Properties

 Label 1014.4.a.g Level $1014$ Weight $4$ Character orbit 1014.a Self dual yes Analytic conductor $59.828$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1014,4,Mod(1,1014)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1014, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1014.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1014 = 2 \cdot 3 \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1014.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$59.8279367458$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 6) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 2 q^{2} - 3 q^{3} + 4 q^{4} - 6 q^{5} - 6 q^{6} + 16 q^{7} + 8 q^{8} + 9 q^{9}+O(q^{10})$$ q + 2 * q^2 - 3 * q^3 + 4 * q^4 - 6 * q^5 - 6 * q^6 + 16 * q^7 + 8 * q^8 + 9 * q^9 $$q + 2 q^{2} - 3 q^{3} + 4 q^{4} - 6 q^{5} - 6 q^{6} + 16 q^{7} + 8 q^{8} + 9 q^{9} - 12 q^{10} - 12 q^{11} - 12 q^{12} + 32 q^{14} + 18 q^{15} + 16 q^{16} - 126 q^{17} + 18 q^{18} - 20 q^{19} - 24 q^{20} - 48 q^{21} - 24 q^{22} + 168 q^{23} - 24 q^{24} - 89 q^{25} - 27 q^{27} + 64 q^{28} + 30 q^{29} + 36 q^{30} + 88 q^{31} + 32 q^{32} + 36 q^{33} - 252 q^{34} - 96 q^{35} + 36 q^{36} - 254 q^{37} - 40 q^{38} - 48 q^{40} - 42 q^{41} - 96 q^{42} - 52 q^{43} - 48 q^{44} - 54 q^{45} + 336 q^{46} + 96 q^{47} - 48 q^{48} - 87 q^{49} - 178 q^{50} + 378 q^{51} + 198 q^{53} - 54 q^{54} + 72 q^{55} + 128 q^{56} + 60 q^{57} + 60 q^{58} + 660 q^{59} + 72 q^{60} - 538 q^{61} + 176 q^{62} + 144 q^{63} + 64 q^{64} + 72 q^{66} - 884 q^{67} - 504 q^{68} - 504 q^{69} - 192 q^{70} - 792 q^{71} + 72 q^{72} - 218 q^{73} - 508 q^{74} + 267 q^{75} - 80 q^{76} - 192 q^{77} - 520 q^{79} - 96 q^{80} + 81 q^{81} - 84 q^{82} + 492 q^{83} - 192 q^{84} + 756 q^{85} - 104 q^{86} - 90 q^{87} - 96 q^{88} - 810 q^{89} - 108 q^{90} + 672 q^{92} - 264 q^{93} + 192 q^{94} + 120 q^{95} - 96 q^{96} - 1154 q^{97} - 174 q^{98} - 108 q^{99}+O(q^{100})$$ q + 2 * q^2 - 3 * q^3 + 4 * q^4 - 6 * q^5 - 6 * q^6 + 16 * q^7 + 8 * q^8 + 9 * q^9 - 12 * q^10 - 12 * q^11 - 12 * q^12 + 32 * q^14 + 18 * q^15 + 16 * q^16 - 126 * q^17 + 18 * q^18 - 20 * q^19 - 24 * q^20 - 48 * q^21 - 24 * q^22 + 168 * q^23 - 24 * q^24 - 89 * q^25 - 27 * q^27 + 64 * q^28 + 30 * q^29 + 36 * q^30 + 88 * q^31 + 32 * q^32 + 36 * q^33 - 252 * q^34 - 96 * q^35 + 36 * q^36 - 254 * q^37 - 40 * q^38 - 48 * q^40 - 42 * q^41 - 96 * q^42 - 52 * q^43 - 48 * q^44 - 54 * q^45 + 336 * q^46 + 96 * q^47 - 48 * q^48 - 87 * q^49 - 178 * q^50 + 378 * q^51 + 198 * q^53 - 54 * q^54 + 72 * q^55 + 128 * q^56 + 60 * q^57 + 60 * q^58 + 660 * q^59 + 72 * q^60 - 538 * q^61 + 176 * q^62 + 144 * q^63 + 64 * q^64 + 72 * q^66 - 884 * q^67 - 504 * q^68 - 504 * q^69 - 192 * q^70 - 792 * q^71 + 72 * q^72 - 218 * q^73 - 508 * q^74 + 267 * q^75 - 80 * q^76 - 192 * q^77 - 520 * q^79 - 96 * q^80 + 81 * q^81 - 84 * q^82 + 492 * q^83 - 192 * q^84 + 756 * q^85 - 104 * q^86 - 90 * q^87 - 96 * q^88 - 810 * q^89 - 108 * q^90 + 672 * q^92 - 264 * q^93 + 192 * q^94 + 120 * q^95 - 96 * q^96 - 1154 * q^97 - 174 * q^98 - 108 * q^99

