Properties

Label 1014.3.f.e.775.2
Level $1014$
Weight $3$
Character 1014.775
Analytic conductor $27.629$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,3,Mod(577,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.577");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1014.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.6294988061\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 775.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1014.775
Dual form 1014.3.f.e.577.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +1.73205 q^{3} +2.00000i q^{4} +(-1.26795 - 1.26795i) q^{5} +(1.73205 + 1.73205i) q^{6} +(-6.83013 + 6.83013i) q^{7} +(-2.00000 + 2.00000i) q^{8} +3.00000 q^{9} -2.53590i q^{10} +(-7.26795 + 7.26795i) q^{11} +3.46410i q^{12} -13.6603 q^{14} +(-2.19615 - 2.19615i) q^{15} -4.00000 q^{16} -18.9282i q^{17} +(3.00000 + 3.00000i) q^{18} +(-23.3923 - 23.3923i) q^{19} +(2.53590 - 2.53590i) q^{20} +(-11.8301 + 11.8301i) q^{21} -14.5359 q^{22} -4.14359i q^{23} +(-3.46410 + 3.46410i) q^{24} -21.7846i q^{25} +5.19615 q^{27} +(-13.6603 - 13.6603i) q^{28} -17.3205 q^{29} -4.39230i q^{30} +(22.1699 + 22.1699i) q^{31} +(-4.00000 - 4.00000i) q^{32} +(-12.5885 + 12.5885i) q^{33} +(18.9282 - 18.9282i) q^{34} +17.3205 q^{35} +6.00000i q^{36} +(26.1769 - 26.1769i) q^{37} -46.7846i q^{38} +5.07180 q^{40} +(-18.2487 - 18.2487i) q^{41} -23.6603 q^{42} +15.3397i q^{43} +(-14.5359 - 14.5359i) q^{44} +(-3.80385 - 3.80385i) q^{45} +(4.14359 - 4.14359i) q^{46} +(7.01924 - 7.01924i) q^{47} -6.92820 q^{48} -44.3013i q^{49} +(21.7846 - 21.7846i) q^{50} -32.7846i q^{51} -61.6743 q^{53} +(5.19615 + 5.19615i) q^{54} +18.4308 q^{55} -27.3205i q^{56} +(-40.5167 - 40.5167i) q^{57} +(-17.3205 - 17.3205i) q^{58} +(-46.7321 + 46.7321i) q^{59} +(4.39230 - 4.39230i) q^{60} -7.30127 q^{61} +44.3397i q^{62} +(-20.4904 + 20.4904i) q^{63} -8.00000i q^{64} -25.1769 q^{66} +(-27.7391 - 27.7391i) q^{67} +37.8564 q^{68} -7.17691i q^{69} +(17.3205 + 17.3205i) q^{70} +(-76.0526 - 76.0526i) q^{71} +(-6.00000 + 6.00000i) q^{72} +(-67.4186 + 67.4186i) q^{73} +52.3538 q^{74} -37.7321i q^{75} +(46.7846 - 46.7846i) q^{76} -99.2820i q^{77} +11.8756 q^{79} +(5.07180 + 5.07180i) q^{80} +9.00000 q^{81} -36.4974i q^{82} +(111.033 + 111.033i) q^{83} +(-23.6603 - 23.6603i) q^{84} +(-24.0000 + 24.0000i) q^{85} +(-15.3397 + 15.3397i) q^{86} -30.0000 q^{87} -29.0718i q^{88} +(-118.641 + 118.641i) q^{89} -7.60770i q^{90} +8.28719 q^{92} +(38.3993 + 38.3993i) q^{93} +14.0385 q^{94} +59.3205i q^{95} +(-6.92820 - 6.92820i) q^{96} +(-109.988 - 109.988i) q^{97} +(44.3013 - 44.3013i) q^{98} +(-21.8038 + 21.8038i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 12 q^{5} - 10 q^{7} - 8 q^{8} + 12 q^{9} - 36 q^{11} - 20 q^{14} + 12 q^{15} - 16 q^{16} + 12 q^{18} - 52 q^{19} + 24 q^{20} - 30 q^{21} - 72 q^{22} - 20 q^{28} + 106 q^{31} - 16 q^{32}+ \cdots - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.500000 + 0.500000i
\(3\) 1.73205 0.577350
\(4\) 2.00000i 0.500000i
\(5\) −1.26795 1.26795i −0.253590 0.253590i 0.568851 0.822441i \(-0.307388\pi\)
−0.822441 + 0.568851i \(0.807388\pi\)
\(6\) 1.73205 + 1.73205i 0.288675 + 0.288675i
\(7\) −6.83013 + 6.83013i −0.975732 + 0.975732i −0.999712 0.0239800i \(-0.992366\pi\)
0.0239800 + 0.999712i \(0.492366\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 3.00000 0.333333
\(10\) 2.53590i 0.253590i
\(11\) −7.26795 + 7.26795i −0.660723 + 0.660723i −0.955550 0.294828i \(-0.904738\pi\)
0.294828 + 0.955550i \(0.404738\pi\)
\(12\) 3.46410i 0.288675i
\(13\) 0 0
\(14\) −13.6603 −0.975732
\(15\) −2.19615 2.19615i −0.146410 0.146410i
\(16\) −4.00000 −0.250000
\(17\) 18.9282i 1.11342i −0.830706 0.556712i \(-0.812063\pi\)
0.830706 0.556712i \(-0.187937\pi\)
\(18\) 3.00000 + 3.00000i 0.166667 + 0.166667i
\(19\) −23.3923 23.3923i −1.23117 1.23117i −0.963513 0.267661i \(-0.913749\pi\)
−0.267661 0.963513i \(-0.586251\pi\)
\(20\) 2.53590 2.53590i 0.126795 0.126795i
\(21\) −11.8301 + 11.8301i −0.563339 + 0.563339i
\(22\) −14.5359 −0.660723
\(23\) 4.14359i 0.180156i −0.995935 0.0900781i \(-0.971288\pi\)
0.995935 0.0900781i \(-0.0287117\pi\)
\(24\) −3.46410 + 3.46410i −0.144338 + 0.144338i
\(25\) 21.7846i 0.871384i
\(26\) 0 0
\(27\) 5.19615 0.192450
\(28\) −13.6603 13.6603i −0.487866 0.487866i
\(29\) −17.3205 −0.597259 −0.298629 0.954369i \(-0.596529\pi\)
−0.298629 + 0.954369i \(0.596529\pi\)
\(30\) 4.39230i 0.146410i
\(31\) 22.1699 + 22.1699i 0.715157 + 0.715157i 0.967609 0.252452i \(-0.0812370\pi\)
−0.252452 + 0.967609i \(0.581237\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) −12.5885 + 12.5885i −0.381468 + 0.381468i
\(34\) 18.9282 18.9282i 0.556712 0.556712i
\(35\) 17.3205 0.494872
\(36\) 6.00000i 0.166667i
\(37\) 26.1769 26.1769i 0.707484 0.707484i −0.258521 0.966006i \(-0.583235\pi\)
0.966006 + 0.258521i \(0.0832352\pi\)
\(38\) 46.7846i 1.23117i
\(39\) 0 0
\(40\) 5.07180 0.126795
\(41\) −18.2487 18.2487i −0.445091 0.445091i 0.448628 0.893719i \(-0.351913\pi\)
−0.893719 + 0.448628i \(0.851913\pi\)
\(42\) −23.6603 −0.563339
\(43\) 15.3397i 0.356738i 0.983964 + 0.178369i \(0.0570821\pi\)
−0.983964 + 0.178369i \(0.942918\pi\)
\(44\) −14.5359 14.5359i −0.330361 0.330361i
\(45\) −3.80385 3.80385i −0.0845299 0.0845299i
\(46\) 4.14359 4.14359i 0.0900781 0.0900781i
\(47\) 7.01924 7.01924i 0.149345 0.149345i −0.628480 0.777826i \(-0.716323\pi\)
0.777826 + 0.628480i \(0.216323\pi\)
\(48\) −6.92820 −0.144338
\(49\) 44.3013i 0.904108i
\(50\) 21.7846 21.7846i 0.435692 0.435692i
\(51\) 32.7846i 0.642835i
\(52\) 0 0
\(53\) −61.6743 −1.16367 −0.581833 0.813308i \(-0.697664\pi\)
−0.581833 + 0.813308i \(0.697664\pi\)
\(54\) 5.19615 + 5.19615i 0.0962250 + 0.0962250i
\(55\) 18.4308 0.335105
\(56\) 27.3205i 0.487866i
\(57\) −40.5167 40.5167i −0.710819 0.710819i
\(58\) −17.3205 17.3205i −0.298629 0.298629i
\(59\) −46.7321 + 46.7321i −0.792069 + 0.792069i −0.981830 0.189762i \(-0.939229\pi\)
0.189762 + 0.981830i \(0.439229\pi\)
\(60\) 4.39230 4.39230i 0.0732051 0.0732051i
\(61\) −7.30127 −0.119693 −0.0598465 0.998208i \(-0.519061\pi\)
−0.0598465 + 0.998208i \(0.519061\pi\)
\(62\) 44.3397i 0.715157i
\(63\) −20.4904 + 20.4904i −0.325244 + 0.325244i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −25.1769 −0.381468
\(67\) −27.7391 27.7391i −0.414016 0.414016i 0.469119 0.883135i \(-0.344572\pi\)
−0.883135 + 0.469119i \(0.844572\pi\)
