Properties

Label 1014.3.f.g
Level $1014$
Weight $3$
Character orbit 1014.f
Analytic conductor $27.629$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,3,Mod(577,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.577");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1014.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.6294988061\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + 1) q^{2} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{3} - 2 \beta_{2} q^{4} + (\beta_{3} + \beta_{2} - 1) q^{5} + ( - 2 \beta_{3} + \beta_{2} - 1) q^{6} + (2 \beta_{2} - 8 \beta_1 + 2) q^{7}+ \cdots + ( - 6 \beta_{2} - 24 \beta_1 - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 6 q^{5} - 8 q^{7} - 8 q^{8} + 12 q^{9} - 24 q^{11} - 16 q^{14} - 6 q^{15} - 16 q^{16} + 12 q^{18} - 8 q^{19} + 12 q^{20} + 48 q^{21} - 48 q^{22} - 16 q^{28} + 120 q^{29} - 88 q^{31} - 16 q^{32}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{2} + \zeta_{12} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{12}^{3} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{12}^{2} + \zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( -\beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
1.00000 1.00000i −1.73205 2.00000i −0.633975 + 0.633975i −1.73205 + 1.73205i −8.92820 8.92820i −2.00000 2.00000i 3.00000 1.26795i
577.2 1.00000 1.00000i 1.73205 2.00000i −2.36603 + 2.36603i 1.73205 1.73205i 4.92820 + 4.92820i −2.00000 2.00000i 3.00000 4.73205i
775.1 1.00000 + 1.00000i −1.73205 2.00000i −0.633975 0.633975i −1.73205 1.73205i −8.92820 + 8.92820i −2.00000 + 2.00000i 3.00000 1.26795i
775.2 1.00000 + 1.00000i 1.73205 2.00000i −2.36603 2.36603i 1.73205 + 1.73205i 4.92820 4.92820i −2.00000 + 2.00000i 3.00000 4.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.d odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.3.f.g 4
13.b even 2 1 1014.3.f.b 4
13.d odd 4 1 1014.3.f.b 4
13.d odd 4 1 inner 1014.3.f.g 4
13.e even 6 1 78.3.l.b 4
13.f odd 12 1 78.3.l.b 4
39.h odd 6 1 234.3.bb.a 4
39.k even 12 1 234.3.bb.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.3.l.b 4 13.e even 6 1
78.3.l.b 4 13.f odd 12 1
234.3.bb.a 4 39.h odd 6 1
234.3.bb.a 4 39.k even 12 1
1014.3.f.b 4 13.b even 2 1
1014.3.f.b 4 13.d odd 4 1
1014.3.f.g 4 1.a even 1 1 trivial
1014.3.f.g 4 13.d odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1014, [\chi])\):

\( T_{5}^{4} + 6T_{5}^{3} + 18T_{5}^{2} + 18T_{5} + 9 \) Copy content Toggle raw display
\( T_{7}^{4} + 8T_{7}^{3} + 32T_{7}^{2} - 704T_{7} + 7744 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 6 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{4} + 8 T^{3} + \cdots + 7744 \) Copy content Toggle raw display
$11$ \( T^{4} + 24 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 906 T^{2} + 184041 \) Copy content Toggle raw display
$19$ \( T^{4} + 8 T^{3} + \cdots + 141376 \) Copy content Toggle raw display
$23$ \( T^{4} + 672 T^{2} + 97344 \) Copy content Toggle raw display
$29$ \( (T^{2} - 60 T + 825)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 88 T^{3} + \cdots + 891136 \) Copy content Toggle raw display
$37$ \( T^{4} - 26 T^{3} + \cdots + 2209 \) Copy content Toggle raw display
$41$ \( T^{4} + 90 T^{3} + \cdots + 1022121 \) Copy content Toggle raw display
$43$ \( T^{4} + 4704 T^{2} + 1382976 \) Copy content Toggle raw display
$47$ \( (T^{2} - 60 T + 1800)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 30 T - 1227)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 120 T^{3} + \cdots + 5089536 \) Copy content Toggle raw display
$61$ \( (T^{2} + 126 T + 3537)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 32 T^{3} + \cdots + 3297856 \) Copy content Toggle raw display
$71$ \( T^{4} + 1382976 \) Copy content Toggle raw display
$73$ \( T^{4} - 178 T^{3} + \cdots + 5414929 \) Copy content Toggle raw display
$79$ \( (T^{2} + 96 T + 576)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 168 T^{3} + \cdots + 6843456 \) Copy content Toggle raw display
$89$ \( T^{4} - 156 T^{3} + \cdots + 19044 \) Copy content Toggle raw display
$97$ \( T^{4} - 188 T^{3} + \cdots + 88472836 \) Copy content Toggle raw display
show more
show less