) 2292.00 0.404179
\(319\) 720.000 0.126371
\(320\) −640.000 −0.111803
\(321\) −1116.00 −0.194047
\(322\) 0 0
\(323\) 2600.00 0.447888
\(324\) 324.000 0.0555556
\(325\) 0 0
\(326\) −6424.00 −1.09139
\(327\) −2802.00 −0.473856
\(328\) 2896.00 0.487515
\(329\) 3616.00 0.605947
\(330\) 2400.00 0.400350
\(331\) −140.000 −0.0232480 −0.0116240 0.999932i \(-0.503700\pi\)
−0.0116240 + 0.999932i \(0.503700\pi\)
\(332\) 4032.00 0.666520
\(333\) 666.000 0.109599
\(334\) −3336.00 −0.546520
\(335\) −7000.00 −1.14164
\(336\) 384.000 0.0623480
\(337\) −6174.00 −0.997980 −0.498990 0.866608i \(-0.666296\pi\)
−0.498990 + 0.866608i \(0.666296\pi\)
\(338\) 0 0
\(339\) 5742.00 0.919949
\(340\) −5200.00 −0.829440
\(341\) −7360.00 −1.16882
\(342\) 360.000 0.0569198
\(343\) −4976.00 −0.783320
\(344\) 608.000 0.0952941
\(345\) 0 0
\(346\) 7196.00 1.11809
\(347\) −2988.00 −0.462260 −0.231130 0.972923i \(-0.574242\pi\)
−0.231130 + 0.972923i \(0.574242\pi\)
\(348\) −216.000 −0.0332725
\(349\) 162.000 0.0248472 0.0124236 0.999923i \(-0.496045\pi\)
0.0124236 + 0.999923i \(0.496045\pi\)
\(350\) −400.000 −0.0610883
\(351\) 0 0
\(352\) −1280.00 −0.193819
\(353\) 10754.0 1.62147 0.810733 0.585416i \(-0.199069\pi\)
0.810733 + 0.585416i \(0.199069\pi\)
\(354\) −2784.00 −0.417989
\(355\) −7480.00 −1.11830
\(356\) 1544.00 0.229865
\(357\) 3120.00 0.462543
\(358\) 2136.00 0.315338
\(359\) −3588.00 −0.527486 −0.263743 0.964593i \(-0.584957\pi\)
−0.263743 + 0.964593i \(0.584957\pi\)
\(360\) −720.000 −0.105409
\(361\) −6459.00 −0.941682
\(362\) −9572.00 −1.38976
\(363\) 807.000 0.116685
\(364\) 0 0
\(365\) 10580.0 1.51721
\(366\) 2148.00 0.306770
\(367\) 11272.0 1.60325 0.801626 0.597826i \(-0.203968\pi\)
0.801626 + 0.597826i \(0.203968\pi\)
\(368\) 0 0
\(369\) 3258.00 0.459633
\(370\) −1480.00 −0.207950
\(371\) 3056.00 0.427654
\(372\) 2208.00 0.307741
\(373\) −10914.0 −1.51503 −0.757514 0.652819i \(-0.773586\pi\)
−0.757514 + 0.652819i \(0.773586\pi\)
\(374\) −10400.0 −1.43789
\(375\) 4500.00 0.619677
\(376\) 3616.00 0.495960
\(377\) 0 0
\(378\) 432.000 0.0587822
\(379\) −8100.00 −1.09781 −0.548904 0.835886i \(-0.684955\pi\)
−0.548904 + 0.835886i \(0.684955\pi\)
\(380\) −800.000 −0.107998
\(381\) 3888.00 0.522804
\(382\) −2624.00 −0.351454
\(383\) −6180.00 −0.824499 −0.412250 0.911071i \(-0.635257\pi\)
−0.412250 + 0.911071i \(0.635257\pi\)
\(384\) 384.000 0.0510310
\(385\) 3200.00 0.423603
\(386\) 700.000 0.0923033
\(387\) 684.000 0.0898441
\(388\) 2456.00 0.321352
\(389\) −7522.00 −0.980413 −0.490206 0.871606i \(-0.663079\pi\)
−0.490206 + 0.871606i \(0.663079\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −2232.00 −0.287584
\(393\) −2676.00 −0.343477
\(394\) 684.000 0.0874605
\(395\) 9760.00 1.24324
\(396\) −1440.00 −0.182734
\(397\) −6078.00 −0.768378 −0.384189 0.923254i \(-0.625519\pi\)
−0.384189 + 0.923254i \(0.625519\pi\)
\(398\) −6736.00 −0.848355
\(399\) 480.000 0.0602257
\(400\) −400.000 −0.0500000
\(401\) −1830.00 −0.227895 −0.113947 0.993487i \(-0.536350\pi\)
−0.113947 + 0.993487i \(0.536350\pi\)
\(402\) 4200.00 0.521087
\(403\) 0 0
\(404\) 2072.00 0.255163
\(405\) −810.000 −0.0993808
