Properties

Label 1014.4
Level 1014
Weight 4
Dimension 21043
Nonzero newspaces 12
Sturm bound 227136
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(227136\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1014))\).

Total New Old
Modular forms 86088 21043 65045
Cusp forms 84264 21043 63221
Eisenstein series 1824 0 1824

Trace form

\( 21043 q - 2 q^{2} - 3 q^{3} + 4 q^{4} + 6 q^{5} + 6 q^{6} + 272 q^{7} + 88 q^{8} + 9 q^{9} - 372 q^{10} - 468 q^{11} - 108 q^{12} - 576 q^{13} - 448 q^{14} - 306 q^{15} + 16 q^{16} + 822 q^{17} + 198 q^{18}+ \cdots - 13572 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1014))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1014.4.a \(\chi_{1014}(1, \cdot)\) 1014.4.a.a 1 1
1014.4.a.b 1
1014.4.a.c 1
1014.4.a.d 1
1014.4.a.e 1
1014.4.a.f 1
1014.4.a.g 1
1014.4.a.h 1
1014.4.a.i 1
1014.4.a.j 1
1014.4.a.k 1
1014.4.a.l 2
1014.4.a.m 2
1014.4.a.n 2
1014.4.a.o 2
1014.4.a.p 2
1014.4.a.q 2
1014.4.a.r 2
1014.4.a.s 2
1014.4.a.t 3
1014.4.a.u 3
1014.4.a.v 3
1014.4.a.w 3
1014.4.a.x 3
1014.4.a.y 3
1014.4.a.z 4
1014.4.a.ba 4
1014.4.a.bb 6
1014.4.a.bc 6
1014.4.a.bd 6
1014.4.a.be 6
1014.4.b \(\chi_{1014}(337, \cdot)\) 1014.4.b.a 2 1
1014.4.b.b 2
1014.4.b.c 2
1014.4.b.d 2
1014.4.b.e 2
1014.4.b.f 2
1014.4.b.g 2
1014.4.b.h 2
1014.4.b.i 4
1014.4.b.j 4
1014.4.b.k 4
1014.4.b.l 6
1014.4.b.m 6
1014.4.b.n 6
1014.4.b.o 8
1014.4.b.p 12
1014.4.b.q 12
1014.4.e \(\chi_{1014}(529, \cdot)\) n/a 152 2
1014.4.g \(\chi_{1014}(239, \cdot)\) n/a 308 2
1014.4.i \(\chi_{1014}(361, \cdot)\) n/a 156 2
1014.4.k \(\chi_{1014}(89, \cdot)\) n/a 616 4
1014.4.m \(\chi_{1014}(79, \cdot)\) n/a 1104 12
1014.4.p \(\chi_{1014}(25, \cdot)\) n/a 1080 12
1014.4.q \(\chi_{1014}(55, \cdot)\) n/a 2208 24
1014.4.r \(\chi_{1014}(5, \cdot)\) n/a 4368 24
1014.4.u \(\chi_{1014}(43, \cdot)\) n/a 2160 24
1014.4.x \(\chi_{1014}(11, \cdot)\) n/a 8736 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1014))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1014)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 2}\)