\(68\) 37.8564 0.556712
\(69\) 7.17691i 0.104013i
\(70\) 17.3205 + 17.3205i 0.247436 + 0.247436i
\(71\) −76.0526 76.0526i −1.07116 1.07116i −0.997266 0.0738969i \(-0.976456\pi\)
−0.0738969 0.997266i \(-0.523544\pi\)
\(72\) −6.00000 + 6.00000i −0.0833333 + 0.0833333i
\(73\) −67.4186 + 67.4186i −0.923542 + 0.923542i −0.997278 0.0737356i \(-0.976508\pi\)
0.0737356 + 0.997278i \(0.476508\pi\)
\(74\) 52.3538 0.707484
\(75\) 37.7321i 0.503094i
\(76\) 46.7846 46.7846i 0.615587 0.615587i
\(77\) 99.2820i 1.28938i
\(78\) 0 0
\(79\) 11.8756 0.150325 0.0751623 0.997171i \(-0.476053\pi\)
0.0751623 + 0.997171i \(0.476053\pi\)
\(80\) 5.07180 + 5.07180i 0.0633975 + 0.0633975i
\(81\) 9.00000 0.111111
\(82\) 36.4974i 0.445091i
\(83\) 111.033 + 111.033i 1.33775 + 1.33775i 0.898235 + 0.439516i \(0.144850\pi\)
0.439516 + 0.898235i \(0.355150\pi\)
\(84\) −23.6603 23.6603i −0.281670 0.281670i
\(85\) −24.0000 + 24.0000i −0.282353 + 0.282353i
\(86\) −15.3397 + 15.3397i −0.178369 + 0.178369i
\(87\) −30.0000 −0.344828
\(88\) 29.0718i 0.330361i
\(89\) −118.641 + 118.641i −1.33305 + 1.33305i −0.430413 + 0.902632i \(0.641632\pi\)
−0.902632 + 0.430413i \(0.858368\pi\)
\(90\) 7.60770i 0.0845299i
\(91\) 0 0
\(92\) 8.28719 0.0900781
\(93\) 38.3993 + 38.3993i 0.412896 + 0.412896i
\(94\) 14.0385 0.149345
\(95\) 59.3205i 0.624426i
\(96\) −6.92820 6.92820i −0.0721688 0.0721688i
\(97\) −109.988 109.988i −1.13389 1.13389i −0.989524 0.144371i \(-0.953884\pi\)
−0.144371 0.989524i \(-0.546116\pi\)
\(98\) 44.3013 44.3013i 0.452054 0.452054i
\(99\) −21.8038 + 21.8038i −0.220241 + 0.220241i
\(100\) 43.5692 0.435692
\(101\) 186.813i 1.84963i −0.380415 0.924816i \(-0.624219\pi\)
0.380415 0.924816i \(-0.375781\pi\)
\(102\) 32.7846 32.7846i 0.321418 0.321418i
\(103\) 83.2628i 0.808377i 0.914676 + 0.404188i \(0.132446\pi\)
−0.914676 + 0.404188i \(0.867554\pi\)
\(104\) 0 0
\(105\) 30.0000 0.285714
\(106\) −61.6743 61.6743i −0.581833 0.581833i
\(107\) 102.497 0.957920 0.478960 0.877837i \(-0.341014\pi\)
0.478960 + 0.877837i \(0.341014\pi\)
\(108\) 10.3923i 0.0962250i
\(109\) 48.1891 + 48.1891i 0.442102 + 0.442102i 0.892718 0.450616i \(-0.148796\pi\)
−0.450616 + 0.892718i \(0.648796\pi\)
\(110\) 18.4308 + 18.4308i 0.167553 + 0.167553i
\(111\) 45.3397 45.3397i 0.408466 0.408466i
\(112\) 27.3205 27.3205i 0.243933 0.243933i
\(113\) −45.2154 −0.400136 −0.200068 0.979782i \(-0.564116\pi\)
−0.200068 + 0.979782i \(0.564116\pi\)
\(114\) 81.0333i 0.710819i
\(115\) −5.25387 + 5.25387i −0.0456858 + 0.0456858i
\(116\) 34.6410i 0.298629i
\(117\) 0 0
\(118\) −93.4641 −0.792069
\(119\) 129.282 + 129.282i 1.08640 + 1.08640i
\(120\) 8.78461 0.0732051
\(121\) 15.3538i 0.126891i
\(122\) −7.30127 7.30127i −0.0598465 0.0598465i
\(123\) −31.6077 31.6077i −0.256973 0.256973i
\(124\) −44.3397 + 44.3397i −0.357579 + 0.357579i
\(125\) −59.3205 + 59.3205i −0.474564 + 0.474564i
\(126\) −40.9808 −0.325244
\(127\) 236.846i 1.86493i 0.361260 + 0.932465i \(0.382347\pi\)
−0.361260 + 0.932465i \(0.617653\pi\)
\(128\) 8.00000 8.00000i 0.0625000 0.0625000i
\(129\) 26.5692i 0.205963i
\(130\) 0 0
\(131\) −209.636 −1.60027 −0.800137 0.599817i \(-0.795240\pi\)
−0.800137 + 0.599817i \(0.795240\pi\)
\(132\) −25.1769 25.1769i −0.190734 0.190734i
\(133\) 319.545 2.40259
\(134\) 55.4782i 0.414016i
\(135\) −6.58846 6.58846i −0.0488034 0.0488034i
\(136\) 37.8564 + 37.8564i 0.278356 + 0.278356i
\(137\) 80.5359 80.5359i 0.587853 0.587853i −0.349196 0.937050i \(-0.613545\pi\)
0.937050 + 0.349196i \(0.113545\pi\)
\(138\) 7.17691 7.17691i 0.0520066 0.0520066i
\(139\) −95.7077 −0.688544 −0.344272 0.938870i \(-0.611874\pi\)
−0.344272 + 0.938870i \(0.611874\pi\)
\(140\) 34.6410i 0.247436i
\(141\) 12.1577 12.1577i 0.0862247 0.0862247i
\(142\) 152.105i 1.07116i
\(143\) 0 0
\(144\) −12.0000 −0.0833333
\(145\) 21.9615 + 21.9615i 0.151459 + 0.151459i
\(146\) −134.837 −0.923542
\(147\) 76.7321i 0.521987i
\(148\) 52.3538 + 52.3538i 0.353742 + 0.353742i
\(149\) 40.2102 + 40.2102i 0.269867 + 0.269867i 0.829047 0.559179i \(-0.188884\pi\)
−0.559179 + 0.829047i \(0.688884\pi\)
\(150\) 37.7321 37.7321i 0.251547 0.251547i
\(151\) −55.0385 + 55.0385i −0.364493 + 0.364493i −0.865464 0.500971i \(-0.832976\pi\)
0.500971 + 0.865464i \(0.332976\pi\)
\(152\) 93.5692 0.615587
\(153\) 56.7846i 0.371141i
\(154\) 99.2820 99.2820i 0.644689 0.644689i
\(155\) 56.2205i 0.362713i
\(156\) 0 0
\(157\) 55.4308 0.353062 0.176531 0.984295i \(-0.443512\pi\)
0.176531 + 0.984295i \(0.443512\pi\)
\(158\) 11.8756 + 11.8756i 0.0751623 + 0.0751623i
\(159\) −106.823 −0.671843
\(160\) 10.1436i 0.0633975i
\(161\) 28.3013 + 28.3013i 0.175784 + 0.175784i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) −144.653 + 144.653i −0.887443 + 0.887443i −0.994277 0.106834i \(-0.965929\pi\)
0.106834 + 0.994277i \(0.465929\pi\)
\(164\) 36.4974 36.4974i 0.222545 0.222545i
\(165\) 31.9230 0.193473
\(166\) 222.067i 1.33775i
\(167\) 114.431 114.431i 0.685214 0.685214i −0.275956 0.961170i \(-0.588994\pi\)
0.961170 + 0.275956i \(0.0889944\pi\)
\(168\) 47.3205i 0.281670i
\(169\) 0 0
\(170\) −48.0000 −0.282353
\(171\) −70.1769 70.1769i −0.410391 0.410391i
\(172\) −30.6795 −0.178369
\(173\) 268.459i 1.55179i −0.630865 0.775893i \(-0.717300\pi\)
0.630865 0.775893i \(-0.282700\pi\)
\(174\) −30.0000 30.0000i −0.172414 0.172414i
\(175\) 148.792 + 148.792i 0.850238 + 0.850238i
\(176\) 29.0718 29.0718i 0.165181 0.165181i
\(177\) −80.9423 + 80.9423i −0.457301 + 0.457301i
\(178\) −237.282 −1.33305
\(179\) 285.779i 1.59653i −0.602304 0.798267i \(-0.705751\pi\)
0.602304 0.798267i \(-0.294249\pi\)
\(180\) 7.60770 7.60770i 0.0422650 0.0422650i
\(181\) 177.646i 0.981471i 0.871309 + 0.490735i \(0.163272\pi\)
−0.871309 + 0.490735i \(0.836728\pi\)
\(182\) 0 0
\(183\) −12.6462 −0.0691048
\(184\) 8.28719 + 8.28719i 0.0450391 + 0.0450391i
\(185\) −66.3820 −0.358822
\(186\) 76.7987i 0.412896i
\(187\) 137.569 + 137.569i 0.735664 + 0.735664i
\(188\) 14.0385 + 14.0385i 0.0746727 + 0.0746727i
\(189\) −35.4904 + 35.4904i −0.187780 + 0.187780i
\(190\) −59.3205 + 59.3205i −0.312213 + 0.312213i
\(191\) 197.321 1.03309 0.516546 0.856260i \(-0.327218\pi\)
0.516546 + 0.856260i \(0.327218\pi\)
\(192\) 13.8564i 0.0721688i
\(193\) 14.8494 14.8494i 0.0769397 0.0769397i −0.667590 0.744529i \(-0.732674\pi\)
0.744529 + 0.667590i \(0.232674\pi\)
\(194\) 219.976i 1.13389i
\(195\) 0 0
\(196\) 88.6025 0.452054