\(406\) −288.000 −0.0352049
\(407\) −2960.00 −0.360496
\(408\) 3120.00 0.378586
\(409\) −12434.0 −1.50323 −0.751616 0.659601i \(-0.770725\pi\)
−0.751616 + 0.659601i \(0.770725\pi\)
\(410\) −7240.00 −0.872093
\(411\) −6978.00 −0.837468
\(412\) 448.000 0.0535713
\(413\) −3712.00 −0.442265
\(414\) 0 0
\(415\) −10080.0 −1.19231
\(416\) 0 0
\(417\) 5796.00 0.680651
\(418\) −1600.00 −0.187221
\(419\) −14188.0 −1.65425 −0.827123 0.562021i \(-0.810024\pi\)
−0.827123 + 0.562021i \(0.810024\pi\)
\(420\) −960.000 −0.111531
\(421\) −8638.00 −0.999977 −0.499989 0.866032i \(-0.666662\pi\)
−0.499989 + 0.866032i \(0.666662\pi\)
\(422\) −4008.00 −0.462337
\(423\) 4068.00 0.467596
\(424\) 3056.00 0.350029
\(425\) −3250.00 −0.370937
\(426\) 4488.00 0.510433
\(427\) 2864.00 0.324587
\(428\) −1488.00 −0.168050
\(429\) 0 0
\(430\) −1520.00 −0.170467
\(431\) −4292.00 −0.479671 −0.239836 0.970813i \(-0.577094\pi\)
−0.239836 + 0.970813i \(0.577094\pi\)
\(432\) 432.000 0.0481125
\(433\) −5982.00 −0.663918 −0.331959 0.943294i \(-0.607710\pi\)
−0.331959 + 0.943294i \(0.607710\pi\)
\(434\) 2944.00 0.325614
\(435\) 540.000 0.0595196
\(436\) −3736.00 −0.410371
\(437\) 0 0
\(438\) −6348.00 −0.692510
\(439\) 256.000 0.0278319 0.0139160 0.999903i \(-0.495570\pi\)
0.0139160 + 0.999903i \(0.495570\pi\)
\(440\) 3200.00 0.346714
\(441\) −2511.00 −0.271137
\(442\) 0 0
\(443\) 12556.0 1.34662 0.673311 0.739359i \(-0.264872\pi\)
0.673311 + 0.739359i \(0.264872\pi\)
\(444\) 888.000 0.0949158
\(445\) −3860.00 −0.411194
\(446\) 11216.0 1.19079
\(447\) −2646.00 −0.279981
\(448\) 512.000 0.0539949
\(449\) −5574.00 −0.585865 −0.292932 0.956133i \(-0.594631\pi\)
−0.292932 + 0.956133i \(0.594631\pi\)
\(450\) −450.000 −0.0471405
\(451\) −14480.0 −1.51183
\(452\) 7656.00 0.796699
\(453\) 5328.00 0.552608
\(454\) 3856.00 0.398615
\(455\) 0 0
\(456\) 480.000 0.0492940
\(457\) −1266.00 −0.129586 −0.0647932 0.997899i \(-0.520639\pi\)
−0.0647932 + 0.997899i \(0.520639\pi\)
\(458\) 7876.00 0.803540
\(459\) 3510.00 0.356934
\(460\) 0 0
\(461\) −7554.00 −0.763178 −0.381589 0.924332i \(-0.624623\pi\)
−0.381589 + 0.924332i \(0.624623\pi\)
\(462\) −1920.00 −0.193347
\(463\) 6752.00 0.677737 0.338868 0.940834i \(-0.389956\pi\)
0.338868 + 0.940834i \(0.389956\pi\)
\(464\) −288.000 −0.0288148
\(465\) −5520.00 −0.550503
\(466\) 5124.00 0.509366
\(467\) 7924.00 0.785180 0.392590 0.919714i \(-0.371579\pi\)
0.392590 + 0.919714i \(0.371579\pi\)
\(468\) 0 0
\(469\) 5600.00 0.551352
\(470\) −9040.00 −0.887200
\(471\) −7230.00 −0.707305
\(472\) −3712.00 −0.361989
\(473\) −3040.00 −0.295517
\(474\) −5856.00 −0.567458
\(475\) −500.000 −0.0482980
\(476\) 4160.00 0.400574
\(477\) 3438.00 0.330011
\(478\) −14328.0 −1.37102
\(479\) 11084.0 1.05729 0.528644 0.848844i \(-0.322701\pi\)
0.528644 + 0.848844i \(0.322701\pi\)
\(480\) −960.000 −0.0912871
\(481\) 0 0
\(482\) 12364.0 1.16839
\(483\) 0 0
\(484\) 1076.00 0.101052
\(485\) −6140.00 −0.574852
\(486\) 486.000 0.0453609
\(487\) −4432.00 −0.412388 −0.206194 0.978511i \(-0.566108\pi\)
−0.206194 + 0.978511i \(0.566108\pi\)
\(488\) 2864.00 0.265670
\(489\) −9636.00 −0.891114
