Properties

Label 1014.3.f.a.775.2
Level $1014$
Weight $3$
Character 1014.775
Analytic conductor $27.629$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,3,Mod(577,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.577");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1014.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.6294988061\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 775.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1014.775
Dual form 1014.3.f.a.577.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +1.73205 q^{3} +2.00000i q^{4} +(-1.26795 - 1.26795i) q^{5} +(-1.73205 - 1.73205i) q^{6} +(-0.732051 + 0.732051i) q^{7} +(2.00000 - 2.00000i) q^{8} +3.00000 q^{9} +2.53590i q^{10} +(1.73205 - 1.73205i) q^{11} +3.46410i q^{12} +1.46410 q^{14} +(-2.19615 - 2.19615i) q^{15} -4.00000 q^{16} +5.32051i q^{17} +(-3.00000 - 3.00000i) q^{18} +(14.7321 + 14.7321i) q^{19} +(2.53590 - 2.53590i) q^{20} +(-1.26795 + 1.26795i) q^{21} -3.46410 q^{22} +5.32051i q^{23} +(3.46410 - 3.46410i) q^{24} -21.7846i q^{25} +5.19615 q^{27} +(-1.46410 - 1.46410i) q^{28} +4.14359 q^{29} +4.39230i q^{30} +(24.9808 + 24.9808i) q^{31} +(4.00000 + 4.00000i) q^{32} +(3.00000 - 3.00000i) q^{33} +(5.32051 - 5.32051i) q^{34} +1.85641 q^{35} +6.00000i q^{36} +(3.14359 - 3.14359i) q^{37} -29.4641i q^{38} -5.07180 q^{40} +(-44.4449 - 44.4449i) q^{41} +2.53590 q^{42} +37.1769i q^{43} +(3.46410 + 3.46410i) q^{44} +(-3.80385 - 3.80385i) q^{45} +(5.32051 - 5.32051i) q^{46} +(30.8038 - 30.8038i) q^{47} -6.92820 q^{48} +47.9282i q^{49} +(-21.7846 + 21.7846i) q^{50} +9.21539i q^{51} +57.7128 q^{53} +(-5.19615 - 5.19615i) q^{54} -4.39230 q^{55} +2.92820i q^{56} +(25.5167 + 25.5167i) q^{57} +(-4.14359 - 4.14359i) q^{58} +(66.6218 - 66.6218i) q^{59} +(4.39230 - 4.39230i) q^{60} +103.426 q^{61} -49.9615i q^{62} +(-2.19615 + 2.19615i) q^{63} -8.00000i q^{64} -6.00000 q^{66} +(-46.6936 - 46.6936i) q^{67} -10.6410 q^{68} +9.21539i q^{69} +(-1.85641 - 1.85641i) q^{70} +(26.9090 + 26.9090i) q^{71} +(6.00000 - 6.00000i) q^{72} +(-5.67949 + 5.67949i) q^{73} -6.28719 q^{74} -37.7321i q^{75} +(-29.4641 + 29.4641i) q^{76} +2.53590i q^{77} +4.21024 q^{79} +(5.07180 + 5.07180i) q^{80} +9.00000 q^{81} +88.8897i q^{82} +(109.799 + 109.799i) q^{83} +(-2.53590 - 2.53590i) q^{84} +(6.74613 - 6.74613i) q^{85} +(37.1769 - 37.1769i) q^{86} +7.17691 q^{87} -6.92820i q^{88} +(19.5167 - 19.5167i) q^{89} +7.60770i q^{90} -10.6410 q^{92} +(43.2679 + 43.2679i) q^{93} -61.6077 q^{94} -37.3590i q^{95} +(6.92820 + 6.92820i) q^{96} +(-4.03332 - 4.03332i) q^{97} +(47.9282 - 47.9282i) q^{98} +(5.19615 - 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 12 q^{5} + 4 q^{7} + 8 q^{8} + 12 q^{9} - 8 q^{14} + 12 q^{15} - 16 q^{16} - 12 q^{18} + 52 q^{19} + 24 q^{20} - 12 q^{21} + 8 q^{28} + 72 q^{29} - 4 q^{31} + 16 q^{32} + 12 q^{33} - 48 q^{34}+ \cdots + 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) 1.73205 0.577350
\(4\) 2.00000i 0.500000i
\(5\) −1.26795 1.26795i −0.253590 0.253590i 0.568851 0.822441i \(-0.307388\pi\)
−0.822441 + 0.568851i \(0.807388\pi\)
\(6\) −1.73205 1.73205i −0.288675 0.288675i
\(7\) −0.732051 + 0.732051i −0.104579 + 0.104579i −0.757460 0.652881i \(-0.773560\pi\)
0.652881 + 0.757460i \(0.273560\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 3.00000 0.333333
\(10\) 2.53590i 0.253590i
\(11\) 1.73205 1.73205i 0.157459 0.157459i −0.623981 0.781440i \(-0.714486\pi\)
0.781440 + 0.623981i \(0.214486\pi\)
\(12\) 3.46410i 0.288675i
\(13\) 0 0
\(14\) 1.46410 0.104579
\(15\) −2.19615 2.19615i −0.146410 0.146410i
\(16\) −4.00000 −0.250000
\(17\) 5.32051i 0.312971i 0.987680 + 0.156486i \(0.0500165\pi\)
−0.987680 + 0.156486i \(0.949984\pi\)
\(18\) −3.00000 3.00000i −0.166667 0.166667i
\(19\) 14.7321 + 14.7321i 0.775371 + 0.775371i 0.979040 0.203669i \(-0.0652866\pi\)
−0.203669 + 0.979040i \(0.565287\pi\)
\(20\) 2.53590 2.53590i 0.126795 0.126795i
\(21\) −1.26795 + 1.26795i −0.0603785 + 0.0603785i
\(22\) −3.46410 −0.157459
\(23\) 5.32051i 0.231326i 0.993288 + 0.115663i \(0.0368993\pi\)
−0.993288 + 0.115663i \(0.963101\pi\)
\(24\) 3.46410 3.46410i 0.144338 0.144338i
\(25\) 21.7846i 0.871384i
\(26\) 0 0