\(197\) 106.956 + 106.956i 0.542926 + 0.542926i 0.924385 0.381460i \(-0.124579\pi\)
−0.381460 + 0.924385i \(0.624579\pi\)
\(198\) −43.6077 −0.220241
\(199\) 22.2154i 0.111635i −0.998441 0.0558176i \(-0.982223\pi\)
0.998441 0.0558176i \(-0.0177765\pi\)
\(200\) 43.5692 + 43.5692i 0.217846 + 0.217846i
\(201\) −48.0455 48.0455i −0.239032 0.239032i
\(202\) 186.813 186.813i 0.924816 0.924816i
\(203\) 118.301 118.301i 0.582765 0.582765i
\(204\) 65.5692 0.321418
\(205\) 46.2769i 0.225741i
\(206\) −83.2628 + 83.2628i −0.404188 + 0.404188i
\(207\) 12.4308i 0.0600521i
\(208\) 0 0
\(209\) 340.028 1.62693
\(210\) 30.0000 + 30.0000i 0.142857 + 0.142857i
\(211\) 64.2013 0.304272 0.152136 0.988360i \(-0.451385\pi\)
0.152136 + 0.988360i \(0.451385\pi\)
\(212\) 123.349i 0.581833i
\(213\) −131.727 131.727i −0.618436 0.618436i
\(214\) 102.497 + 102.497i 0.478960 + 0.478960i
\(215\) 19.4500 19.4500i 0.0904652 0.0904652i
\(216\) −10.3923 + 10.3923i −0.0481125 + 0.0481125i
\(217\) −302.846 −1.39560
\(218\) 96.3782i 0.442102i
\(219\) −116.772 + 116.772i −0.533207 + 0.533207i
\(220\) 36.8616i 0.167553i
\(221\) 0 0
\(222\) 90.6795 0.408466
\(223\) −154.531 154.531i −0.692963 0.692963i 0.269920 0.962883i \(-0.413003\pi\)
−0.962883 + 0.269920i \(0.913003\pi\)
\(224\) 54.6410 0.243933
\(225\) 65.3538i 0.290461i
\(226\) −45.2154 45.2154i −0.200068 0.200068i
\(227\) −45.7128 45.7128i −0.201378 0.201378i 0.599212 0.800590i \(-0.295481\pi\)
−0.800590 + 0.599212i \(0.795481\pi\)
\(228\) 81.0333 81.0333i 0.355409 0.355409i
\(229\) 58.6846 58.6846i 0.256265 0.256265i −0.567268 0.823533i \(-0.692000\pi\)
0.823533 + 0.567268i \(0.192000\pi\)
\(230\) −10.5077 −0.0456858
\(231\) 171.962i 0.744422i
\(232\) 34.6410 34.6410i 0.149315 0.149315i
\(233\) 380.669i 1.63377i 0.576798 + 0.816887i \(0.304302\pi\)
−0.576798 + 0.816887i \(0.695698\pi\)
\(234\) 0 0
\(235\) −17.8001 −0.0757450
\(236\) −93.4641 93.4641i −0.396034 0.396034i
\(237\) 20.5692 0.0867900
\(238\) 258.564i 1.08640i
\(239\) −167.138 167.138i −0.699324 0.699324i 0.264941 0.964265i \(-0.414648\pi\)
−0.964265 + 0.264941i \(0.914648\pi\)
\(240\) 8.78461 + 8.78461i 0.0366025 + 0.0366025i
\(241\) 2.17691 2.17691i 0.00903284 0.00903284i −0.702576 0.711609i \(-0.747967\pi\)
0.711609 + 0.702576i \(0.247967\pi\)
\(242\) −15.3538 + 15.3538i −0.0634456 + 0.0634456i
\(243\) 15.5885 0.0641500
\(244\) 14.6025i 0.0598465i
\(245\) −56.1718 + 56.1718i −0.229272 + 0.229272i
\(246\) 63.2154i 0.256973i
\(247\) 0 0
\(248\) −88.6795 −0.357579
\(249\) 192.315 + 192.315i 0.772351 + 0.772351i
\(250\) −118.641 −0.474564
\(251\) 208.708i 0.831505i 0.909478 + 0.415752i \(0.136482\pi\)
−0.909478 + 0.415752i \(0.863518\pi\)
\(252\) −40.9808 40.9808i −0.162622 0.162622i
\(253\) 30.1154 + 30.1154i 0.119033 + 0.119033i
\(254\) −236.846 + 236.846i −0.932465 + 0.932465i
\(255\) −41.5692 + 41.5692i −0.163017 + 0.163017i
\(256\) 16.0000 0.0625000
\(257\) 74.2205i 0.288796i 0.989520 + 0.144398i \(0.0461245\pi\)
−0.989520 + 0.144398i \(0.953875\pi\)
\(258\) −26.5692 + 26.5692i −0.102981 + 0.102981i
\(259\) 357.583i 1.38063i
\(260\) 0 0
\(261\) −51.9615 −0.199086
\(262\) −209.636 209.636i −0.800137 0.800137i
\(263\) −24.3641 −0.0926393 −0.0463197 0.998927i \(-0.514749\pi\)
−0.0463197 + 0.998927i \(0.514749\pi\)
\(264\) 50.3538i 0.190734i
\(265\) 78.1999 + 78.1999i 0.295094 + 0.295094i
\(266\) 319.545 + 319.545i 1.20130 + 1.20130i
\(267\) −205.492 + 205.492i −0.769634 + 0.769634i
\(268\) 55.4782 55.4782i 0.207008 0.207008i
\(269\) −175.741 −0.653312 −0.326656 0.945143i \(-0.605922\pi\)
−0.326656 + 0.945143i \(0.605922\pi\)
\(270\) 13.1769i 0.0488034i
\(271\) −197.046 + 197.046i −0.727105 + 0.727105i −0.970042 0.242937i \(-0.921889\pi\)
0.242937 + 0.970042i \(0.421889\pi\)
\(272\) 75.7128i 0.278356i
\(273\) 0 0
\(274\) 161.072 0.587853
\(275\) 158.329 + 158.329i 0.575743 + 0.575743i
\(276\) 14.3538 0.0520066
\(277\) 446.985i 1.61366i 0.590782 + 0.806831i \(0.298819\pi\)
−0.590782 + 0.806831i \(0.701181\pi\)
\(278\) −95.7077 95.7077i −0.344272 0.344272i
\(279\) 66.5096 + 66.5096i 0.238386 + 0.238386i
\(280\) −34.6410 + 34.6410i −0.123718 + 0.123718i
\(281\) −5.54483 + 5.54483i −0.0197325 + 0.0197325i −0.716904 0.697172i \(-0.754442\pi\)
0.697172 + 0.716904i \(0.254442\pi\)
\(282\) 24.3154 0.0862247
\(283\) 16.6462i 0.0588204i 0.999567 + 0.0294102i \(0.00936291\pi\)
−0.999567 + 0.0294102i \(0.990637\pi\)
\(284\) 152.105 152.105i 0.535581 0.535581i
\(285\) 102.746i 0.360513i
\(286\) 0 0
\(287\) 249.282 0.868579
\(288\) −12.0000 12.0000i −0.0416667 0.0416667i
\(289\) −69.2769 −0.239712
\(290\) 43.9230i 0.151459i
\(291\) −190.504 190.504i −0.654655 0.654655i
\(292\) −134.837 134.837i −0.461771 0.461771i
\(293\) 132.473 132.473i 0.452126 0.452126i −0.443933 0.896060i \(-0.646417\pi\)
0.896060 + 0.443933i \(0.146417\pi\)
\(294\) 76.7321 76.7321i 0.260993 0.260993i
\(295\) 118.508 0.401721
\(296\) 104.708i 0.353742i
\(297\) −37.7654 + 37.7654i −0.127156 + 0.127156i
\(298\) 80.4205i 0.269867i
\(299\) 0 0
\(300\) 75.4641 0.251547
\(301\) −104.772 104.772i −0.348081 0.348081i
\(302\) −110.077 −0.364493
\(303\) 323.569i 1.06789i
\(304\) 93.5692 + 93.5692i 0.307793 + 0.307793i
\(305\) 9.25764 + 9.25764i 0.0303529 + 0.0303529i
\(306\) 56.7846 56.7846i 0.185571 0.185571i
\(307\) 375.069 375.069i 1.22172 1.22172i 0.254702 0.967020i \(-0.418023\pi\)
0.967020 0.254702i \(-0.0819774\pi\)
\(308\) 198.564 0.644689
\(309\) 144.215i 0.466716i
\(310\) 56.2205 56.2205i 0.181357 0.181357i
\(311\) 296.238i 0.952535i −0.879300 0.476268i \(-0.841989\pi\)
0.879300 0.476268i \(-0.158011\pi\)
\(312\) 0 0
\(313\) 118.286 0.377910 0.188955 0.981986i \(-0.439490\pi\)
0.188955 + 0.981986i \(0.439490\pi\)
\(314\) 55.4308 + 55.4308i 0.176531 + 0.176531i
\(315\) 51.9615 0.164957
\(316\) 23.7513i 0.0751623i
\(317\) −280.708 280.708i −0.885513 0.885513i 0.108575 0.994088i \(-0.465371\pi\)
−0.994088 + 0.108575i \(0.965371\pi\)
\(318\) −106.823 106.823i −0.335922 0.335922i
\(319\) 125.885 125.885i 0.394622 0.394622i
\(320\) −10.1436 + 10.1436i −0.0316987 + 0.0316987i
\(321\) 177.531 0.553055
\(322\) 56.6025i 0.175784i
\(323\) −442.774 + 442.774i −1.37082 + 1.37082i
\(324\) 18.0000i 0.0555556i
\(325\) 0 0
\(326\) −289.306 −0.887443
\(327\) 83.4660 + 83.4660i 0.255248 + 0.255248i
\(328\) 72.9948 0.222545
\(329\) 95.8846i 0.291442i
\(330\) 31.9230 + 31.9230i 0.0967365 + 0.0967365i