\(490\) 5580.00 0.514446
\(491\) −1140.00 −0.104781 −0.0523905 0.998627i \(-0.516684\pi\)
−0.0523905 + 0.998627i \(0.516684\pi\)
\(492\) 4344.00 0.398054
\(493\) −2340.00 −0.213769
\(494\) 0 0
\(495\) 3600.00 0.326885
\(496\) 2944.00 0.266511
\(497\) 5984.00 0.540079
\(498\) 6048.00 0.544212
\(499\) −1764.00 −0.158251 −0.0791257 0.996865i \(-0.525213\pi\)
−0.0791257 + 0.996865i \(0.525213\pi\)
\(500\) 6000.00 0.536656
\(501\) −5004.00 −0.446232
\(502\) −2792.00 −0.248233
\(503\) 16976.0 1.50482 0.752408 0.658697i \(-0.228892\pi\)
0.752408 + 0.658697i \(0.228892\pi\)
\(504\) 576.000 0.0509069
\(505\) −5180.00 −0.456449
\(506\) 0 0
\(507\) 0 0
\(508\) 5184.00 0.452761
\(509\) −9474.00 −0.825005 −0.412503 0.910956i \(-0.635345\pi\)
−0.412503 + 0.910956i \(0.635345\pi\)
\(510\) −7800.00 −0.677235
\(511\) −8464.00 −0.732731
\(512\) 512.000 0.0441942
\(513\) 540.000 0.0464748
\(514\) 13812.0 1.18526
\(515\) −1120.00 −0.0958313
\(516\) 912.000 0.0778073
\(517\) −18080.0 −1.53802
\(518\) 1184.00 0.100429
\(519\) 10794.0 0.912917
\(520\) 0 0
\(521\) 14114.0 1.18684 0.593422 0.804892i \(-0.297777\pi\)
0.593422 + 0.804892i \(0.297777\pi\)
\(522\) −324.000 −0.0271668
\(523\) 20284.0 1.69590 0.847952 0.530074i \(-0.177836\pi\)
0.847952 + 0.530074i \(0.177836\pi\)
\(524\) −3568.00 −0.297460
\(525\) −600.000 −0.0498784
\(526\) −13696.0 −1.13531
\(527\) 23920.0 1.97718
\(528\) −1920.00 −0.158252
\(529\) −12167.0 −1.00000
\(530\) −7640.00 −0.626152
\(531\) −4176.00 −0.341286
\(532\) 640.000 0.0521570
\(533\) 0 0
\(534\) 2316.00 0.187684
\(535\) 3720.00 0.300616
\(536\) 5600.00 0.451275
\(537\) 3204.00 0.257473
\(538\) −12068.0 −0.967079
\(539\) 11160.0 0.891828
\(540\) −1080.00 −0.0860663
\(541\) 14362.0 1.14135 0.570675 0.821176i \(-0.306682\pi\)
0.570675 + 0.821176i \(0.306682\pi\)
\(542\) −9664.00 −0.765875
\(543\) −14358.0 −1.13473
\(544\) 4160.00 0.327865
\(545\) 9340.00 0.734095
\(546\) 0 0
\(547\) −20956.0 −1.63805 −0.819025 0.573757i \(-0.805485\pi\)
−0.819025 + 0.573757i \(0.805485\pi\)
\(548\) −9304.00 −0.725269
\(549\) 3222.00 0.250477
\(550\) 2000.00 0.155055
\(551\) −360.000 −0.0278340
\(552\) 0 0
\(553\) −7808.00 −0.600416
\(554\) −8164.00 −0.626092
\(555\) −2220.00 −0.169791
\(556\) 7728.00 0.589461
\(557\) 4134.00 0.314476 0.157238 0.987561i \(-0.449741\pi\)
0.157238 + 0.987561i \(0.449741\pi\)
\(558\) 3312.00 0.251269
\(559\) 0 0
\(560\) −1280.00 −0.0965891
\(561\) −15600.0 −1.17403
\(562\) −6700.00 −0.502887
\(563\) −16228.0 −1.21479 −0.607397 0.794399i \(-0.707786\pi\)
−0.607397 + 0.794399i \(0.707786\pi\)
\(564\) 5424.00 0.404950
\(565\) −19140.0 −1.42518
\(566\) 15592.0 1.15792
\(567\) 648.000 0.0479955
\(568\) 5984.00 0.442048
\(569\) 2514.00 0.185224 0.0926119 0.995702i \(-0.470478\pi\)
0.0926119 + 0.995702i \(0.470478\pi\)
\(570\) −1200.00 −0.0881798
\(571\) −11612.0 −0.851046 −0.425523 0.904948i \(-0.639910\pi\)
−0.425523 + 0.904948i \(0.639910\pi\)
\(572\) 0 0
\(573\) −3936.00 −0.286961
\(574\) 5792.00 0.421173
\(575\) 0 0
\(576\) 576.000 0.0416667
\(577\) −6354.00 −0.458441 −0.229221 0.973375i \(-0.573618\pi\)
−0.229221 + 0.973375i \(0.573618\pi\)