\(27\) 5.19615 0.192450
\(28\) −1.46410 1.46410i −0.0522893 0.0522893i
\(29\) 4.14359 0.142883 0.0714413 0.997445i \(-0.477240\pi\)
0.0714413 + 0.997445i \(0.477240\pi\)
\(30\) 4.39230i 0.146410i
\(31\) 24.9808 + 24.9808i 0.805831 + 0.805831i 0.984000 0.178169i \(-0.0570173\pi\)
−0.178169 + 0.984000i \(0.557017\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) 3.00000 3.00000i 0.0909091 0.0909091i
\(34\) 5.32051 5.32051i 0.156486 0.156486i
\(35\) 1.85641 0.0530402
\(36\) 6.00000i 0.166667i
\(37\) 3.14359 3.14359i 0.0849620 0.0849620i −0.663349 0.748311i \(-0.730865\pi\)
0.748311 + 0.663349i \(0.230865\pi\)
\(38\) 29.4641i 0.775371i
\(39\) 0 0
\(40\) −5.07180 −0.126795
\(41\) −44.4449 44.4449i −1.08402 1.08402i −0.996130 0.0878910i \(-0.971987\pi\)
−0.0878910 0.996130i \(-0.528013\pi\)
\(42\) 2.53590 0.0603785
\(43\) 37.1769i 0.864579i 0.901735 + 0.432290i \(0.142294\pi\)
−0.901735 + 0.432290i \(0.857706\pi\)
\(44\) 3.46410 + 3.46410i 0.0787296 + 0.0787296i
\(45\) −3.80385 3.80385i −0.0845299 0.0845299i
\(46\) 5.32051 5.32051i 0.115663 0.115663i
\(47\) 30.8038 30.8038i 0.655401 0.655401i −0.298887 0.954288i \(-0.596615\pi\)
0.954288 + 0.298887i \(0.0966155\pi\)
\(48\) −6.92820 −0.144338
\(49\) 47.9282i 0.978127i
\(50\) −21.7846 + 21.7846i −0.435692 + 0.435692i
\(51\) 9.21539i 0.180694i
\(52\) 0 0
\(53\) 57.7128 1.08892 0.544460 0.838786i \(-0.316734\pi\)
0.544460 + 0.838786i \(0.316734\pi\)
\(54\) −5.19615 5.19615i −0.0962250 0.0962250i
\(55\) −4.39230 −0.0798601
\(56\) 2.92820i 0.0522893i
\(57\) 25.5167 + 25.5167i 0.447661 + 0.447661i
\(58\) −4.14359 4.14359i −0.0714413 0.0714413i
\(59\) 66.6218 66.6218i 1.12918 1.12918i 0.138872 0.990310i \(-0.455652\pi\)
0.990310 0.138872i \(-0.0443478\pi\)
\(60\) 4.39230 4.39230i 0.0732051 0.0732051i
\(61\) 103.426 1.69550 0.847751 0.530394i \(-0.177956\pi\)
0.847751 + 0.530394i \(0.177956\pi\)
\(62\) 49.9615i 0.805831i
\(63\) −2.19615 + 2.19615i −0.0348596 + 0.0348596i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −6.00000 −0.0909091
\(67\) −46.6936 46.6936i −0.696919 0.696919i 0.266826 0.963745i \(-0.414025\pi\)
−0.963745 + 0.266826i \(0.914025\pi\)
\(68\) −10.6410 −0.156486
\(69\) 9.21539i 0.133556i
\(70\) −1.85641 1.85641i −0.0265201 0.0265201i
\(71\) 26.9090 + 26.9090i 0.379000 + 0.379000i 0.870741 0.491742i \(-0.163640\pi\)
−0.491742 + 0.870741i \(0.663640\pi\)
\(72\) 6.00000 6.00000i 0.0833333 0.0833333i
\(73\) −5.67949 + 5.67949i −0.0778013 + 0.0778013i −0.744937 0.667135i \(-0.767520\pi\)
0.667135 + 0.744937i \(0.267520\pi\)
\(74\) −6.28719 −0.0849620
\(75\) 37.7321i 0.503094i
\(76\) −29.4641 + 29.4641i −0.387686 + 0.387686i
\(77\) 2.53590i 0.0329337i
\(78\) 0 0
\(79\) 4.21024 0.0532941 0.0266471 0.999645i \(-0.491517\pi\)
0.0266471 + 0.999645i \(0.491517\pi\)
\(80\) 5.07180 + 5.07180i 0.0633975 + 0.0633975i
\(81\) 9.00000 0.111111
\(82\) 88.8897i 1.08402i
\(83\) 109.799 + 109.799i 1.32288 + 1.32288i 0.911438 + 0.411438i \(0.134973\pi\)
0.411438 + 0.911438i \(0.365027\pi\)
\(84\) −2.53590 2.53590i −0.0301893 0.0301893i
\(85\) 6.74613 6.74613i 0.0793663 0.0793663i
\(86\) 37.1769 37.1769i 0.432290 0.432290i
\(87\) 7.17691 0.0824933
\(88\) 6.92820i 0.0787296i
\(89\) 19.5167 19.5167i 0.219288 0.219288i −0.588910 0.808198i \(-0.700443\pi\)
0.808198 + 0.588910i \(0.200443\pi\)
\(90\) 7.60770i 0.0845299i
\(91\) 0 0
\(92\) −10.6410 −0.115663
\(93\) 43.2679 + 43.2679i 0.465247 + 0.465247i
\(94\) −61.6077 −0.655401
\(95\) 37.3590i 0.393252i
\(96\) 6.92820 + 6.92820i 0.0721688 + 0.0721688i
\(97\) −4.03332 4.03332i −0.0415806 0.0415806i 0.686011 0.727591i \(-0.259360\pi\)
−0.727591 + 0.686011i \(0.759360\pi\)
\(98\) 47.9282 47.9282i 0.489063 0.489063i
\(99\) 5.19615 5.19615i 0.0524864 0.0524864i
\(100\) 43.5692 0.435692
\(101\) 111.464i 1.10360i −0.833975 0.551802i \(-0.813940\pi\)
0.833975 0.551802i \(-0.186060\pi\)
\(102\) 9.21539 9.21539i 0.0903470 0.0903470i
\(103\) 71.3205i 0.692432i −0.938155 0.346216i \(-0.887466\pi\)
0.938155 0.346216i \(-0.112534\pi\)
\(104\) 0 0
\(105\) 3.21539 0.0306228
\(106\) −57.7128 57.7128i −0.544460 0.544460i
\(107\) −116.536 −1.08912 −0.544560 0.838722i \(-0.683303\pi\)
−0.544560 + 0.838722i \(0.683303\pi\)