\(331\) 100.624 + 100.624i 0.303999 + 0.303999i 0.842576 0.538577i \(-0.181038\pi\)
−0.538577 + 0.842576i \(0.681038\pi\)
\(332\) −222.067 + 222.067i −0.668875 + 0.668875i
\(333\) 78.5307 78.5307i 0.235828 0.235828i
\(334\) 228.862 0.685214
\(335\) 70.3435i 0.209981i
\(336\) 47.3205 47.3205i 0.140835 0.140835i
\(337\) 347.508i 1.03118i 0.856835 + 0.515590i \(0.172427\pi\)
−0.856835 + 0.515590i \(0.827573\pi\)
\(338\) 0 0
\(339\) −78.3154 −0.231019
\(340\) −48.0000 48.0000i −0.141176 0.141176i
\(341\) −322.259 −0.945041
\(342\) 140.354i 0.410391i
\(343\) −32.0929 32.0929i −0.0935654 0.0935654i
\(344\) −30.6795 30.6795i −0.0891846 0.0891846i
\(345\) −9.09996 + 9.09996i −0.0263767 + 0.0263767i
\(346\) 268.459 268.459i 0.775893 0.775893i
\(347\) 437.703 1.26139 0.630695 0.776031i \(-0.282770\pi\)
0.630695 + 0.776031i \(0.282770\pi\)
\(348\) 60.0000i 0.172414i
\(349\) 316.897 316.897i 0.908014 0.908014i −0.0880981 0.996112i \(-0.528079\pi\)
0.996112 + 0.0880981i \(0.0280789\pi\)
\(350\) 297.583i 0.850238i
\(351\) 0 0
\(352\) 58.1436 0.165181
\(353\) −415.037 415.037i −1.17574 1.17574i −0.980818 0.194924i \(-0.937554\pi\)
−0.194924 0.980818i \(-0.562446\pi\)
\(354\) −161.885 −0.457301
\(355\) 192.862i 0.543272i
\(356\) −237.282 237.282i −0.666523 0.666523i
\(357\) 223.923 + 223.923i 0.627235 + 0.627235i
\(358\) 285.779 285.779i 0.798267 0.798267i
\(359\) 64.2769 64.2769i 0.179044 0.179044i −0.611895 0.790939i \(-0.709592\pi\)
0.790939 + 0.611895i \(0.209592\pi\)
\(360\) 15.2154 0.0422650
\(361\) 733.400i 2.03158i
\(362\) −177.646 + 177.646i −0.490735 + 0.490735i
\(363\) 26.5936i 0.0732606i
\(364\) 0 0
\(365\) 170.967 0.468402
\(366\) −12.6462 12.6462i −0.0345524 0.0345524i
\(367\) −217.785 −0.593419 −0.296709 0.954968i \(-0.595889\pi\)
−0.296709 + 0.954968i \(0.595889\pi\)
\(368\) 16.5744i 0.0450391i
\(369\) −54.7461 54.7461i −0.148364 0.148364i
\(370\) −66.3820 66.3820i −0.179411 0.179411i
\(371\) 421.244 421.244i 1.13543 1.13543i
\(372\) −76.7987 + 76.7987i −0.206448 + 0.206448i
\(373\) −219.606 −0.588757 −0.294378 0.955689i \(-0.595113\pi\)
−0.294378 + 0.955689i \(0.595113\pi\)
\(374\) 275.138i 0.735664i
\(375\) −102.746 + 102.746i −0.273990 + 0.273990i
\(376\) 28.0770i 0.0746727i
\(377\) 0 0
\(378\) −70.9808 −0.187780
\(379\) 137.107 + 137.107i 0.361760 + 0.361760i 0.864461 0.502701i \(-0.167660\pi\)
−0.502701 + 0.864461i \(0.667660\pi\)
\(380\) −118.641 −0.312213
\(381\) 410.229i 1.07672i
\(382\) 197.321 + 197.321i 0.516546 + 0.516546i
\(383\) −137.751 137.751i −0.359664 0.359664i 0.504025 0.863689i \(-0.331852\pi\)
−0.863689 + 0.504025i \(0.831852\pi\)
\(384\) 13.8564 13.8564i 0.0360844 0.0360844i
\(385\) −125.885 + 125.885i −0.326973 + 0.326973i
\(386\) 29.6987 0.0769397
\(387\) 46.0192i 0.118913i
\(388\) 219.976 219.976i 0.566947 0.566947i
\(389\) 17.7513i 0.0456331i −0.999740 0.0228166i \(-0.992737\pi\)
0.999740 0.0228166i \(-0.00726337\pi\)
\(390\) 0 0
\(391\) −78.4308 −0.200590
\(392\) 88.6025 + 88.6025i 0.226027 + 0.226027i
\(393\) −363.100 −0.923918
\(394\) 213.913i 0.542926i
\(395\) −15.0577 15.0577i −0.0381208 0.0381208i
\(396\) −43.6077 43.6077i −0.110120 0.110120i
\(397\) −238.643 + 238.643i −0.601116 + 0.601116i −0.940609 0.339493i \(-0.889745\pi\)
0.339493 + 0.940609i \(0.389745\pi\)
\(398\) 22.2154 22.2154i 0.0558176 0.0558176i
\(399\) 553.468 1.38714
\(400\) 87.1384i 0.217846i
\(401\) 363.415 363.415i 0.906273 0.906273i −0.0896965 0.995969i \(-0.528590\pi\)
0.995969 + 0.0896965i \(0.0285897\pi\)
\(402\) 96.0910i 0.239032i
\(403\) 0 0
\(404\) 373.626 0.924816
\(405\) −11.4115 11.4115i −0.0281766 0.0281766i
\(406\) 236.603 0.582765
\(407\) 380.505i 0.934902i
\(408\) 65.5692 + 65.5692i 0.160709 + 0.160709i
\(409\) 412.026 + 412.026i 1.00740 + 1.00740i 0.999972 + 0.00742680i \(0.00236404\pi\)
0.00742680 + 0.999972i \(0.497636\pi\)
\(410\) −46.2769 + 46.2769i −0.112870 + 0.112870i
\(411\) 139.492 139.492i 0.339397 0.339397i
\(412\) −166.526 −0.404188
\(413\) 638.372i 1.54569i
\(414\) 12.4308 12.4308i 0.0300260 0.0300260i
\(415\) 281.569i 0.678480i
\(416\) 0 0
\(417\) −165.771 −0.397531
\(418\) 340.028 + 340.028i 0.813465 + 0.813465i
\(419\) −782.354 −1.86719 −0.933596 0.358326i \(-0.883348\pi\)
−0.933596 + 0.358326i \(0.883348\pi\)
\(420\) 60.0000i 0.142857i
\(421\) −27.0352 27.0352i −0.0642166 0.0642166i 0.674269 0.738486i \(-0.264459\pi\)
−0.738486 + 0.674269i \(0.764459\pi\)
\(422\) 64.2013 + 64.2013i 0.152136 + 0.152136i
\(423\) 21.0577 21.0577i 0.0497818 0.0497818i
\(424\) 123.349 123.349i 0.290917 0.290917i
\(425\) −412.344 −0.970220
\(426\) 263.454i 0.618436i
\(427\) 49.8686 49.8686i 0.116788 0.116788i
\(428\) 204.995i 0.478960i
\(429\) 0 0
\(430\) 38.9000 0.0904652
\(431\) 445.310 + 445.310i 1.03320 + 1.03320i 0.999430 + 0.0337728i \(0.0107523\pi\)
0.0337728 + 0.999430i \(0.489248\pi\)
\(432\) −20.7846 −0.0481125
\(433\) 237.785i 0.549156i 0.961565 + 0.274578i \(0.0885382\pi\)
−0.961565 + 0.274578i \(0.911462\pi\)
\(434\) −302.846 302.846i −0.697802 0.697802i
\(435\) 38.0385 + 38.0385i 0.0874448 + 0.0874448i
\(436\) −96.3782 + 96.3782i −0.221051 + 0.221051i
\(437\) −96.9282 + 96.9282i −0.221804 + 0.221804i
\(438\) −233.545 −0.533207
\(439\) 689.463i 1.57053i 0.619160 + 0.785265i \(0.287473\pi\)
−0.619160 + 0.785265i \(0.712527\pi\)
\(440\) −36.8616 + 36.8616i −0.0837763 + 0.0837763i
\(441\) 132.904i 0.301369i
\(442\) 0 0
\(443\) −304.028 −0.686294 −0.343147 0.939282i \(-0.611493\pi\)
−0.343147 + 0.939282i \(0.611493\pi\)
\(444\) 90.6795 + 90.6795i 0.204233 + 0.204233i
\(445\) 300.862 0.676093
\(446\) 309.061i 0.692963i
\(447\) 69.6462 + 69.6462i 0.155808 + 0.155808i
\(448\) 54.6410 + 54.6410i 0.121967 + 0.121967i
\(449\) −200.694 + 200.694i −0.446979 + 0.446979i −0.894349 0.447370i \(-0.852361\pi\)
0.447370 + 0.894349i \(0.352361\pi\)
\(450\) 65.3538 65.3538i 0.145231 0.145231i
\(451\) 265.261 0.588163
\(452\) 90.4308i 0.200068i
\(453\) −95.3294 + 95.3294i −0.210440 + 0.210440i
\(454\) 91.4256i 0.201378i
\(455\) 0 0
\(456\) 162.067 0.355409
\(457\) −101.519 101.519i −0.222141 0.222141i 0.587258 0.809400i \(-0.300207\pi\)
−0.809400 + 0.587258i \(0.800207\pi\)
\(458\) 117.369 0.256265
\(459\) 98.3538i 0.214278i
\(460\) −10.5077 10.5077i −0.0228429 0.0228429i
\(461\) −416.123 416.123i −0.902653 0.902653i 0.0930121 0.995665i \(-0.470350\pi\)
−0.995665 + 0.0930121i \(0.970350\pi\)