\(578\) 23974.0 1.72524
\(579\) 1050.00 0.0753653
\(580\) 720.000 0.0515455
\(581\) 8064.00 0.575819
\(582\) 3684.00 0.262383
\(583\) −15280.0 −1.08548
\(584\) −8464.00 −0.599731
\(585\) 0 0
\(586\) −7844.00 −0.552957
\(587\) 13240.0 0.930960 0.465480 0.885059i \(-0.345882\pi\)
0.465480 + 0.885059i \(0.345882\pi\)
\(588\) −3348.00 −0.234812
\(589\) 3680.00 0.257439
\(590\) 9280.00 0.647545
\(591\) 1026.00 0.0714112
\(592\) 1184.00 0.0821995
\(593\) 1146.00 0.0793602 0.0396801 0.999212i \(-0.487366\pi\)
0.0396801 + 0.999212i \(0.487366\pi\)
\(594\) −2160.00 −0.149202
\(595\) −10400.0 −0.716569
\(596\) −3528.00 −0.242471
\(597\) −10104.0 −0.692679
\(598\) 0 0
\(599\) 10464.0 0.713769 0.356884 0.934149i \(-0.383839\pi\)
0.356884 + 0.934149i \(0.383839\pi\)
\(600\) −600.000 −0.0408248
\(601\) 6650.00 0.451346 0.225673 0.974203i \(-0.427542\pi\)
0.225673 + 0.974203i \(0.427542\pi\)
\(602\) 1216.00 0.0823263
\(603\) 6300.00 0.425466
\(604\) 7104.00 0.478572
\(605\) −2690.00 −0.180767
\(606\) 3108.00 0.208340
\(607\) −6664.00 −0.445607 −0.222803 0.974863i \(-0.571521\pi\)
−0.222803 + 0.974863i \(0.571521\pi\)
\(608\) 640.000 0.0426898
\(609\) −432.000 −0.0287447
\(610\) −7160.00 −0.475246
\(611\) 0 0
\(612\) 4680.00 0.309114
\(613\) −2134.00 −0.140606 −0.0703030 0.997526i \(-0.522397\pi\)
−0.0703030 + 0.997526i \(0.522397\pi\)
\(614\) −11912.0 −0.782947
\(615\) −10860.0 −0.712061
\(616\) −2560.00 −0.167444
\(617\) 714.000 0.0465876 0.0232938 0.999729i \(-0.492585\pi\)
0.0232938 + 0.999729i \(0.492585\pi\)
\(618\) 672.000 0.0437408
\(619\) −29228.0 −1.89786 −0.948928 0.315494i \(-0.897830\pi\)
−0.948928 + 0.315494i \(0.897830\pi\)
\(620\) −7360.00 −0.476750
\(621\) 0 0
\(622\) 4704.00 0.303237
\(623\) 3088.00 0.198584
\(624\) 0 0
\(625\) −11875.0 −0.760000
\(626\) 16884.0 1.07799
\(627\) −2400.00 −0.152866
\(628\) −9640.00 −0.612544
\(629\) 9620.00 0.609816
\(630\) −1440.00 −0.0910650
\(631\) 13536.0 0.853977 0.426989 0.904257i \(-0.359574\pi\)
0.426989 + 0.904257i \(0.359574\pi\)
\(632\) −7808.00 −0.491433
\(633\) −6012.00 −0.377497
\(634\) 11100.0 0.695327
\(635\) −12960.0 −0.809924
\(636\) 4584.00 0.285798
\(637\) 0 0
\(638\) 1440.00 0.0893576
\(639\) 6732.00 0.416767
\(640\) −1280.00 −0.0790569
\(641\) 17218.0 1.06095 0.530476 0.847700i \(-0.322013\pi\)
0.530476 + 0.847700i \(0.322013\pi\)
\(642\) −2232.00 −0.137212
\(643\) −15044.0 −0.922671 −0.461335 0.887226i \(-0.652630\pi\)
−0.461335 + 0.887226i \(0.652630\pi\)
\(644\) 0 0
\(645\) −2280.00 −0.139186
\(646\) 5200.00 0.316705
\(647\) 25176.0 1.52978 0.764892 0.644158i \(-0.222792\pi\)
0.764892 + 0.644158i \(0.222792\pi\)
\(648\) 648.000 0.0392837
\(649\) 18560.0 1.12256
\(650\) 0 0
\(651\) 4416.00 0.265863
\(652\) −12848.0 −0.771728
\(653\) −16034.0 −0.960887 −0.480443 0.877026i \(-0.659524\pi\)
−0.480443 + 0.877026i \(0.659524\pi\)
\(654\) −5604.00 −0.335067
\(655\) 8920.00 0.532112
\(656\) 5792.00 0.344725
\(657\) −9522.00 −0.565432
\(658\) 7232.00 0.428469
\(659\) 25356.0 1.49883 0.749415 0.662100i \(-0.230335\pi\)
0.749415 + 0.662100i \(0.230335\pi\)
\(660\) 4800.00 0.283091
\(661\) −18310.0 −1.07742 −0.538711 0.842490i \(-0.681089\pi\)