\(108\) 10.3923i 0.0962250i
\(109\) 109.315 + 109.315i 1.00289 + 1.00289i 0.999996 + 0.00289735i \(0.000922255\pi\)
0.00289735 + 0.999996i \(0.499078\pi\)
\(110\) 4.39230 + 4.39230i 0.0399300 + 0.0399300i
\(111\) 5.44486 5.44486i 0.0490528 0.0490528i
\(112\) 2.92820 2.92820i 0.0261447 0.0261447i
\(113\) 148.277 1.31218 0.656092 0.754681i \(-0.272208\pi\)
0.656092 + 0.754681i \(0.272208\pi\)
\(114\) 51.0333i 0.447661i
\(115\) 6.74613 6.74613i 0.0586620 0.0586620i
\(116\) 8.28719i 0.0714413i
\(117\) 0 0
\(118\) −133.244 −1.12918
\(119\) −3.89488 3.89488i −0.0327301 0.0327301i
\(120\) −8.78461 −0.0732051
\(121\) 115.000i 0.950413i
\(122\) −103.426 103.426i −0.847751 0.847751i
\(123\) −76.9808 76.9808i −0.625860 0.625860i
\(124\) −49.9615 + 49.9615i −0.402916 + 0.402916i
\(125\) −59.3205 + 59.3205i −0.474564 + 0.474564i
\(126\) 4.39230 0.0348596
\(127\) 70.0385i 0.551484i 0.961232 + 0.275742i \(0.0889236\pi\)
−0.961232 + 0.275742i \(0.911076\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) 64.3923i 0.499165i
\(130\) 0 0
\(131\) 238.890 1.82359 0.911793 0.410650i \(-0.134698\pi\)
0.911793 + 0.410650i \(0.134698\pi\)
\(132\) 6.00000 + 6.00000i 0.0454545 + 0.0454545i
\(133\) −21.5692 −0.162175
\(134\) 93.3872i 0.696919i
\(135\) −6.58846 6.58846i −0.0488034 0.0488034i
\(136\) 10.6410 + 10.6410i 0.0782428 + 0.0782428i
\(137\) 91.9474 91.9474i 0.671149 0.671149i −0.286832 0.957981i \(-0.592602\pi\)
0.957981 + 0.286832i \(0.0926021\pi\)
\(138\) 9.21539 9.21539i 0.0667782 0.0667782i
\(139\) 139.138 1.00100 0.500498 0.865738i \(-0.333150\pi\)
0.500498 + 0.865738i \(0.333150\pi\)
\(140\) 3.71281i 0.0265201i
\(141\) 53.3538 53.3538i 0.378396 0.378396i
\(142\) 53.8179i 0.379000i
\(143\) 0 0
\(144\) −12.0000 −0.0833333
\(145\) −5.25387 5.25387i −0.0362336 0.0362336i
\(146\) 11.3590 0.0778013
\(147\) 83.0141i 0.564722i
\(148\) 6.28719 + 6.28719i 0.0424810 + 0.0424810i
\(149\) −126.224 126.224i −0.847143 0.847143i 0.142633 0.989776i \(-0.454443\pi\)
−0.989776 + 0.142633i \(0.954443\pi\)
\(150\) −37.7321 + 37.7321i −0.251547 + 0.251547i
\(151\) −124.406 + 124.406i −0.823883 + 0.823883i −0.986663 0.162779i \(-0.947954\pi\)
0.162779 + 0.986663i \(0.447954\pi\)
\(152\) 58.9282 0.387686
\(153\) 15.9615i 0.104324i
\(154\) 2.53590 2.53590i 0.0164669 0.0164669i
\(155\) 63.3487i 0.408701i
\(156\) 0 0
\(157\) −268.785 −1.71200 −0.856002 0.516973i \(-0.827059\pi\)
−0.856002 + 0.516973i \(0.827059\pi\)
\(158\) −4.21024 4.21024i −0.0266471 0.0266471i
\(159\) 99.9615 0.628689
\(160\) 10.1436i 0.0633975i
\(161\) −3.89488 3.89488i −0.0241918 0.0241918i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) 46.4449 46.4449i 0.284938 0.284938i −0.550137 0.835075i \(-0.685424\pi\)
0.835075 + 0.550137i \(0.185424\pi\)
\(164\) 88.8897 88.8897i 0.542011 0.542011i
\(165\) −7.60770 −0.0461072
\(166\) 219.597i 1.32288i
\(167\) 119.512 119.512i 0.715638 0.715638i −0.252071 0.967709i \(-0.581112\pi\)
0.967709 + 0.252071i \(0.0811116\pi\)
\(168\) 5.07180i 0.0301893i
\(169\) 0 0
\(170\) −13.4923 −0.0793663
\(171\) 44.1962 + 44.1962i 0.258457 + 0.258457i
\(172\) −74.3538 −0.432290
\(173\) 242.603i 1.40233i −0.713001 0.701163i \(-0.752664\pi\)
0.713001 0.701163i \(-0.247336\pi\)
\(174\) −7.17691 7.17691i −0.0412466 0.0412466i
\(175\) 15.9474 + 15.9474i 0.0911282 + 0.0911282i
\(176\) −6.92820 + 6.92820i −0.0393648 + 0.0393648i
\(177\) 115.392 115.392i 0.651934 0.651934i
\(178\) −39.0333 −0.219288
\(179\) 26.7180i 0.149262i 0.997211 + 0.0746312i \(0.0237780\pi\)
−0.997211 + 0.0746312i \(0.976222\pi\)
\(180\) 7.60770 7.60770i 0.0422650 0.0422650i
\(181\) 256.144i 1.41516i −0.706634 0.707579i \(-0.749787\pi\)
0.706634 0.707579i \(-0.250213\pi\)
\(182\) 0 0
\(183\) 179.138 0.978899
\(184\) 10.6410 + 10.6410i 0.0578316 + 0.0578316i
\(185\) −7.97183 −0.0430910
\(186\) 86.5359i 0.465247i
\(187\) 9.21539 + 9.21539i 0.0492802 + 0.0492802i
\(188\) 61.6077 + 61.6077i 0.327701 + 0.327701i
\(189\) −3.80385 + 3.80385i −0.0201262 + 0.0201262i
\(190\) −37.3590 + 37.3590i −0.196626 + 0.196626i
\(191\) −129.282 −0.676869 −0.338435 0.940990i \(-0.609897\pi\)
−0.338435 + 0.940990i \(0.609897\pi\)
\(192\) 13.8564i 0.0721688i
