Properties

Label 1014.3.f.i
Level $1014$
Weight $3$
Character orbit 1014.f
Analytic conductor $27.629$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,3,Mod(577,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.577");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1014.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.6294988061\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.564373557504.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 86x^{6} + 2523x^{4} - 28394x^{2} + 113569 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{6} + 1) q^{2} + \beta_1 q^{3} - 2 \beta_{6} q^{4} + ( - \beta_{7} - \beta_{2} + \beta_1) q^{5} + ( - \beta_{7} + \beta_1) q^{6} + ( - \beta_{6} + \beta_{5} - \beta_1) q^{7} + ( - 2 \beta_{6} - 2) q^{8}+ \cdots + ( - 12 \beta_{7} - 9 \beta_{6} + \cdots - 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 4 q^{7} - 16 q^{8} + 24 q^{9} - 24 q^{11} - 8 q^{14} + 12 q^{15} - 32 q^{16} + 24 q^{18} - 52 q^{19} - 12 q^{21} - 48 q^{22} - 8 q^{28} - 168 q^{29} + 52 q^{31} - 32 q^{32} - 84 q^{33} - 24 q^{34}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 86x^{6} + 2523x^{4} - 28394x^{2} + 113569 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{6} + 64\nu^{4} - 946\nu^{2} + 315 ) / 2366 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 8 \nu^{7} - 5055 \nu^{6} - 3047 \nu^{5} + 323520 \nu^{4} + 114207 \nu^{3} - 6376714 \nu^{2} + \cdots + 35878031 ) / 1594684 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 8 \nu^{7} + 5055 \nu^{6} - 3047 \nu^{5} - 323520 \nu^{4} + 114207 \nu^{3} + 6376714 \nu^{2} + \cdots - 35878031 ) / 1594684 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 7 \nu^{7} + 2359 \nu^{6} - 4453 \nu^{5} - 207929 \nu^{4} + 305859 \nu^{3} + 5477935 \nu^{2} + \cdots - 36680428 ) / 797342 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 7 \nu^{7} - 2696 \nu^{6} - 4453 \nu^{5} + 229497 \nu^{4} + 305859 \nu^{3} - 5796737 \nu^{2} + \cdots + 36786583 ) / 797342 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 23\nu^{7} - 1641\nu^{5} + 36461\nu^{3} - 220354\nu ) / 113906 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} + 86\nu^{5} - 2186\nu^{3} + 13903\nu ) / 4718 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{6} + \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - \beta_{2} + 15\beta _1 + 43 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 56\beta_{7} + 58\beta_{6} + 7\beta_{5} + 7\beta_{4} + 28\beta_{3} + 28\beta_{2} - 7\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 14\beta_{5} - 14\beta_{4} + 57\beta_{3} - 57\beta_{2} + 645\beta _1 + 1189 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2645\beta_{7} + 2759\beta_{6} + 287\beta_{5} + 287\beta_{4} + 853\beta_{3} + 853\beta_{2} - 287\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 448\beta_{5} - 448\beta_{4} + 1351\beta_{3} - 1351\beta_{2} + 11179\beta _1 + 18024 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 109521 \beta_{7} + 124389 \beta_{6} + 9380 \beta_{5} + 9380 \beta_{4} + 26053 \beta_{3} + \cdots - 9380 \beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-\beta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
3.10252 + 0.500000i
−3.10252 + 0.500000i
5.82017 + 0.500000i
−5.82017 + 0.500000i
3.10252 0.500000i
−3.10252 0.500000i
5.82017 0.500000i
−5.82017 0.500000i
1.00000 1.00000i −1.73205 2.00000i −3.96855 + 3.96855i −1.73205 + 1.73205i −8.11022 8.11022i −2.00000 2.00000i 3.00000 7.93710i
577.2 1.00000 1.00000i −1.73205 2.00000i 2.23650 2.23650i −1.73205 + 1.73205i 8.84227 + 8.84227i −2.00000 2.00000i 3.00000 4.47299i