−0.538711 + 0.842490i \(0.681089\pi\)
\(662\) −280.000 −0.0164388
\(663\) 0 0
\(664\) 8064.00 0.471301
\(665\) −1600.00 −0.0933013
\(666\) 1332.00 0.0774984
\(667\) 0 0
\(668\) −6672.00 −0.386448
\(669\) 16824.0 0.972277
\(670\) −14000.0 −0.807264
\(671\) −14320.0 −0.823871
\(672\) 768.000 0.0440867
\(673\) 24802.0 1.42057 0.710287 0.703912i \(-0.248565\pi\)
0.710287 + 0.703912i \(0.248565\pi\)
\(674\) −12348.0 −0.705678
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) −22706.0 −1.28901 −0.644507 0.764598i \(-0.722937\pi\)
−0.644507 + 0.764598i \(0.722937\pi\)
\(678\) 11484.0 0.650502
\(679\) 4912.00 0.277622
\(680\) −10400.0 −0.586503
\(681\) 5784.00 0.325467
\(682\) −14720.0 −0.826478
\(683\) 14792.0 0.828697 0.414349 0.910118i \(-0.364009\pi\)
0.414349 + 0.910118i \(0.364009\pi\)
\(684\) 720.000 0.0402484
\(685\) 23260.0 1.29740
\(686\) −9952.00 −0.553891
\(687\) 11814.0 0.656088
\(688\) 1216.00 0.0673831
\(689\) 0 0
\(690\) 0 0
\(691\) 1148.00 0.0632011 0.0316006 0.999501i \(-0.489940\pi\)
0.0316006 + 0.999501i \(0.489940\pi\)
\(692\) 14392.0 0.790609
\(693\) −2880.00 −0.157867
\(694\) −5976.00 −0.326867
\(695\) −19320.0 −1.05446
\(696\) −432.000 −0.0235272
\(697\) 47060.0 2.55742
\(698\) 324.000 0.0175696
\(699\) 7686.00 0.415896
\(700\) −800.000 −0.0431959
\(701\) 14870.0 0.801187 0.400594 0.916256i \(-0.368804\pi\)
0.400594 + 0.916256i \(0.368804\pi\)
\(702\) 0 0
\(703\) 1480.00 0.0794015
\(704\) −2560.00 −0.137051
\(705\) −13560.0 −0.724396
\(706\) 21508.0 1.14655
\(707\) 4144.00 0.220440
\(708\) −5568.00 −0.295563
\(709\) 6354.00 0.336572 0.168286 0.985738i \(-0.446177\pi\)
0.168286 + 0.985738i \(0.446177\pi\)
\(710\) −14960.0 −0.790759
\(711\) −8784.00 −0.463327
\(712\) 3088.00 0.162539
\(713\) 0 0
\(714\) 6240.00 0.327067
\(715\) 0 0
\(716\) 4272.00 0.222978
\(717\) −21492.0 −1.11943
\(718\) −7176.00 −0.372989
\(719\) 9288.00 0.481758 0.240879 0.970555i \(-0.422564\pi\)
0.240879 + 0.970555i \(0.422564\pi\)
\(720\) −1440.00 −0.0745356
\(721\) 896.000 0.0462813
\(722\) −12918.0 −0.665870
\(723\) 18546.0 0.953988
\(724\) −19144.0 −0.982709
\(725\) 450.000 0.0230518
\(726\) 1614.00 0.0825085
\(727\) −21544.0 −1.09907 −0.549534 0.835471i \(-0.685195\pi\)
−0.549534 + 0.835471i \(0.685195\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 21160.0 1.07283
\(731\) 9880.00 0.499897
\(732\) 4296.00 0.216919
\(733\) −19990.0 −1.00730 −0.503648 0.863909i \(-0.668009\pi\)
−0.503648 + 0.863909i \(0.668009\pi\)
\(734\) 22544.0 1.13367
\(735\) 8370.00 0.420044
\(736\) 0 0
\(737\) −28000.0 −1.39945
\(738\) 6516.00 0.325010
\(739\) −532.000 −0.0264816 −0.0132408 0.999912i \(-0.504215\pi\)
−0.0132408 + 0.999912i \(0.504215\pi\)
\(740\) −2960.00 −0.147043
\(741\) 0 0
\(742\) 6112.00 0.302397
\(743\) 25452.0 1.25672 0.628360 0.777922i \(-0.283726\pi\)
0.628360 + 0.777922i \(0.283726\pi\)
\(744\) 4416.00 0.217605
\(745\) 8820.00 0.433745
\(746\) −21828.0 −1.07129
\(747\) 9072.00 0.444347
\(748\) −20800.0 −1.01674
\(749\) −2976.00 −0.145181
\(750\) 9000.00 0.438178
\(751\) 6440.00 0.312915 0.156457 0.987685i \(-0.449993\pi\)