\(193\) 160.282 160.282i 0.830477 0.830477i −0.157105 0.987582i \(-0.550216\pi\)
0.987582 + 0.157105i \(0.0502161\pi\)
\(194\) 8.06664i 0.0415806i
\(195\) 0 0
\(196\) −95.8564 −0.489063
\(197\) 109.268 + 109.268i 0.554660 + 0.554660i 0.927782 0.373122i \(-0.121713\pi\)
−0.373122 + 0.927782i \(0.621713\pi\)
\(198\) −10.3923 −0.0524864
\(199\) 25.1000i 0.126130i −0.998009 0.0630652i \(-0.979912\pi\)
0.998009 0.0630652i \(-0.0200876\pi\)
\(200\) −43.5692 43.5692i −0.217846 0.217846i
\(201\) −80.8756 80.8756i −0.402366 0.402366i
\(202\) −111.464 + 111.464i −0.551802 + 0.551802i
\(203\) −3.03332 + 3.03332i −0.0149425 + 0.0149425i
\(204\) −18.4308 −0.0903470
\(205\) 112.708i 0.549793i
\(206\) −71.3205 + 71.3205i −0.346216 + 0.346216i
\(207\) 15.9615i 0.0771088i
\(208\) 0 0
\(209\) 51.0333 0.244179
\(210\) −3.21539 3.21539i −0.0153114 0.0153114i
\(211\) 206.718 0.979706 0.489853 0.871805i \(-0.337050\pi\)
0.489853 + 0.871805i \(0.337050\pi\)
\(212\) 115.426i 0.544460i
\(213\) 46.6077 + 46.6077i 0.218815 + 0.218815i
\(214\) 116.536 + 116.536i 0.544560 + 0.544560i
\(215\) 47.1384 47.1384i 0.219249 0.219249i
\(216\) 10.3923 10.3923i 0.0481125 0.0481125i
\(217\) −36.5744 −0.168546
\(218\) 218.631i 1.00289i
\(219\) −9.83717 + 9.83717i −0.0449186 + 0.0449186i
\(220\) 8.78461i 0.0399300i
\(221\) 0 0
\(222\) −10.8897 −0.0490528
\(223\) −139.412 139.412i −0.625164 0.625164i 0.321683 0.946847i \(-0.395751\pi\)
−0.946847 + 0.321683i \(0.895751\pi\)
\(224\) −5.85641 −0.0261447
\(225\) 65.3538i 0.290461i
\(226\) −148.277 148.277i −0.656092 0.656092i
\(227\) 97.3679 + 97.3679i 0.428934 + 0.428934i 0.888265 0.459331i \(-0.151911\pi\)
−0.459331 + 0.888265i \(0.651911\pi\)
\(228\) −51.0333 + 51.0333i −0.223830 + 0.223830i
\(229\) −204.177 + 204.177i −0.891602 + 0.891602i −0.994674 0.103072i \(-0.967133\pi\)
0.103072 + 0.994674i \(0.467133\pi\)
\(230\) −13.4923 −0.0586620
\(231\) 4.39230i 0.0190143i
\(232\) 8.28719 8.28719i 0.0357206 0.0357206i
\(233\) 231.962i 0.995543i 0.867308 + 0.497772i \(0.165848\pi\)
−0.867308 + 0.497772i \(0.834152\pi\)
\(234\) 0 0
\(235\) −78.1154 −0.332406
\(236\) 133.244 + 133.244i 0.564591 + 0.564591i
\(237\) 7.29234 0.0307694
\(238\) 7.78976i 0.0327301i
\(239\) −139.981 139.981i −0.585694 0.585694i 0.350769 0.936462i \(-0.385920\pi\)
−0.936462 + 0.350769i \(0.885920\pi\)
\(240\) 8.78461 + 8.78461i 0.0366025 + 0.0366025i
\(241\) −53.4589 + 53.4589i −0.221821 + 0.221821i −0.809265 0.587444i \(-0.800134\pi\)
0.587444 + 0.809265i \(0.300134\pi\)
\(242\) 115.000 115.000i 0.475207 0.475207i
\(243\) 15.5885 0.0641500
\(244\) 206.851i 0.847751i
\(245\) 60.7705 60.7705i 0.248043 0.248043i
\(246\) 153.962i 0.625860i
\(247\) 0 0
\(248\) 99.9230 0.402916
\(249\) 190.177 + 190.177i 0.763763 + 0.763763i
\(250\) 118.641 0.474564
\(251\) 421.377i 1.67879i −0.543520 0.839396i \(-0.682909\pi\)
0.543520 0.839396i \(-0.317091\pi\)
\(252\) −4.39230 4.39230i −0.0174298 0.0174298i
\(253\) 9.21539 + 9.21539i 0.0364245 + 0.0364245i
\(254\) 70.0385 70.0385i 0.275742 0.275742i
\(255\) 11.6846 11.6846i 0.0458221 0.0458221i
\(256\) 16.0000 0.0625000
\(257\) 249.664i 0.971455i 0.874110 + 0.485728i \(0.161445\pi\)
−0.874110 + 0.485728i \(0.838555\pi\)
\(258\) 64.3923 64.3923i 0.249583 0.249583i
\(259\) 4.60254i 0.0177704i
\(260\) 0 0
\(261\) 12.4308 0.0476275
\(262\) −238.890 238.890i −0.911793 0.911793i
\(263\) −94.8897 −0.360797 −0.180399 0.983594i \(-0.557739\pi\)
−0.180399 + 0.983594i \(0.557739\pi\)
\(264\) 12.0000i 0.0454545i
\(265\) −73.1769 73.1769i −0.276139 0.276139i
\(266\) 21.5692 + 21.5692i 0.0810873 + 0.0810873i
\(267\) 33.8038 33.8038i 0.126606 0.126606i
\(268\) 93.3872 93.3872i 0.348460 0.348460i
\(269\) −208.774 −0.776113 −0.388056 0.921636i \(-0.626853\pi\)
−0.388056 + 0.921636i \(0.626853\pi\)
\(270\) 13.1769i 0.0488034i
\(271\) −381.047 + 381.047i −1.40608 + 1.40608i −0.627307 + 0.778772i \(0.715843\pi\)
−0.778772 + 0.627307i \(0.784157\pi\)
\(272\) 21.2820i 0.0782428i
\(273\) 0 0
\(274\) −183.895 −0.671149
\(275\) −37.7321 37.7321i −0.137207 0.137207i
\(276\) −18.4308 −0.0667782
\(277\) 68.7846i 0.248320i 0.992262 + 0.124160i \(0.0396236\pi\)
−0.992262 + 0.124160i \(0.960376\pi\)
\(278\) −139.138 139.138i −0.500498 0.500498i