577.3 1.00000 1.00000i 1.73205 2.00000i −4.95414 + 4.95414i 1.73205 1.73205i 2.89463 + 2.89463i −2.00000 2.00000i 3.00000 9.90829i
577.4 1.00000 1.00000i 1.73205 2.00000i 6.68619 6.68619i 1.73205 1.73205i −5.62668 5.62668i −2.00000 2.00000i 3.00000 13.3724i
775.1 1.00000 + 1.00000i −1.73205 2.00000i −3.96855 3.96855i −1.73205 1.73205i −8.11022 + 8.11022i −2.00000 + 2.00000i 3.00000 7.93710i
775.2 1.00000 + 1.00000i −1.73205 2.00000i 2.23650 + 2.23650i −1.73205 1.73205i 8.84227 8.84227i −2.00000 + 2.00000i 3.00000 4.47299i
775.3 1.00000 + 1.00000i 1.73205 2.00000i −4.95414 4.95414i 1.73205 + 1.73205i 2.89463 2.89463i −2.00000 + 2.00000i 3.00000 9.90829i
775.4 1.00000 + 1.00000i 1.73205 2.00000i 6.68619 + 6.68619i 1.73205 + 1.73205i −5.62668 + 5.62668i −2.00000 + 2.00000i 3.00000 13.3724i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 577.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.d odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.3.f.i 8
13.b even 2 1 78.3.f.b 8
13.d odd 4 1 78.3.f.b 8
13.d odd 4 1 inner 1014.3.f.i 8
39.d odd 2 1 234.3.i.e 8
39.f even 4 1 234.3.i.e 8
52.b odd 2 1 624.3.ba.c 8
52.f even 4 1 624.3.ba.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.3.f.b 8 13.b even 2 1
78.3.f.b 8 13.d odd 4 1
234.3.i.e 8 39.d odd 2 1
234.3.i.e 8 39.f even 4 1
624.3.ba.c 8 52.b odd 2 1
624.3.ba.c 8 52.f even 4 1
1014.3.f.i 8 1.a even 1 1 trivial
1014.3.f.i 8 13.d odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1014, [\chi])\):

\( T_{5}^{8} + 168T_{5}^{5} + 5748T_{5}^{4} + 15120T_{5}^{3} + 14112T_{5}^{2} - 197568T_{5} + 1382976 \) Copy content Toggle raw display
\( T_{7}^{8} + 4T_{7}^{7} + 8T_{7}^{6} + 16T_{7}^{5} + 23056T_{7}^{4} + 113792T_{7}^{3} + 270848T_{7}^{2} - 3438592T_{7} + 21827584 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 2)^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3)^{4} \) Copy content Toggle raw display
$5$ \( T^{8} + 168 T^{5} + \cdots + 1382976 \) Copy content Toggle raw display
$7$ \( T^{8} + 4 T^{7} + \cdots + 21827584 \) Copy content Toggle raw display
$11$ \( T^{8} + 24 T^{7} + \cdots + 2304 \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} + 864 T^{6} + \cdots + 222845184 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 12386799616 \) Copy content Toggle raw display
$23$ \( T^{8} + 1944 T^{6} + \cdots + 422055936 \) Copy content Toggle raw display
$29$ \( (T^{4} + 84 T^{3} + \cdots - 2225856)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} - 52 T^{7} + \cdots + 214798336 \) Copy content Toggle raw display
$37$ \( T^{8} - 16 T^{7} + \cdots + 553002256 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 17404997184 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 1157707137024 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 36580045844736 \) Copy content Toggle raw display
$53$ \( (T^{4} - 72 T^{3} + \cdots - 1571952)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 5631470717184 \) Copy content Toggle raw display
$61$ \( (T^{4} + 36 T^{3} + \cdots + 28866048)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 18141329821696 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 306027720347904 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 23289928529296 \) Copy content Toggle raw display
$79$ \( (T^{4} - 120 T^{3} + \cdots - 11500032)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 22303630819584 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 58096425024 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 28822531984 \) Copy content Toggle raw display
show more
show less