0.156457 + 0.987685i \(0.449993\pi\)
\(752\) 7232.00 0.350697
\(753\) −4188.00 −0.202682
\(754\) 0 0
\(755\) −17760.0 −0.856096
\(756\) 864.000 0.0415653
\(757\) −786.000 −0.0377380 −0.0188690 0.999822i \(-0.506007\pi\)
−0.0188690 + 0.999822i \(0.506007\pi\)
\(758\) −16200.0 −0.776267
\(759\) 0 0
\(760\) −1600.00 −0.0763659
\(761\) 1498.00 0.0713567 0.0356784 0.999363i \(-0.488641\pi\)
0.0356784 + 0.999363i \(0.488641\pi\)
\(762\) 7776.00 0.369678
\(763\) −7472.00 −0.354528
\(764\) −5248.00 −0.248516
\(765\) −11700.0 −0.552960
\(766\) −12360.0 −0.583009
\(767\) 0 0
\(768\) 768.000 0.0360844
\(769\) −14738.0 −0.691113 −0.345556 0.938398i \(-0.612310\pi\)
−0.345556 + 0.938398i \(0.612310\pi\)
\(770\) 6400.00 0.299532
\(771\) 20718.0 0.967757
\(772\) 1400.00 0.0652683
\(773\) 3822.00 0.177837 0.0889184 0.996039i \(-0.471659\pi\)
0.0889184 + 0.996039i \(0.471659\pi\)
\(774\) 1368.00 0.0635294
\(775\) −4600.00 −0.213209
\(776\) 4912.00 0.227230
\(777\) 1776.00 0.0819995
\(778\) −15044.0 −0.693256
\(779\) 7240.00 0.332991
\(780\) 0 0
\(781\) −29920.0 −1.37083
\(782\) 0 0
\(783\) −486.000 −0.0221816
\(784\) −4464.00 −0.203353
\(785\) 24100.0 1.09575
\(786\) −5352.00 −0.242875
\(787\) 11900.0 0.538995 0.269498 0.963001i \(-0.413142\pi\)
0.269498 + 0.963001i \(0.413142\pi\)
\(788\) 1368.00 0.0618439
\(789\) −20544.0 −0.926978
\(790\) 19520.0 0.879102
\(791\) 15312.0 0.688283
\(792\) −2880.00 −0.129213
\(793\) 0 0
\(794\) −12156.0 −0.543325
\(795\) −11460.0 −0.511251
\(796\) −13472.0 −0.599877
\(797\) −21274.0 −0.945500 −0.472750 0.881197i \(-0.656739\pi\)
−0.472750 + 0.881197i \(0.656739\pi\)
\(798\) 960.000 0.0425860
\(799\) 58760.0 2.60173
\(800\) −800.000 −0.0353553
\(801\) 3474.00 0.153243
\(802\) −3660.00 −0.161146
\(803\) 42320.0 1.85983
\(804\) 8400.00 0.368464
\(805\) 0 0
\(806\) 0 0
\(807\) −18102.0 −0.789617
\(808\) 4144.00 0.180427
\(809\) −27566.0 −1.19798 −0.598992 0.800755i \(-0.704432\pi\)
−0.598992 + 0.800755i \(0.704432\pi\)
\(810\) −1620.00 −0.0702728
\(811\) 11244.0 0.486844 0.243422 0.969921i \(-0.421730\pi\)
0.243422 + 0.969921i \(0.421730\pi\)
\(812\) −576.000 −0.0248936
\(813\) −14496.0 −0.625334
\(814\) −5920.00 −0.254909
\(815\) 32120.0 1.38051
\(816\) 6240.00 0.267701
\(817\) 1520.00 0.0650894
\(818\) −24868.0 −1.06295
\(819\) 0 0
\(820\) −14480.0 −0.616663
\(821\) −13554.0 −0.576173 −0.288086 0.957604i \(-0.593019\pi\)
−0.288086 + 0.957604i \(0.593019\pi\)
\(822\) −13956.0 −0.592179
\(823\) 14384.0 0.609228 0.304614 0.952476i \(-0.401473\pi\)
0.304614 + 0.952476i \(0.401473\pi\)
\(824\) 896.000 0.0378806
\(825\) 3000.00 0.126602
\(826\) −7424.00 −0.312729
\(827\) 2488.00 0.104615 0.0523073 0.998631i \(-0.483342\pi\)
0.0523073 + 0.998631i \(0.483342\pi\)
\(828\) 0 0
\(829\) −20858.0 −0.873858 −0.436929 0.899496i \(-0.643934\pi\)
−0.436929 + 0.899496i \(0.643934\pi\)
\(830\) −20160.0 −0.843089
\(831\) −12246.0 −0.511202
\(832\) 0 0
\(833\) −36270.0 −1.50862
\(834\) 11592.0 0.481293
\(835\) 16680.0 0.691300
\(836\) −3200.00 −0.132386
\(837\) 4968.00 0.205160
\(838\) −28376.0 −1.16973
\(839\) −23116.0 −0.951195 −0.475598 0.879663i \(-0.657768\pi\)