\(279\) 74.9423 + 74.9423i 0.268610 + 0.268610i
\(280\) 3.71281 3.71281i 0.0132600 0.0132600i
\(281\) −69.6218 + 69.6218i −0.247764 + 0.247764i −0.820053 0.572288i \(-0.806056\pi\)
0.572288 + 0.820053i \(0.306056\pi\)
\(282\) −106.708 −0.378396
\(283\) 425.808i 1.50462i 0.658809 + 0.752310i \(0.271061\pi\)
−0.658809 + 0.752310i \(0.728939\pi\)
\(284\) −53.8179 + 53.8179i −0.189500 + 0.189500i
\(285\) 64.7077i 0.227044i
\(286\) 0 0
\(287\) 65.0718 0.226731
\(288\) 12.0000 + 12.0000i 0.0416667 + 0.0416667i
\(289\) 260.692 0.902049
\(290\) 10.5077i 0.0362336i
\(291\) −6.98592 6.98592i −0.0240066 0.0240066i
\(292\) −11.3590 11.3590i −0.0389006 0.0389006i
\(293\) −306.042 + 306.042i −1.04451 + 1.04451i −0.0455508 + 0.998962i \(0.514504\pi\)
−0.998962 + 0.0455508i \(0.985496\pi\)
\(294\) 83.0141 83.0141i 0.282361 0.282361i
\(295\) −168.946 −0.572699
\(296\) 12.5744i 0.0424810i
\(297\) 9.00000 9.00000i 0.0303030 0.0303030i
\(298\) 252.449i 0.847143i
\(299\) 0 0
\(300\) 75.4641 0.251547
\(301\) −27.2154 27.2154i −0.0904166 0.0904166i
\(302\) 248.813 0.823883
\(303\) 193.061i 0.637167i
\(304\) −58.9282 58.9282i −0.193843 0.193843i
\(305\) −131.138 131.138i −0.429962 0.429962i
\(306\) 15.9615 15.9615i 0.0521618 0.0521618i
\(307\) −246.512 + 246.512i −0.802969 + 0.802969i −0.983559 0.180589i \(-0.942199\pi\)
0.180589 + 0.983559i \(0.442199\pi\)
\(308\) −5.07180 −0.0164669
\(309\) 123.531i 0.399776i
\(310\) −63.3487 + 63.3487i −0.204351 + 0.204351i
\(311\) 313.377i 1.00764i 0.863808 + 0.503821i \(0.168073\pi\)
−0.863808 + 0.503821i \(0.831927\pi\)
\(312\) 0 0
\(313\) −262.841 −0.839747 −0.419874 0.907583i \(-0.637926\pi\)
−0.419874 + 0.907583i \(0.637926\pi\)
\(314\) 268.785 + 268.785i 0.856002 + 0.856002i
\(315\) 5.56922 0.0176801
\(316\) 8.42047i 0.0266471i
\(317\) 148.981 + 148.981i 0.469971 + 0.469971i 0.901905 0.431934i \(-0.142169\pi\)
−0.431934 + 0.901905i \(0.642169\pi\)
\(318\) −99.9615 99.9615i −0.314344 0.314344i
\(319\) 7.17691 7.17691i 0.0224982 0.0224982i
\(320\) −10.1436 + 10.1436i −0.0316987 + 0.0316987i
\(321\) −201.846 −0.628804
\(322\) 7.78976i 0.0241918i
\(323\) −78.3820 + 78.3820i −0.242669 + 0.242669i
\(324\) 18.0000i 0.0555556i
\(325\) 0 0
\(326\) −92.8897 −0.284938
\(327\) 189.340 + 189.340i 0.579021 + 0.579021i
\(328\) −177.779 −0.542011
\(329\) 45.1000i 0.137082i
\(330\) 7.60770 + 7.60770i 0.0230536 + 0.0230536i
\(331\) 295.870 + 295.870i 0.893869 + 0.893869i 0.994885 0.101016i \(-0.0322094\pi\)
−0.101016 + 0.994885i \(0.532209\pi\)
\(332\) −219.597 + 219.597i −0.661438 + 0.661438i
\(333\) 9.43078 9.43078i 0.0283207 0.0283207i
\(334\) −239.023 −0.715638
\(335\) 118.410i 0.353463i
\(336\) 5.07180 5.07180i 0.0150946 0.0150946i
\(337\) 48.9385i 0.145218i −0.997360 0.0726091i \(-0.976867\pi\)
0.997360 0.0726091i \(-0.0231325\pi\)
\(338\) 0 0
\(339\) 256.823 0.757590
\(340\) 13.4923 + 13.4923i 0.0396831 + 0.0396831i
\(341\) 86.5359 0.253771
\(342\) 88.3923i 0.258457i
\(343\) −70.9564 70.9564i −0.206870 0.206870i
\(344\) 74.3538 + 74.3538i 0.216145 + 0.216145i
\(345\) 11.6846 11.6846i 0.0338685 0.0338685i
\(346\) −242.603 + 242.603i −0.701163 + 0.701163i
\(347\) −552.133 −1.59116 −0.795581 0.605847i \(-0.792834\pi\)
−0.795581 + 0.605847i \(0.792834\pi\)
\(348\) 14.3538i 0.0412466i
\(349\) −189.210 + 189.210i −0.542150 + 0.542150i −0.924159 0.382009i \(-0.875232\pi\)
0.382009 + 0.924159i \(0.375232\pi\)
\(350\) 31.8949i 0.0911282i
\(351\) 0 0
\(352\) 13.8564 0.0393648
\(353\) 51.8705 + 51.8705i 0.146942 + 0.146942i 0.776750 0.629809i \(-0.216867\pi\)
−0.629809 + 0.776750i \(0.716867\pi\)
\(354\) −230.785 −0.651934
\(355\) 68.2384i 0.192221i
\(356\) 39.0333 + 39.0333i 0.109644 + 0.109644i
\(357\) −6.74613 6.74613i −0.0188967 0.0188967i
\(358\) 26.7180 26.7180i 0.0746312 0.0746312i
\(359\) 205.119 205.119i 0.571363 0.571363i −0.361146 0.932509i \(-0.617615\pi\)
0.932509 + 0.361146i \(0.117615\pi\)
\(360\) −15.2154 −0.0422650
\(361\) 73.0666i 0.202401i
\(362\) −256.144 + 256.144i −0.707579 + 0.707579i
\(363\) 199.186i 0.548721i
\(364\) 0 0
\(365\) 14.4026 0.0394592
\(366\) −179.138 179.138i −0.489449 0.489449i
\(367\) −351.292 −0.957200 −0.478600 0.878033i \(-0.658856\pi\)