\(462\) 171.962 171.962i 0.372211 0.372211i
\(463\) −169.599 + 169.599i −0.366305 + 0.366305i −0.866128 0.499823i \(-0.833399\pi\)
0.499823 + 0.866128i \(0.333399\pi\)
\(464\) 69.2820 0.149315
\(465\) 97.3768i 0.209413i
\(466\) −380.669 + 380.669i −0.816887 + 0.816887i
\(467\) 732.649i 1.56884i 0.620230 + 0.784420i \(0.287039\pi\)
−0.620230 + 0.784420i \(0.712961\pi\)
\(468\) 0 0
\(469\) 378.923 0.807938
\(470\) −17.8001 17.8001i −0.0378725 0.0378725i
\(471\) 96.0089 0.203841
\(472\) 186.928i 0.396034i
\(473\) −111.488 111.488i −0.235705 0.235705i
\(474\) 20.5692 + 20.5692i 0.0433950 + 0.0433950i
\(475\) −509.592 + 509.592i −1.07283 + 1.07283i
\(476\) −258.564 + 258.564i −0.543202 + 0.543202i
\(477\) −185.023 −0.387889
\(478\) 334.277i 0.699324i
\(479\) 261.464 261.464i 0.545854 0.545854i −0.379385 0.925239i \(-0.623864\pi\)
0.925239 + 0.379385i \(0.123864\pi\)
\(480\) 17.5692i 0.0366025i
\(481\) 0 0
\(482\) 4.35383 0.00903284
\(483\) 49.0192 + 49.0192i 0.101489 + 0.101489i
\(484\) −30.7077 −0.0634456
\(485\) 278.918i 0.575088i
\(486\) 15.5885 + 15.5885i 0.0320750 + 0.0320750i
\(487\) −137.000 137.000i −0.281314 0.281314i 0.552319 0.833633i \(-0.313743\pi\)
−0.833633 + 0.552319i \(0.813743\pi\)
\(488\) 14.6025 14.6025i 0.0299232 0.0299232i
\(489\) −250.547 + 250.547i −0.512365 + 0.512365i
\(490\) −112.344 −0.229272
\(491\) 36.9282i 0.0752102i −0.999293 0.0376051i \(-0.988027\pi\)
0.999293 0.0376051i \(-0.0119729\pi\)
\(492\) 63.2154 63.2154i 0.128487 0.128487i
\(493\) 327.846i 0.665002i
\(494\) 0 0
\(495\) 55.2923 0.111702
\(496\) −88.6795 88.6795i −0.178789 0.178789i
\(497\) 1038.90 2.09034
\(498\) 384.631i 0.772351i
\(499\) 462.769 + 462.769i 0.927393 + 0.927393i 0.997537 0.0701438i \(-0.0223458\pi\)
−0.0701438 + 0.997537i \(0.522346\pi\)
\(500\) −118.641 118.641i −0.237282 0.237282i
\(501\) 198.200 198.200i 0.395609 0.395609i
\(502\) −208.708 + 208.708i −0.415752 + 0.415752i
\(503\) −358.756 −0.713233 −0.356617 0.934251i \(-0.616070\pi\)
−0.356617 + 0.934251i \(0.616070\pi\)
\(504\) 81.9615i 0.162622i
\(505\) −236.869 + 236.869i −0.469048 + 0.469048i
\(506\) 60.2309i 0.119033i
\(507\) 0 0
\(508\) −473.692 −0.932465
\(509\) −521.745 521.745i −1.02504 1.02504i −0.999678 0.0253604i \(-0.991927\pi\)
−0.0253604 0.999678i \(-0.508073\pi\)
\(510\) −83.1384 −0.163017
\(511\) 920.955i 1.80226i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −121.550 121.550i −0.236940 0.236940i
\(514\) −74.2205 + 74.2205i −0.144398 + 0.144398i
\(515\) 105.573 105.573i 0.204996 0.204996i
\(516\) −53.1384 −0.102981
\(517\) 102.031i 0.197352i
\(518\) −357.583 + 357.583i −0.690315 + 0.690315i
\(519\) 464.985i 0.895924i
\(520\) 0 0
\(521\) 156.049 0.299518 0.149759 0.988723i \(-0.452150\pi\)
0.149759 + 0.988723i \(0.452150\pi\)
\(522\) −51.9615 51.9615i −0.0995431 0.0995431i
\(523\) 41.9230 0.0801588 0.0400794 0.999196i \(-0.487239\pi\)
0.0400794 + 0.999196i \(0.487239\pi\)
\(524\) 419.272i 0.800137i
\(525\) 257.715 + 257.715i 0.490885 + 0.490885i
\(526\) −24.3641 24.3641i −0.0463197 0.0463197i
\(527\) 419.636 419.636i 0.796273 0.796273i
\(528\) 50.3538 50.3538i 0.0953671 0.0953671i
\(529\) 511.831 0.967544
\(530\) 156.400i 0.295094i
\(531\) −140.196 + 140.196i −0.264023 + 0.264023i
\(532\) 639.090i 1.20130i
\(533\) 0 0
\(534\) −410.985 −0.769634
\(535\) −129.962 129.962i −0.242919 0.242919i
\(536\) 110.956 0.207008
\(537\) 494.985i 0.921759i
\(538\) −175.741 175.741i −0.326656 0.326656i
\(539\) 321.979 + 321.979i 0.597364 + 0.597364i
\(540\) 13.1769 13.1769i 0.0244017 0.0244017i
\(541\) −4.44298 + 4.44298i −0.00821253 + 0.00821253i −0.711201 0.702989i \(-0.751848\pi\)
0.702989 + 0.711201i \(0.251848\pi\)
\(542\) −394.091 −0.727105
\(543\) 307.692i 0.566652i
\(544\) −75.7128 + 75.7128i −0.139178 + 0.139178i
\(545\) 122.203i 0.224225i
\(546\) 0 0
\(547\) −101.508 −0.185572 −0.0927859 0.995686i \(-0.529577\pi\)
−0.0927859 + 0.995686i \(0.529577\pi\)
\(548\) 161.072 + 161.072i 0.293927 + 0.293927i
\(549\) −21.9038 −0.0398977
\(550\) 316.659i 0.575743i
\(551\) 405.167 + 405.167i 0.735330 + 0.735330i
\(552\) 14.3538 + 14.3538i 0.0260033 + 0.0260033i
\(553\) −81.1122 + 81.1122i −0.146677 + 0.146677i
\(554\) −446.985 + 446.985i −0.806831 + 0.806831i
\(555\) −114.977 −0.207166
\(556\) 191.415i 0.344272i
\(557\) 465.846 465.846i 0.836348 0.836348i −0.152028 0.988376i \(-0.548580\pi\)
0.988376 + 0.152028i \(0.0485803\pi\)
\(558\) 133.019i 0.238386i
\(559\) 0 0
\(560\) −69.2820 −0.123718
\(561\) 238.277 + 238.277i 0.424736 + 0.424736i
\(562\) −11.0897 −0.0197325
\(563\) 88.7255i 0.157594i −0.996891 0.0787971i \(-0.974892\pi\)
0.996891 0.0787971i \(-0.0251079\pi\)
\(564\) 24.3154 + 24.3154i 0.0431123 + 0.0431123i
\(565\) 57.3308 + 57.3308i 0.101470 + 0.101470i
\(566\) −16.6462 + 16.6462i −0.0294102 + 0.0294102i
\(567\) −61.4711 + 61.4711i −0.108415 + 0.108415i
\(568\) 304.210 0.535581
\(569\) 431.569i 0.758470i −0.925300 0.379235i \(-0.876187\pi\)
0.925300 0.379235i \(-0.123813\pi\)
\(570\) −102.746 + 102.746i −0.180256 + 0.180256i
\(571\) 959.892i 1.68107i −0.541756 0.840536i \(-0.682240\pi\)
0.541756 0.840536i \(-0.317760\pi\)
\(572\) 0 0
\(573\) 341.769 0.596456
\(574\) 249.282 + 249.282i 0.434289 + 0.434289i
\(575\) −90.2666 −0.156985
\(576\) 24.0000i 0.0416667i
\(577\) −313.669 313.669i −0.543621 0.543621i 0.380968 0.924588i \(-0.375591\pi\)
−0.924588 + 0.380968i \(0.875591\pi\)
\(578\) −69.2769 69.2769i −0.119856 0.119856i
\(579\) 25.7199 25.7199i 0.0444212 0.0444212i
\(580\) −43.9230 + 43.9230i −0.0757294 + 0.0757294i
\(581\) −1516.74 −2.61057
\(582\) 381.009i 0.654655i
\(583\) 448.246 448.246i 0.768861 0.768861i
\(584\) 269.674i 0.461771i
\(585\) 0 0
\(586\) 264.946 0.452126
\(587\) −160.004 160.004i −0.272579 0.272579i 0.557559 0.830138i \(-0.311738\pi\)
−0.830138 + 0.557559i \(0.811738\pi\)
\(588\) 153.464 0.260993
\(589\) 1037.21i 1.76097i
\(590\) 118.508 + 118.508i 0.200861 + 0.200861i
\(591\) 185.254 + 185.254i 0.313458 + 0.313458i
\(592\) −104.708 + 104.708i −0.176871 + 0.176871i
\(593\) 335.229 335.229i 0.565311 0.565311i −0.365500 0.930811i \(-0.619102\pi\)
0.930811 + 0.365500i \(0.119102\pi\)
\(594\) −75.5307 −0.127156
\(595\) 327.846i 0.551002i
\(596\) −80.4205 + 80.4205i −0.134934 + 0.134934i
\(597\) 38.4782i 0.0644526i
\(598\) 0 0
\(599\) 136.908 0.228560 0.114280 0.993449i \(-0.463544\pi\)
0.114280 + 0.993449i \(0.463544\pi\)