−0.475598 + 0.879663i \(0.657768\pi\)
\(840\) −1920.00 −0.0788646
\(841\) −24065.0 −0.986715
\(842\) −17276.0 −0.707091
\(843\) −10050.0 −0.410605
\(844\) −8016.00 −0.326922
\(845\) 0 0
\(846\) 8136.00 0.330640
\(847\) 2152.00 0.0873006
\(848\) 6112.00 0.247508
\(849\) 23388.0 0.945435
\(850\) −6500.00 −0.262292
\(851\) 0 0
\(852\) 8976.00 0.360930
\(853\) −934.000 −0.0374907 −0.0187453 0.999824i \(-0.505967\pi\)
−0.0187453 + 0.999824i \(0.505967\pi\)
\(854\) 5728.00 0.229518
\(855\) −1800.00 −0.0719985
\(856\) −2976.00 −0.118829
\(857\) 12642.0 0.503900 0.251950 0.967740i \(-0.418928\pi\)
0.251950 + 0.967740i \(0.418928\pi\)
\(858\) 0 0
\(859\) −22796.0 −0.905459 −0.452730 0.891648i \(-0.649550\pi\)
−0.452730 + 0.891648i \(0.649550\pi\)
\(860\) −3040.00 −0.120539
\(861\) 8688.00 0.343886
\(862\) −8584.00 −0.339179
\(863\) 76.0000 0.00299776 0.00149888 0.999999i \(-0.499523\pi\)
0.00149888 + 0.999999i \(0.499523\pi\)
\(864\) 864.000 0.0340207
\(865\) −35980.0 −1.41429
\(866\) −11964.0 −0.469461
\(867\) 35961.0 1.40865
\(868\) 5888.00 0.230244
\(869\) 39040.0 1.52398
\(870\) 1080.00 0.0420867
\(871\) 0 0
\(872\) −7472.00 −0.290176
\(873\) 5526.00 0.214235
\(874\) 0 0
\(875\) 12000.0 0.463627
\(876\) −12696.0 −0.489678
\(877\) 46130.0 1.77617 0.888084 0.459681i \(-0.152036\pi\)
0.888084 + 0.459681i \(0.152036\pi\)
\(878\) 512.000 0.0196801
\(879\) −11766.0 −0.451487
\(880\) 6400.00 0.245164
\(881\) 6682.00 0.255530 0.127765 0.991804i \(-0.459220\pi\)
0.127765 + 0.991804i \(0.459220\pi\)
\(882\) −5022.00 −0.191723
\(883\) 47404.0 1.80665 0.903325 0.428957i \(-0.141119\pi\)
0.903325 + 0.428957i \(0.141119\pi\)
\(884\) 0 0
\(885\) 13920.0 0.528718
\(886\) 25112.0 0.952206
\(887\) 33672.0 1.27463 0.637314 0.770604i \(-0.280045\pi\)
0.637314 + 0.770604i \(0.280045\pi\)
\(888\) 1776.00 0.0671156
\(889\) 10368.0 0.391149
\(890\) −7720.00 −0.290758
\(891\) −3240.00 −0.121823
\(892\) 22432.0 0.842017
\(893\) 9040.00 0.338759
\(894\) −5292.00 −0.197976
\(895\) −10680.0 −0.398875
\(896\) 1024.00 0.0381802
\(897\) 0 0
\(898\) −11148.0 −0.414269
\(899\) −3312.00 −0.122871
\(900\) −900.000 −0.0333333
\(901\) 49660.0 1.83620
\(902\) −28960.0 −1.06903
\(903\) 1824.00 0.0672192
\(904\) 15312.0 0.563351
\(905\) 47860.0 1.75792
\(906\) 10656.0 0.390753
\(907\) −14540.0 −0.532296 −0.266148 0.963932i \(-0.585751\pi\)
−0.266148 + 0.963932i \(0.585751\pi\)
\(908\) 7712.00 0.281863
\(909\) 4662.00 0.170109
\(910\) 0 0
\(911\) −7840.00 −0.285127 −0.142564 0.989786i \(-0.545535\pi\)
−0.142564 + 0.989786i \(0.545535\pi\)
\(912\) 960.000 0.0348561
\(913\) −40320.0 −1.46155
\(914\) −2532.00 −0.0916314
\(915\) −10740.0 −0.388037
\(916\) 15752.0 0.568189
\(917\) −7136.00 −0.256981
\(918\) 7020.00 0.252391
\(919\) 47720.0 1.71288 0.856440 0.516246i \(-0.172671\pi\)
0.856440 + 0.516246i \(0.172671\pi\)
\(920\) 0 0
\(921\) −17868.0 −0.639273
\(922\) −15108.0 −0.539648
\(923\) 0 0
\(924\) −3840.00 −0.136717
\(925\) −1850.00 −0.0657596
\(926\) 13504.0 0.479232
\(927\) 1008.00 0.0357142
\(928\) −576.000 −0.0203751
\(929\) −7502.00 −0.264944 −0.132472 0.991187i \(-0.542291\pi\)
−0.132472 + 0.991187i \(0.542291\pi\)