−0.478600 + 0.878033i \(0.658856\pi\)
\(368\) 21.2820i 0.0578316i
\(369\) −133.335 133.335i −0.361340 0.361340i
\(370\) 7.97183 + 7.97183i 0.0215455 + 0.0215455i
\(371\) −42.2487 + 42.2487i −0.113878 + 0.113878i
\(372\) −86.5359 + 86.5359i −0.232623 + 0.232623i
\(373\) −131.836 −0.353447 −0.176724 0.984261i \(-0.556550\pi\)
−0.176724 + 0.984261i \(0.556550\pi\)
\(374\) 18.4308i 0.0492802i
\(375\) −102.746 + 102.746i −0.273990 + 0.273990i
\(376\) 123.215i 0.327701i
\(377\) 0 0
\(378\) 7.60770 0.0201262
\(379\) 24.7987 + 24.7987i 0.0654319 + 0.0654319i 0.739065 0.673634i \(-0.235267\pi\)
−0.673634 + 0.739065i \(0.735267\pi\)
\(380\) 74.7180 0.196626
\(381\) 121.310i 0.318399i
\(382\) 129.282 + 129.282i 0.338435 + 0.338435i
\(383\) −174.555 174.555i −0.455758 0.455758i 0.441502 0.897260i \(-0.354446\pi\)
−0.897260 + 0.441502i \(0.854446\pi\)
\(384\) −13.8564 + 13.8564i −0.0360844 + 0.0360844i
\(385\) 3.21539 3.21539i 0.00835166 0.00835166i
\(386\) −320.564 −0.830477
\(387\) 111.531i 0.288193i
\(388\) 8.06664 8.06664i 0.0207903 0.0207903i
\(389\) 644.305i 1.65631i 0.560498 + 0.828156i \(0.310610\pi\)
−0.560498 + 0.828156i \(0.689390\pi\)
\(390\) 0 0
\(391\) −28.3078 −0.0723985
\(392\) 95.8564 + 95.8564i 0.244532 + 0.244532i
\(393\) 413.769 1.05285
\(394\) 218.536i 0.554660i
\(395\) −5.33836 5.33836i −0.0135148 0.0135148i
\(396\) 10.3923 + 10.3923i 0.0262432 + 0.0262432i
\(397\) −432.692 + 432.692i −1.08990 + 1.08990i −0.0943673 + 0.995537i \(0.530083\pi\)
−0.995537 + 0.0943673i \(0.969917\pi\)
\(398\) −25.1000 + 25.1000i −0.0630652 + 0.0630652i
\(399\) −37.3590 −0.0936315
\(400\) 87.1384i 0.217846i
\(401\) 274.550 274.550i 0.684663 0.684663i −0.276384 0.961047i \(-0.589136\pi\)
0.961047 + 0.276384i \(0.0891362\pi\)
\(402\) 161.751i 0.402366i
\(403\) 0 0
\(404\) 222.928 0.551802
\(405\) −11.4115 11.4115i −0.0281766 0.0281766i
\(406\) 6.06664 0.0149425
\(407\) 10.8897i 0.0267561i
\(408\) 18.4308 + 18.4308i 0.0451735 + 0.0451735i
\(409\) −76.1872 76.1872i −0.186277 0.186277i 0.607808 0.794084i \(-0.292049\pi\)
−0.794084 + 0.607808i \(0.792049\pi\)
\(410\) 112.708 112.708i 0.274897 0.274897i
\(411\) 159.258 159.258i 0.387488 0.387488i
\(412\) 142.641 0.346216
\(413\) 97.5411i 0.236177i
\(414\) 15.9615 15.9615i 0.0385544 0.0385544i
\(415\) 278.438i 0.670936i
\(416\) 0 0
\(417\) 240.995 0.577925
\(418\) −51.0333 51.0333i −0.122089 0.122089i
\(419\) 76.8231 0.183349 0.0916743 0.995789i \(-0.470778\pi\)
0.0916743 + 0.995789i \(0.470778\pi\)
\(420\) 6.43078i 0.0153114i
\(421\) −117.756 117.756i −0.279707 0.279707i 0.553285 0.832992i \(-0.313374\pi\)
−0.832992 + 0.553285i \(0.813374\pi\)
\(422\) −206.718 206.718i −0.489853 0.489853i
\(423\) 92.4115 92.4115i 0.218467 0.218467i
\(424\) 115.426 115.426i 0.272230 0.272230i
\(425\) 115.905 0.272718
\(426\) 93.2154i 0.218815i
\(427\) −75.7128 + 75.7128i −0.177313 + 0.177313i
\(428\) 233.072i 0.544560i
\(429\) 0 0
\(430\) −94.2769 −0.219249
\(431\) −362.478 362.478i −0.841017 0.841017i 0.147975 0.988991i \(-0.452725\pi\)
−0.988991 + 0.147975i \(0.952725\pi\)
\(432\) −20.7846 −0.0481125
\(433\) 197.292i 0.455641i 0.973703 + 0.227820i \(0.0731599\pi\)
−0.973703 + 0.227820i \(0.926840\pi\)
\(434\) 36.5744 + 36.5744i 0.0842728 + 0.0842728i
\(435\) −9.09996 9.09996i −0.0209195 0.0209195i
\(436\) −218.631 + 218.631i −0.501447 + 0.501447i
\(437\) −78.3820 + 78.3820i −0.179364 + 0.179364i
\(438\) 19.6743 0.0449186
\(439\) 272.238i 0.620133i −0.950715 0.310067i \(-0.899649\pi\)
0.950715 0.310067i \(-0.100351\pi\)
\(440\) −8.78461 + 8.78461i −0.0199650 + 0.0199650i
\(441\) 143.785i 0.326042i
\(442\) 0 0
\(443\) 74.7358 0.168704 0.0843519 0.996436i \(-0.473118\pi\)
0.0843519 + 0.996436i \(0.473118\pi\)
\(444\) 10.8897 + 10.8897i 0.0245264 + 0.0245264i
\(445\) −49.4923 −0.111219
\(446\) 278.823i 0.625164i
\(447\) −218.627 218.627i −0.489098 0.489098i
\(448\) 5.85641 + 5.85641i 0.0130723 + 0.0130723i
\(449\) −516.224 + 516.224i −1.14972 + 1.14972i −0.163113 + 0.986607i \(0.552153\pi\)
−0.986607 + 0.163113i \(0.947847\pi\)
\(450\) −65.3538 + 65.3538i −0.145231 + 0.145231i
\(451\) −153.962 −0.341378
\(452\) 296.554i 0.656092i
\(453\) −215.478 + 215.478i −0.475669 + 0.475669i