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
2.00000 −3.00000 4.00000 −6.00000 −6.00000 16.0000 8.00000 9.00000 −12.0000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$13$$ $$1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.4.a.g 1
13.b even 2 1 6.4.a.a 1
13.d odd 4 2 1014.4.b.d 2
39.d odd 2 1 18.4.a.a 1
52.b odd 2 1 48.4.a.c 1
65.d even 2 1 150.4.a.i 1
65.h odd 4 2 150.4.c.d 2
91.b odd 2 1 294.4.a.e 1
91.r even 6 2 294.4.e.h 2
91.s odd 6 2 294.4.e.g 2
104.e even 2 1 192.4.a.i 1
104.h odd 2 1 192.4.a.c 1
117.n odd 6 2 162.4.c.c 2
117.t even 6 2 162.4.c.f 2
143.d odd 2 1 726.4.a.f 1
156.h even 2 1 144.4.a.c 1
195.e odd 2 1 450.4.a.h 1
195.s even 4 2 450.4.c.e 2
208.o odd 4 2 768.4.d.c 2
208.p even 4 2 768.4.d.n 2
221.b even 2 1 1734.4.a.d 1
247.d odd 2 1 2166.4.a.i 1
260.g odd 2 1 1200.4.a.b 1
260.p even 4 2 1200.4.f.j 2
273.g even 2 1 882.4.a.n 1
273.w odd 6 2 882.4.g.i 2
273.ba even 6 2 882.4.g.f 2
312.b odd 2 1 576.4.a.q 1
312.h even 2 1 576.4.a.r 1
364.h even 2 1 2352.4.a.e 1
429.e even 2 1 2178.4.a.e 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.4.a.a 1 13.b even 2 1
18.4.a.a 1 39.d odd 2 1
48.4.a.c 1 52.b odd 2 1
144.4.a.c 1 156.h even 2 1
150.4.a.i 1 65.d even 2 1
150.4.c.d 2 65.h odd 4 2
162.4.c.c 2 117.n odd 6 2
162.4.c.f 2 117.t even 6 2
192.4.a.c 1 104.h odd 2 1
192.4.a.i 1 104.e even 2 1
294.4.a.e 1 91.b odd 2 1
294.4.e.g 2 91.s odd 6 2
294.4.e.h 2 91.r even 6 2
450.4.a.h 1 195.e odd 2 1
450.4.c.e 2 195.s even 4 2
576.4.a.q 1 312.b odd 2 1
576.4.a.r 1 312.h even 2 1
726.4.a.f 1 143.d odd 2 1
768.4.d.c 2 208.o odd 4 2
768.4.d.n 2 208.p even 4 2
882.4.a.n 1 273.g even 2 1
882.4.g.f 2 273.ba even 6 2
882.4.g.i 2 273.w odd 6 2
1014.4.a.g 1 1.a even 1 1 trivial
1014.4.b.d 2 13.d odd 4 2
1200.4.a.b 1 260.g odd 2 1
1200.4.f.j 2 260.p even 4 2
1734.4.a.d 1 221.b even 2 1
2166.4.a.i 1 247.d odd 2 1
2178.4.a.e 1 429.e even 2 1
2352.4.a.e 1 364.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(1014))$$:

 $$T_{5} + 6$$ T5 + 6 $$T_{7} - 16$$ T7 - 16

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 2$$
$3$ $$T + 3$$
$5$ $$T + 6$$
$7$ $$T - 16$$
$11$ $$T + 12$$
$13$ $$T$$
$17$ $$T + 126$$
$19$ $$T + 20$$
$23$ $$T - 168$$
$29$ $$T - 30$$
$31$ $$T - 88$$
$37$ $$T + 254$$
$41$ $$T + 42$$
$43$ $$T + 52$$
$47$ $$T - 96$$
$53$ $$T - 198$$
$59$ $$T - 660$$
$61$ $$T + 538$$
$67$ $$T + 884$$
$71$ $$T + 792$$
$73$ $$T + 218$$
$79$ $$T + 520$$
$83$ $$T - 492$$
$89$ $$T + 810$$
$97$ $$T + 1154$$