\(930\) −11040.0 −0.389264
\(931\) −5580.00 −0.196431
\(932\) 10248.0 0.360176
\(933\) 7056.00 0.247592
\(934\) 15848.0 0.555206
\(935\) 52000.0 1.81880
\(936\) 0 0
\(937\) 22058.0 0.769054 0.384527 0.923114i \(-0.374365\pi\)
0.384527 + 0.923114i \(0.374365\pi\)
\(938\) 11200.0 0.389865
\(939\) 25326.0 0.880173
\(940\) −18080.0 −0.627345
\(941\) −23338.0 −0.808498 −0.404249 0.914649i \(-0.632467\pi\)
−0.404249 + 0.914649i \(0.632467\pi\)
\(942\) −14460.0 −0.500140
\(943\) 0 0
\(944\) −7424.00 −0.255965
\(945\) −2160.00 −0.0743543
\(946\) −6080.00 −0.208962
\(947\) 30488.0 1.04617 0.523087 0.852279i \(-0.324780\pi\)
0.523087 + 0.852279i \(0.324780\pi\)
\(948\) −11712.0 −0.401253
\(949\) 0 0
\(950\) −1000.00 −0.0341519
\(951\) 16650.0 0.567732
\(952\) 8320.00 0.283249
\(953\) 9522.00 0.323660 0.161830 0.986819i \(-0.448260\pi\)
0.161830 + 0.986819i \(0.448260\pi\)
\(954\) 6876.00 0.233353
\(955\) 13120.0 0.444558
\(956\) −28656.0 −0.969457
\(957\) 2160.00 0.0729602
\(958\) 22168.0 0.747615
\(959\) −18608.0 −0.626573
\(960\) −1920.00 −0.0645497
\(961\) 4065.00 0.136451
\(962\) 0 0
\(963\) −3348.00 −0.112033
\(964\) 24728.0 0.826178
\(965\) −3500.00 −0.116755
\(966\) 0 0
\(967\) 7616.00 0.253272 0.126636 0.991949i \(-0.459582\pi\)
0.126636 + 0.991949i \(0.459582\pi\)
\(968\) 2152.00 0.0714544
\(969\) 7800.00 0.258588
\(970\) −12280.0 −0.406481
\(971\) 51316.0 1.69599 0.847996 0.530002i \(-0.177809\pi\)
0.847996 + 0.530002i \(0.177809\pi\)
\(972\) 972.000 0.0320750
\(973\) 15456.0 0.509246
\(974\) −8864.00 −0.291603
\(975\) 0 0
\(976\) 5728.00 0.187857
\(977\) 48666.0 1.59362 0.796808 0.604232i \(-0.206520\pi\)
0.796808 + 0.604232i \(0.206520\pi\)
\(978\) −19272.0 −0.630113
\(979\) −15440.0 −0.504050
\(980\) 11160.0 0.363768
\(981\) −8406.00 −0.273581
\(982\) −2280.00 −0.0740914
\(983\) −17388.0 −0.564182 −0.282091 0.959388i \(-0.591028\pi\)
−0.282091 + 0.959388i \(0.591028\pi\)
\(984\) 8688.00 0.281467
\(985\) −3420.00 −0.110630
\(986\) −4680.00 −0.151158
\(987\) 10848.0 0.349844
\(988\) 0 0
\(989\) 0 0
\(990\) 7200.00 0.231142
\(991\) 11496.0 0.368499 0.184249 0.982880i \(-0.441015\pi\)
0.184249 + 0.982880i \(0.441015\pi\)
\(992\) 5888.00 0.188452
\(993\) −420.000 −0.0134223
\(994\) 11968.0 0.381893
\(995\) 33680.0 1.07309
\(996\) 12096.0 0.384816
\(997\) 48862.0 1.55213 0.776066 0.630652i \(-0.217212\pi\)
0.776066 + 0.630652i \(0.217212\pi\)
\(998\) −3528.00 −0.111901
\(999\) 1998.00 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.4.a.j.1.1 1
13.5 odd 4 1014.4.b.h.337.1 2
13.8 odd 4 1014.4.b.h.337.2 2
13.12 even 2 78.4.a.c.1.1 1
39.38 odd 2 234.4.a.h.1.1 1
52.51 odd 2 624.4.a.d.1.1 1
65.64 even 2 1950.4.a.l.1.1 1
104.51 odd 2 2496.4.a.j.1.1 1
104.77 even 2 2496.4.a.a.1.1 1
156.155 even 2 1872.4.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.4.a.c.1.1 1 13.12 even 2
234.4.a.h.1.1 1 39.38 odd 2
624.4.a.d.1.1 1 52.51 odd 2
1014.4.a.j.1.1 1 1.1 even 1 trivial
1014.4.b.h.337.1 2 13.5 odd 4
1014.4.b.h.337.2 2 13.8 odd 4
1872.4.a.d.1.1 1 156.155 even 2
1950.4.a.l.1.1 1 65.64 even 2
2496.4.a.a.1.1 1 104.77 even 2
2496.4.a.j.1.1 1 104.51 odd 2