\(454\) 194.736i 0.428934i
\(455\) 0 0
\(456\) 102.067 0.223830
\(457\) 50.9615 + 50.9615i 0.111513 + 0.111513i 0.760662 0.649149i \(-0.224875\pi\)
−0.649149 + 0.760662i \(0.724875\pi\)
\(458\) 408.354 0.891602
\(459\) 27.6462i 0.0602313i
\(460\) 13.4923 + 13.4923i 0.0293310 + 0.0293310i
\(461\) −202.550 202.550i −0.439371 0.439371i 0.452429 0.891800i \(-0.350557\pi\)
−0.891800 + 0.452429i \(0.850557\pi\)
\(462\) 4.39230 4.39230i 0.00950715 0.00950715i
\(463\) 223.247 223.247i 0.482176 0.482176i −0.423650 0.905826i \(-0.639251\pi\)
0.905826 + 0.423650i \(0.139251\pi\)
\(464\) −16.5744 −0.0357206
\(465\) 109.723i 0.235964i
\(466\) 231.962 231.962i 0.497772 0.497772i
\(467\) 161.818i 0.346505i −0.984877 0.173253i \(-0.944572\pi\)
0.984877 0.173253i \(-0.0554277\pi\)
\(468\) 0 0
\(469\) 68.3641 0.145766
\(470\) 78.1154 + 78.1154i 0.166203 + 0.166203i
\(471\) −465.549 −0.988426
\(472\) 266.487i 0.564591i
\(473\) 64.3923 + 64.3923i 0.136136 + 0.136136i
\(474\) −7.29234 7.29234i −0.0153847 0.0153847i
\(475\) 320.932 320.932i 0.675646 0.675646i
\(476\) 7.78976 7.78976i 0.0163651 0.0163651i
\(477\) 173.138 0.362974
\(478\) 279.962i 0.585694i
\(479\) 89.1295 89.1295i 0.186074 0.186074i −0.607922 0.793996i \(-0.707997\pi\)
0.793996 + 0.607922i \(0.207997\pi\)
\(480\) 17.5692i 0.0366025i
\(481\) 0 0
\(482\) 106.918 0.221821
\(483\) −6.74613 6.74613i −0.0139672 0.0139672i
\(484\) −230.000 −0.475207
\(485\) 10.2281i 0.0210888i
\(486\) −15.5885 15.5885i −0.0320750 0.0320750i
\(487\) 527.440 + 527.440i 1.08304 + 1.08304i 0.996225 + 0.0868139i \(0.0276685\pi\)
0.0868139 + 0.996225i \(0.472331\pi\)
\(488\) 206.851 206.851i 0.423876 0.423876i
\(489\) 80.4449 80.4449i 0.164509 0.164509i
\(490\) −121.541 −0.248043
\(491\) 700.726i 1.42714i −0.700584 0.713570i \(-0.747077\pi\)
0.700584 0.713570i \(-0.252923\pi\)
\(492\) 153.962 153.962i 0.312930 0.312930i
\(493\) 22.0460i 0.0447181i
\(494\) 0 0
\(495\) −13.1769 −0.0266200
\(496\) −99.9230 99.9230i −0.201458 0.201458i
\(497\) −39.3975 −0.0792705
\(498\) 380.354i 0.763763i
\(499\) −279.065 279.065i −0.559249 0.559249i 0.369845 0.929094i \(-0.379411\pi\)
−0.929094 + 0.369845i \(0.879411\pi\)
\(500\) −118.641 118.641i −0.237282 0.237282i
\(501\) 207.000 207.000i 0.413174 0.413174i
\(502\) −421.377 + 421.377i −0.839396 + 0.839396i
\(503\) −23.9821 −0.0476782 −0.0238391 0.999716i \(-0.507589\pi\)
−0.0238391 + 0.999716i \(0.507589\pi\)
\(504\) 8.78461i 0.0174298i
\(505\) −141.331 + 141.331i −0.279863 + 0.279863i
\(506\) 18.4308i 0.0364245i
\(507\) 0 0
\(508\) −140.077 −0.275742
\(509\) 287.678 + 287.678i 0.565183 + 0.565183i 0.930775 0.365592i \(-0.119134\pi\)
−0.365592 + 0.930775i \(0.619134\pi\)
\(510\) −23.3693 −0.0458221
\(511\) 8.31535i 0.0162727i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 76.5500 + 76.5500i 0.149220 + 0.149220i
\(514\) 249.664 249.664i 0.485728 0.485728i
\(515\) −90.4308 + 90.4308i −0.175594 + 0.175594i
\(516\) −128.785 −0.249583
\(517\) 106.708i 0.206398i
\(518\) 4.60254 4.60254i 0.00888521 0.00888521i
\(519\) 420.200i 0.809634i
\(520\) 0 0
\(521\) −921.349 −1.76842 −0.884212 0.467086i \(-0.845304\pi\)
−0.884212 + 0.467086i \(0.845304\pi\)
\(522\) −12.4308 12.4308i −0.0238138 0.0238138i
\(523\) −558.677 −1.06822 −0.534108 0.845416i \(-0.679352\pi\)
−0.534108 + 0.845416i \(0.679352\pi\)
\(524\) 477.779i 0.911793i
\(525\) 27.6218 + 27.6218i 0.0526129 + 0.0526129i
\(526\) 94.8897 + 94.8897i 0.180399 + 0.180399i
\(527\) −132.910 + 132.910i −0.252202 + 0.252202i
\(528\) −12.0000 + 12.0000i −0.0227273 + 0.0227273i
\(529\) 500.692 0.946488
\(530\) 146.354i 0.276139i
\(531\) 199.865 199.865i 0.376394 0.376394i
\(532\) 43.1384i 0.0810873i
\(533\) 0 0
\(534\) −67.6077 −0.126606
\(535\) 147.762 + 147.762i 0.276190 + 0.276190i
\(536\) −186.774 −0.348460
\(537\) 46.2769i 0.0861767i
\(538\) 208.774 + 208.774i 0.388056 + 0.388056i
\(539\) 83.0141 + 83.0141i 0.154015 + 0.154015i
\(540\) 13.1769 13.1769i 0.0244017 0.0244017i
\(541\) 101.756 101.756i 0.188090 0.188090i −0.606780 0.794870i \(-0.707539\pi\)
0.794870 + 0.606780i \(0.207539\pi\)
\(542\) 762.095 1.40608
\(543\) 443.654i 0.817042i
\(544\) −21.2820 + 21.2820i −0.0391214 + 0.0391214i