\(600\) 75.4641 + 75.4641i 0.125774 + 0.125774i
\(601\) −17.5692 −0.0292333 −0.0146167 0.999893i \(-0.504653\pi\)
−0.0146167 + 0.999893i \(0.504653\pi\)
\(602\) 209.545i 0.348081i
\(603\) −83.2173 83.2173i −0.138005 0.138005i
\(604\) −110.077 110.077i −0.182247 0.182247i
\(605\) 19.4679 19.4679i 0.0321783 0.0321783i
\(606\) 323.569 323.569i 0.533943 0.533943i
\(607\) 844.600 1.39143 0.695716 0.718317i \(-0.255087\pi\)
0.695716 + 0.718317i \(0.255087\pi\)
\(608\) 187.138i 0.307793i
\(609\) 204.904 204.904i 0.336459 0.336459i
\(610\) 18.5153i 0.0303529i
\(611\) 0 0
\(612\) 113.569 0.185571
\(613\) −445.757 445.757i −0.727173 0.727173i 0.242883 0.970056i \(-0.421907\pi\)
−0.970056 + 0.242883i \(0.921907\pi\)
\(614\) 750.137 1.22172
\(615\) 80.1539i 0.130332i
\(616\) 198.564 + 198.564i 0.322344 + 0.322344i
\(617\) −78.3397 78.3397i −0.126969 0.126969i 0.640767 0.767736i \(-0.278617\pi\)
−0.767736 + 0.640767i \(0.778617\pi\)
\(618\) −144.215 + 144.215i −0.233358 + 0.233358i
\(619\) −111.970 + 111.970i −0.180888 + 0.180888i −0.791743 0.610854i \(-0.790826\pi\)
0.610854 + 0.791743i \(0.290826\pi\)
\(620\) 112.441 0.181357
\(621\) 21.5307i 0.0346711i
\(622\) 296.238 296.238i 0.476268 0.476268i
\(623\) 1620.67i 2.60139i
\(624\) 0 0
\(625\) −394.184 −0.630695
\(626\) 118.286 + 118.286i 0.188955 + 0.188955i
\(627\) 588.946 0.939308
\(628\) 110.862i 0.176531i
\(629\) −495.482 495.482i −0.787730 0.787730i
\(630\) 51.9615 + 51.9615i 0.0824786 + 0.0824786i
\(631\) 773.445 773.445i 1.22575 1.22575i 0.260187 0.965558i \(-0.416216\pi\)
0.965558 0.260187i \(-0.0837843\pi\)
\(632\) −23.7513 + 23.7513i −0.0375812 + 0.0375812i
\(633\) 111.200 0.175671
\(634\) 561.415i 0.885513i
\(635\) 300.309 300.309i 0.472927 0.472927i
\(636\) 213.646i 0.335922i
\(637\) 0 0
\(638\) 251.769 0.394622
\(639\) −228.158 228.158i −0.357054 0.357054i
\(640\) −20.2872 −0.0316987
\(641\) 408.613i 0.637462i 0.947845 + 0.318731i \(0.103257\pi\)
−0.947845 + 0.318731i \(0.896743\pi\)
\(642\) 177.531 + 177.531i 0.276528 + 0.276528i
\(643\) 316.730 + 316.730i 0.492582 + 0.492582i 0.909119 0.416537i \(-0.136756\pi\)
−0.416537 + 0.909119i \(0.636756\pi\)
\(644\) −56.6025 + 56.6025i −0.0878921 + 0.0878921i
\(645\) 33.6884 33.6884i 0.0522301 0.0522301i
\(646\) −885.549 −1.37082
\(647\) 322.841i 0.498981i −0.968377 0.249491i \(-0.919737\pi\)
0.968377 0.249491i \(-0.0802632\pi\)
\(648\) −18.0000 + 18.0000i −0.0277778 + 0.0277778i
\(649\) 679.292i 1.04668i
\(650\) 0 0
\(651\) −524.545 −0.805752
\(652\) −289.306 289.306i −0.443722 0.443722i
\(653\) −1020.85 −1.56332 −0.781660 0.623704i \(-0.785627\pi\)
−0.781660 + 0.623704i \(0.785627\pi\)
\(654\) 166.932i 0.255248i
\(655\) 265.808 + 265.808i 0.405813 + 0.405813i
\(656\) 72.9948 + 72.9948i 0.111273 + 0.111273i
\(657\) −202.256 + 202.256i −0.307847 + 0.307847i
\(658\) −95.8846 + 95.8846i −0.145721 + 0.145721i
\(659\) 227.685 0.345500 0.172750 0.984966i \(-0.444735\pi\)
0.172750 + 0.984966i \(0.444735\pi\)
\(660\) 63.8461i 0.0967365i
\(661\) −107.012 + 107.012i −0.161894 + 0.161894i −0.783405 0.621511i \(-0.786519\pi\)
0.621511 + 0.783405i \(0.286519\pi\)
\(662\) 201.247i 0.303999i
\(663\) 0 0
\(664\) −444.133 −0.668875
\(665\) −405.167 405.167i −0.609273 0.609273i
\(666\) 157.061 0.235828
\(667\) 71.7691i 0.107600i
\(668\) 228.862 + 228.862i 0.342607 + 0.342607i
\(669\) −267.655 267.655i −0.400082 0.400082i
\(670\) −70.3435 + 70.3435i −0.104990 + 0.104990i
\(671\) 53.0653 53.0653i 0.0790838 0.0790838i
\(672\) 94.6410 0.140835
\(673\) 707.991i 1.05199i −0.850487 0.525996i \(-0.823693\pi\)
0.850487 0.525996i \(-0.176307\pi\)
\(674\) −347.508 + 347.508i −0.515590 + 0.515590i
\(675\) 113.196i 0.167698i
\(676\) 0 0
\(677\) −754.592 −1.11461 −0.557306 0.830307i \(-0.688165\pi\)
−0.557306 + 0.830307i \(0.688165\pi\)
\(678\) −78.3154 78.3154i −0.115509 0.115509i
\(679\) 1502.46 2.21276
\(680\) 96.0000i 0.141176i
\(681\) −79.1769 79.1769i −0.116266 0.116266i
\(682\) −322.259 322.259i −0.472521 0.472521i
\(683\) −101.678 + 101.678i −0.148870 + 0.148870i −0.777613 0.628743i \(-0.783570\pi\)
0.628743 + 0.777613i \(0.283570\pi\)
\(684\) 140.354 140.354i 0.205196 0.205196i
\(685\) −204.231 −0.298147
\(686\) 64.1858i 0.0935654i
\(687\) 101.645 101.645i 0.147955 0.147955i
\(688\) 61.3590i 0.0891846i
\(689\) 0 0
\(690\) −18.1999 −0.0263767
\(691\) 385.030 + 385.030i 0.557207 + 0.557207i 0.928511 0.371304i \(-0.121089\pi\)
−0.371304 + 0.928511i \(0.621089\pi\)
\(692\) 536.918 0.775893
\(693\) 297.846i 0.429792i
\(694\) 437.703 + 437.703i 0.630695 + 0.630695i
\(695\) 121.352 + 121.352i 0.174608 + 0.174608i
\(696\) 60.0000 60.0000i 0.0862069 0.0862069i
\(697\) −345.415 + 345.415i −0.495574 + 0.495574i
\(698\) 633.794 0.908014
\(699\) 659.338i 0.943259i
\(700\) −297.583 + 297.583i −0.425119 + 0.425119i
\(701\) 568.344i 0.810761i −0.914148 0.405381i \(-0.867139\pi\)
0.914148 0.405381i \(-0.132861\pi\)
\(702\) 0 0
\(703\) −1224.68 −1.74207
\(704\) 58.1436 + 58.1436i 0.0825903 + 0.0825903i
\(705\) −30.8306 −0.0437314
\(706\) 830.074i 1.17574i
\(707\) 1275.95 + 1275.95i 1.80475 + 1.80475i
\(708\) −161.885 161.885i −0.228651 0.228651i
\(709\) 259.419 259.419i 0.365894 0.365894i −0.500084 0.865977i \(-0.666697\pi\)
0.865977 + 0.500084i \(0.166697\pi\)
\(710\) −192.862 + 192.862i −0.271636 + 0.271636i
\(711\) 35.6269 0.0501082
\(712\) 474.564i 0.666523i
\(713\) 91.8629 91.8629i 0.128840 0.128840i
\(714\) 447.846i 0.627235i
\(715\) 0 0
\(716\) 571.559 0.798267
\(717\) −289.492 289.492i −0.403755 0.403755i
\(718\) 128.554 0.179044
\(719\) 263.520i 0.366510i −0.983065 0.183255i \(-0.941337\pi\)
0.983065 0.183255i \(-0.0586633\pi\)
\(720\) 15.2154 + 15.2154i 0.0211325 + 0.0211325i
\(721\) −568.695 568.695i −0.788759 0.788759i
\(722\) −733.400 + 733.400i −1.01579 + 1.01579i
\(723\) 3.77053 3.77053i 0.00521511 0.00521511i
\(724\) −355.292 −0.490735
\(725\) 377.321i 0.520442i
\(726\) −26.5936 + 26.5936i −0.0366303 + 0.0366303i
\(727\) 878.415i 1.20827i −0.796880 0.604137i \(-0.793518\pi\)
0.796880 0.604137i \(-0.206482\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 170.967 + 170.967i 0.234201 + 0.234201i
\(731\) 290.354 0.397201
\(732\) 25.2923i 0.0345524i
\(733\) −146.627 146.627i −0.200037 0.200037i 0.599979 0.800016i \(-0.295176\pi\)
−0.800016 + 0.599979i \(0.795176\pi\)
\(734\) −217.785 217.785i −0.296709 0.296709i
\(735\) −97.2923 + 97.2923i −0.132371 + 0.132371i
\(736\) −16.5744 + 16.5744i −0.0225195 + 0.0225195i
\(737\) 403.213 0.547100
\(738\) 109.492i 0.148364i
\(739\) −455.161 + 455.161i −0.615915 + 0.615915i −0.944481 0.328566i \(-0.893435\pi\)
0.328566 + 0.944481i \(0.393435\pi\)
\(740\) 132.764i 0.179411i
\(741\) 0 0
\(742\) 842.487 1.13543
\(743\) −9.63963 9.63963i −0.0129739 0.0129739i 0.700590 0.713564i \(-0.252920\pi\)
−0.713564 + 0.700590i \(0.752920\pi\)
\(744\) −153.597 −0.206448
\(745\) 101.969i 0.136871i
\(746\) −219.606 219.606i −0.294378 0.294378i
\(747\) 333.100 + 333.100i 0.445917 + 0.445917i
\(748\) −275.138 + 275.138i −0.367832 + 0.367832i
\(749\) −700.070 + 700.070i −0.934673 + 0.934673i
\(750\) −205.492 −0.273990
\(751\) 160.077i 0.213152i −0.994305 0.106576i \(-0.966011\pi\)
0.994305 0.106576i \(-0.0339887\pi\)
\(752\) −28.0770 + 28.0770i −0.0373364 + 0.0373364i
\(753\) 361.492i 0.480069i
\(754\) 0 0
\(755\) 139.572 0.184864
\(756\) −70.9808 70.9808i −0.0938899 0.0938899i
\(757\) −1467.38 −1.93842 −0.969210 0.246234i \(-0.920807\pi\)
−0.969210 + 0.246234i \(0.920807\pi\)
\(758\) 274.214i 0.361760i
\(759\) 52.1615 + 52.1615i 0.0687239 + 0.0687239i
\(760\) −118.641 118.641i −0.156107 0.156107i
\(761\) 129.367 129.367i 0.169995 0.169995i −0.616982 0.786977i \(-0.711645\pi\)
0.786977 + 0.616982i \(0.211645\pi\)
\(762\) −410.229 + 410.229i −0.538359 + 0.538359i
\(763\) −658.275 −0.862746
\(764\) 394.641i 0.516546i
\(765\) −72.0000 + 72.0000i −0.0941176 + 0.0941176i
\(766\) 275.503i 0.359664i
\(767\) 0 0
\(768\) 27.7128 0.0360844
\(769\) 961.315 + 961.315i 1.25008 + 1.25008i 0.955681 + 0.294404i \(0.0951211\pi\)
0.294404 + 0.955681i \(0.404879\pi\)
\(770\) −251.769 −0.326973
\(771\) 128.554i 0.166736i
\(772\) 29.6987 + 29.6987i 0.0384699 + 0.0384699i
\(773\) −692.232 692.232i −0.895513 0.895513i 0.0995220 0.995035i \(-0.468269\pi\)
−0.995035 + 0.0995220i \(0.968269\pi\)
\(774\) −46.0192 + 46.0192i −0.0594564 + 0.0594564i
\(775\) 482.962 482.962i 0.623177 0.623177i
\(776\) 439.951 0.566947
\(777\) 619.352i 0.797107i
\(778\) 17.7513 17.7513i 0.0228166 0.0228166i
\(779\) 853.759i 1.09597i
\(780\) 0 0
\(781\) 1105.49 1.41548
\(782\) −78.4308 78.4308i −0.100295 0.100295i
\(783\) −90.0000 −0.114943
\(784\) 177.205i 0.226027i
\(785\) −70.2834 70.2834i −0.0895330 0.0895330i
\(786\) −363.100 363.100i −0.461959 0.461959i
\(787\) 83.4533 83.4533i 0.106040 0.106040i −0.652096 0.758136i \(-0.726110\pi\)
0.758136 + 0.652096i \(0.226110\pi\)
\(788\) −213.913 + 213.913i −0.271463 + 0.271463i
\(789\) −42.1999 −0.0534853
\(790\) 30.1154i 0.0381208i
\(791\) 308.827 308.827i 0.390426 0.390426i
\(792\) 87.2154i 0.110120i
\(793\) 0 0
\(794\) −477.286 −0.601116
\(795\) 135.446 + 135.446i 0.170373 + 0.170373i
\(796\) 44.4308 0.0558176
\(797\) 567.118i 0.711566i −0.934569 0.355783i \(-0.884214\pi\)
0.934569 0.355783i \(-0.115786\pi\)
\(798\) 553.468 + 553.468i 0.693569 + 0.693569i
\(799\) −132.862 132.862i −0.166285 0.166285i
\(800\) −87.1384 + 87.1384i −0.108923 + 0.108923i
\(801\) −355.923 + 355.923i −0.444348 + 0.444348i
\(802\) 726.831 0.906273
\(803\) 979.990i 1.22041i
\(804\) 96.0910 96.0910i 0.119516 0.119516i
\(805\) 71.7691i 0.0891542i
\(806\) 0 0
\(807\) −304.392 −0.377190
\(808\) 373.626 + 373.626i 0.462408 + 0.462408i
\(809\) 87.4462 0.108092 0.0540459 0.998538i \(-0.482788\pi\)
0.0540459 + 0.998538i \(0.482788\pi\)
\(810\) 22.8231i 0.0281766i
\(811\) −519.193 519.193i −0.640189 0.640189i 0.310413 0.950602i \(-0.399533\pi\)
−0.950602 + 0.310413i \(0.899533\pi\)
\(812\) 236.603 + 236.603i 0.291382 + 0.291382i
\(813\) −341.293 + 341.293i −0.419794 + 0.419794i
\(814\) −380.505 + 380.505i −0.467451 + 0.467451i
\(815\) 366.826 0.450093
\(816\) 131.138i 0.160709i
\(817\) 358.832 358.832i 0.439207 0.439207i
\(818\) 824.053i 1.00740i
\(819\) 0 0
\(820\) −92.5538 −0.112870
\(821\) 406.750 + 406.750i 0.495432 + 0.495432i 0.910013 0.414580i \(-0.136072\pi\)
−0.414580 + 0.910013i \(0.636072\pi\)
\(822\) 278.985 0.339397
\(823\) 329.169i 0.399963i 0.979800 + 0.199981i \(0.0640882\pi\)
−0.979800 + 0.199981i \(0.935912\pi\)
\(824\) −166.526 166.526i −0.202094 0.202094i
\(825\) 274.235 + 274.235i 0.332406 + 0.332406i
\(826\) 638.372 638.372i 0.772847 0.772847i
\(827\) 514.410 514.410i 0.622020 0.622020i −0.324028 0.946048i \(-0.605037\pi\)
0.946048 + 0.324028i \(0.105037\pi\)
\(828\) 24.8616 0.0300260
\(829\) 943.092i 1.13763i −0.822467 0.568813i \(-0.807403\pi\)
0.822467 0.568813i \(-0.192597\pi\)
\(830\) 281.569 281.569i 0.339240 0.339240i
\(831\) 774.200i 0.931649i
\(832\) 0 0
\(833\) −838.543 −1.00665
\(834\) −165.771 165.771i −0.198766 0.198766i
\(835\) −290.185 −0.347527
\(836\) 680.056i 0.813465i
\(837\) 115.198 + 115.198i 0.137632 + 0.137632i
\(838\) −782.354 782.354i −0.933596 0.933596i
\(839\) −556.070 + 556.070i −0.662778 + 0.662778i −0.956034 0.293256i \(-0.905261\pi\)
0.293256 + 0.956034i \(0.405261\pi\)
\(840\) −60.0000 + 60.0000i −0.0714286 + 0.0714286i
\(841\) −541.000 −0.643282
\(842\) 54.0704i 0.0642166i
\(843\) −9.60392 + 9.60392i −0.0113926 + 0.0113926i
\(844\) 128.403i 0.152136i
\(845\) 0 0
\(846\) 42.1154 0.0497818
\(847\) −104.869 104.869i −0.123812 0.123812i
\(848\) 246.697 0.290917
\(849\) 28.8320i 0.0339600i
\(850\) −412.344 412.344i −0.485110 0.485110i
\(851\) −108.466 108.466i −0.127458 0.127458i
\(852\) 263.454 263.454i 0.309218 0.309218i
\(853\) 472.527 472.527i 0.553960 0.553960i −0.373622 0.927581i \(-0.621884\pi\)
0.927581 + 0.373622i \(0.121884\pi\)
\(854\) 99.7372 0.116788
\(855\) 177.962i 0.208142i
\(856\) −204.995 + 204.995i −0.239480 + 0.239480i
\(857\) 436.543i 0.509386i −0.967022 0.254693i \(-0.918026\pi\)
0.967022 0.254693i \(-0.0819743\pi\)
\(858\) 0 0
\(859\) −1238.40 −1.44167 −0.720837 0.693104i \(-0.756243\pi\)
−0.720837 + 0.693104i \(0.756243\pi\)
\(860\) 38.9000 + 38.9000i 0.0452326 + 0.0452326i
\(861\) 431.769 0.501474
\(862\) 890.620i 1.03320i
\(863\) 729.373 + 729.373i 0.845160 + 0.845160i 0.989525 0.144365i \(-0.0461138\pi\)
−0.144365 + 0.989525i \(0.546114\pi\)
\(864\) −20.7846 20.7846i −0.0240563 0.0240563i
\(865\) −340.392 + 340.392i −0.393517 + 0.393517i
\(866\) −237.785 + 237.785i −0.274578 + 0.274578i
\(867\) −119.991 −0.138398
\(868\) 605.692i 0.697802i
\(869\) −86.3116 + 86.3116i −0.0993229 + 0.0993229i
\(870\) 76.0770i 0.0874448i
\(871\) 0 0
\(872\) −192.756 −0.221051
\(873\) −329.963 329.963i −0.377965 0.377965i
\(874\) −193.856 −0.221804
\(875\) 810.333i 0.926095i
\(876\) −233.545 233.545i −0.266604 0.266604i
\(877\) −962.069 962.069i −1.09700 1.09700i −0.994760 0.102240i \(-0.967399\pi\)
−0.102240 0.994760i \(-0.532601\pi\)
\(878\) −689.463 + 689.463i −0.785265 + 0.785265i
\(879\) 229.450 229.450i 0.261035 0.261035i
\(880\) −73.7231 −0.0837763
\(881\) 1563.66i 1.77487i 0.460929 + 0.887437i \(0.347516\pi\)
−0.460929 + 0.887437i \(0.652484\pi\)
\(882\) 132.904 132.904i 0.150685 0.150685i
\(883\) 452.723i 0.512710i −0.966583 0.256355i \(-0.917478\pi\)
0.966583 0.256355i \(-0.0825216\pi\)
\(884\) 0 0
\(885\) 205.261 0.231934
\(886\) −304.028 304.028i −0.343147 0.343147i
\(887\) 910.939 1.02699 0.513494 0.858093i \(-0.328351\pi\)
0.513494 + 0.858093i \(0.328351\pi\)
\(888\) 181.359i 0.204233i
\(889\) −1617.69 1617.69i −1.81967 1.81967i
\(890\) 300.862 + 300.862i 0.338047 + 0.338047i
\(891\) −65.4115 + 65.4115i −0.0734136 + 0.0734136i
\(892\) 309.061 309.061i 0.346481 0.346481i
\(893\) −328.392 −0.367741
\(894\) 139.292i 0.155808i
\(895\) −362.354 + 362.354i −0.404865 + 0.404865i
\(896\) 109.282i 0.121967i
\(897\) 0 0
\(898\) −401.387 −0.446979
\(899\) −383.993 383.993i −0.427134 0.427134i
\(900\) 130.708 0.145231
\(901\) 1167.38i 1.29565i
\(902\) 265.261 + 265.261i 0.294081 + 0.294081i
\(903\) −181.471 181.471i −0.200965 0.200965i
\(904\) 90.4308 90.4308i 0.100034 0.100034i
\(905\) 225.246 225.246i 0.248891 0.248891i
\(906\) −190.659 −0.210440
\(907\) 445.138i 0.490781i 0.969424 + 0.245391i \(0.0789162\pi\)
−0.969424 + 0.245391i \(0.921084\pi\)
\(908\) 91.4256 91.4256i 0.100689 0.100689i
\(909\) 560.438i 0.616544i
\(910\) 0 0
\(911\) 717.233 0.787303 0.393652 0.919260i \(-0.371212\pi\)
0.393652 + 0.919260i \(0.371212\pi\)
\(912\) 162.067 + 162.067i 0.177705 + 0.177705i
\(913\) −1613.97 −1.76776
\(914\) 203.037i 0.222141i
\(915\) 16.0347 + 16.0347i 0.0175243 + 0.0175243i
\(916\) 117.369 + 117.369i 0.128132 + 0.128132i
\(917\) 1431.84 1431.84i 1.56144 1.56144i
\(918\) 98.3538 98.3538i 0.107139 0.107139i
\(919\) 743.138 0.808638 0.404319 0.914618i \(-0.367509\pi\)
0.404319 + 0.914618i \(0.367509\pi\)
\(920\) 21.0155i 0.0228429i
\(921\) 649.638 649.638i 0.705361 0.705361i
\(922\) 832.246i 0.902653i
\(923\) 0 0
\(924\) 343.923 0.372211
\(925\) −570.254 570.254i −0.616491 0.616491i
\(926\) −339.199 −0.366305
\(927\) 249.788i 0.269459i
\(928\) 69.2820 + 69.2820i 0.0746574 + 0.0746574i
\(929\) −1042.54 1042.54i −1.12222 1.12222i −0.991407 0.130814i \(-0.958241\pi\)
−0.130814 0.991407i \(-0.541759\pi\)
\(930\) 97.3768 97.3768i 0.104706 0.104706i
\(931\) −1036.31 + 1036.31i −1.11311 + 1.11311i
\(932\) −761.338 −0.816887
\(933\) 513.100i 0.549946i
\(934\) −732.649 + 732.649i −0.784420 + 0.784420i
\(935\) 348.862i 0.373114i
\(936\) 0 0
\(937\) −172.477 −0.184073 −0.0920367 0.995756i \(-0.529338\pi\)
−0.0920367 + 0.995756i \(0.529338\pi\)
\(938\) 378.923 + 378.923i 0.403969 + 0.403969i
\(939\) 204.877 0.218186
\(940\) 35.6001i 0.0378725i
\(941\) 145.055 + 145.055i 0.154150 + 0.154150i 0.779969 0.625819i \(-0.215235\pi\)
−0.625819 + 0.779969i \(0.715235\pi\)
\(942\) 96.0089 + 96.0089i 0.101920 + 0.101920i
\(943\) −75.6152 + 75.6152i −0.0801858 + 0.0801858i
\(944\) 186.928 186.928i 0.198017 0.198017i
\(945\) 90.0000 0.0952381
\(946\) 222.977i 0.235705i
\(947\) 487.474 487.474i 0.514757 0.514757i −0.401224 0.915980i \(-0.631415\pi\)
0.915980 + 0.401224i \(0.131415\pi\)
\(948\) 41.1384i 0.0433950i
\(949\) 0 0
\(950\) −1019.18 −1.07283
\(951\) −486.200 486.200i −0.511251 0.511251i
\(952\) −517.128 −0.543202
\(953\) 1206.62i 1.26613i 0.774100 + 0.633063i \(0.218203\pi\)
−0.774100 + 0.633063i \(0.781797\pi\)
\(954\) −185.023 185.023i −0.193944 0.193944i
\(955\) −250.192 250.192i −0.261982 0.261982i
\(956\) 334.277 334.277i 0.349662 0.349662i
\(957\) 218.038 218.038i 0.227835 0.227835i
\(958\) 522.928 0.545854
\(959\) 1100.14i 1.14718i
\(960\) −17.5692 + 17.5692i −0.0183013 + 0.0183013i
\(961\) 22.0065i 0.0228996i
\(962\) 0 0
\(963\) 307.492 0.319307
\(964\) 4.35383 + 4.35383i 0.00451642 + 0.00451642i
\(965\) −37.6565 −0.0390223
\(966\) 98.0385i 0.101489i
\(967\) −169.831 169.831i −0.175626 0.175626i 0.613820 0.789446i \(-0.289632\pi\)
−0.789446 + 0.613820i \(0.789632\pi\)
\(968\) −30.7077 30.7077i −0.0317228 0.0317228i
\(969\) −766.908 + 766.908i −0.791442 + 0.791442i
\(970\) −278.918 + 278.918i −0.287544 + 0.287544i
\(971\) 747.700 0.770031 0.385015 0.922910i \(-0.374196\pi\)
0.385015 + 0.922910i \(0.374196\pi\)
\(972\) 31.1769i 0.0320750i
\(973\) 653.695 653.695i 0.671835 0.671835i
\(974\) 274.000i 0.281314i
\(975\) 0 0
\(976\) 29.2051 0.0299232
\(977\) −152.967 152.967i −0.156568 0.156568i 0.624476 0.781044i \(-0.285313\pi\)
−0.781044 + 0.624476i \(0.785313\pi\)
\(978\) −501.093 −0.512365
\(979\) 1724.55i 1.76155i
\(980\) −112.344 112.344i −0.114636 0.114636i
\(981\) 144.567 + 144.567i 0.147367 + 0.147367i
\(982\) 36.9282 36.9282i 0.0376051 0.0376051i
\(983\) 1367.93 1367.93i 1.39158 1.39158i 0.569801 0.821783i \(-0.307020\pi\)
0.821783 0.569801i \(-0.192980\pi\)
\(984\) 126.431 0.128487
\(985\) 271.230i 0.275361i
\(986\) −327.846 + 327.846i −0.332501 + 0.332501i
\(987\) 166.077i 0.168264i
\(988\) 0 0
\(989\) 63.5617 0.0642686
\(990\) 55.2923 + 55.2923i 0.0558509 + 0.0558509i
\(991\) −1871.26 −1.88826 −0.944128 0.329579i \(-0.893093\pi\)
−0.944128 + 0.329579i \(0.893093\pi\)
\(992\) 177.359i 0.178789i
\(993\) 174.285 + 174.285i 0.175514 + 0.175514i
\(994\) 1038.90 + 1038.90i 1.04517 + 1.04517i
\(995\) −28.1680 + 28.1680i −0.0283095 + 0.0283095i
\(996\) −384.631 + 384.631i −0.386175 + 0.386175i
\(997\) 1537.17 1.54179 0.770897 0.636960i \(-0.219808\pi\)
0.770897 + 0.636960i \(0.219808\pi\)
\(998\) 925.538i 0.927393i
\(999\) 136.019 136.019i 0.136155 0.136155i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.3.f.e.775.2 4
13.2 odd 12 78.3.l.a.19.1 4
13.5 odd 4 inner 1014.3.f.e.577.2 4
13.8 odd 4 1014.3.f.d.577.2 4
13.9 even 3 78.3.l.a.37.1 yes 4
13.12 even 2 1014.3.f.d.775.2 4
39.2 even 12 234.3.bb.c.19.1 4
39.35 odd 6 234.3.bb.c.37.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.3.l.a.19.1 4 13.2 odd 12
78.3.l.a.37.1 yes 4 13.9 even 3
234.3.bb.c.19.1 4 39.2 even 12
234.3.bb.c.37.1 4 39.35 odd 6
1014.3.f.d.577.2 4 13.8 odd 4
1014.3.f.d.775.2 4 13.12 even 2
1014.3.f.e.577.2 4 13.5 odd 4 inner
1014.3.f.e.775.2 4 1.1 even 1 trivial