\(545\) 277.213i 0.508647i
\(546\) 0 0
\(547\) 301.800 0.551737 0.275868 0.961195i \(-0.411035\pi\)
0.275868 + 0.961195i \(0.411035\pi\)
\(548\) 183.895 + 183.895i 0.335575 + 0.335575i
\(549\) 310.277 0.565167
\(550\) 75.4641i 0.137207i
\(551\) 61.0436 + 61.0436i 0.110787 + 0.110787i
\(552\) 18.4308 + 18.4308i 0.0333891 + 0.0333891i
\(553\) −3.08211 + 3.08211i −0.00557343 + 0.00557343i
\(554\) 68.7846 68.7846i 0.124160 0.124160i
\(555\) −13.8076 −0.0248786
\(556\) 278.277i 0.500498i
\(557\) 285.258 285.258i 0.512132 0.512132i −0.403047 0.915179i \(-0.632049\pi\)
0.915179 + 0.403047i \(0.132049\pi\)
\(558\) 149.885i 0.268610i
\(559\) 0 0
\(560\) −7.42563 −0.0132600
\(561\) 15.9615 + 15.9615i 0.0284519 + 0.0284519i
\(562\) 139.244 0.247764
\(563\) 863.174i 1.53317i −0.642143 0.766585i \(-0.721955\pi\)
0.642143 0.766585i \(-0.278045\pi\)
\(564\) 106.708 + 106.708i 0.189198 + 0.189198i
\(565\) −188.008 188.008i −0.332757 0.332757i
\(566\) 425.808 425.808i 0.752310 0.752310i
\(567\) −6.58846 + 6.58846i −0.0116199 + 0.0116199i
\(568\) 107.636 0.189500
\(569\) 317.223i 0.557510i −0.960362 0.278755i \(-0.910078\pi\)
0.960362 0.278755i \(-0.0899217\pi\)
\(570\) −64.7077 + 64.7077i −0.113522 + 0.113522i
\(571\) 73.2539i 0.128290i 0.997941 + 0.0641452i \(0.0204321\pi\)
−0.997941 + 0.0641452i \(0.979568\pi\)
\(572\) 0 0
\(573\) −223.923 −0.390791
\(574\) −65.0718 65.0718i −0.113365 0.113365i
\(575\) 115.905 0.201574
\(576\) 24.0000i 0.0416667i
\(577\) 81.6410 + 81.6410i 0.141492 + 0.141492i 0.774305 0.632813i \(-0.218100\pi\)
−0.632813 + 0.774305i \(0.718100\pi\)
\(578\) −260.692 260.692i −0.451025 0.451025i
\(579\) 277.617 277.617i 0.479476 0.479476i
\(580\) 10.5077 10.5077i 0.0181168 0.0181168i
\(581\) −160.756 −0.276689
\(582\) 13.9718i 0.0240066i
\(583\) 99.9615 99.9615i 0.171461 0.171461i
\(584\) 22.7180i 0.0389006i
\(585\) 0 0
\(586\) 612.084 1.04451
\(587\) −382.219 382.219i −0.651140 0.651140i 0.302128 0.953268i \(-0.402303\pi\)
−0.953268 + 0.302128i \(0.902303\pi\)
\(588\) −166.028 −0.282361
\(589\) 736.036i 1.24964i
\(590\) 168.946 + 168.946i 0.286349 + 0.286349i
\(591\) 189.258 + 189.258i 0.320233 + 0.320233i
\(592\) −12.5744 + 12.5744i −0.0212405 + 0.0212405i
\(593\) −171.355 + 171.355i −0.288963 + 0.288963i −0.836670 0.547707i \(-0.815501\pi\)
0.547707 + 0.836670i \(0.315501\pi\)
\(594\) −18.0000 −0.0303030
\(595\) 9.87703i 0.0166000i
\(596\) 252.449 252.449i 0.423572 0.423572i
\(597\) 43.4744i 0.0728215i
\(598\) 0 0
\(599\) −109.608 −0.182984 −0.0914922 0.995806i \(-0.529164\pi\)
−0.0914922 + 0.995806i \(0.529164\pi\)
\(600\) −75.4641 75.4641i −0.125774 0.125774i
\(601\) 779.108 1.29635 0.648176 0.761491i \(-0.275532\pi\)
0.648176 + 0.761491i \(0.275532\pi\)
\(602\) 54.4308i 0.0904166i
\(603\) −140.081 140.081i −0.232306 0.232306i
\(604\) −248.813 248.813i −0.411942 0.411942i
\(605\) 145.814 145.814i 0.241015 0.241015i
\(606\) −193.061 + 193.061i −0.318583 + 0.318583i
\(607\) 1144.40 1.88534 0.942669 0.333730i \(-0.108307\pi\)
0.942669 + 0.333730i \(0.108307\pi\)
\(608\) 117.856i 0.193843i
\(609\) −5.25387 + 5.25387i −0.00862704 + 0.00862704i
\(610\) 262.277i 0.429962i
\(611\) 0 0
\(612\) −31.9230 −0.0521618
\(613\) −292.349 292.349i −0.476915 0.476915i 0.427229 0.904144i \(-0.359490\pi\)
−0.904144 + 0.427229i \(0.859490\pi\)
\(614\) 493.023 0.802969
\(615\) 195.215i 0.317423i
\(616\) 5.07180 + 5.07180i 0.00823344 + 0.00823344i
\(617\) 369.391 + 369.391i 0.598689 + 0.598689i 0.939964 0.341275i \(-0.110859\pi\)
−0.341275 + 0.939964i \(0.610859\pi\)
\(618\) −123.531 + 123.531i −0.199888 + 0.199888i
\(619\) 446.070 446.070i 0.720631 0.720631i −0.248103 0.968734i \(-0.579807\pi\)
0.968734 + 0.248103i \(0.0798071\pi\)
\(620\) 126.697 0.204351
\(621\) 27.6462i 0.0445188i
\(622\) 313.377 313.377i 0.503821 0.503821i
\(623\) 28.5744i 0.0458658i
\(624\) 0 0
\(625\) −394.184 −0.630695
\(626\) 262.841 + 262.841i 0.419874 + 0.419874i
\(627\) 88.3923 0.140977
\(628\) 537.569i 0.856002i
\(629\) 16.7255 + 16.7255i 0.0265906 + 0.0265906i
\(630\) −5.56922 5.56922i −0.00884003 0.00884003i
\(631\) 604.406 604.406i 0.957855 0.957855i −0.0412923 0.999147i \(-0.513147\pi\)
0.999147 + 0.0412923i \(0.0131475\pi\)
\(632\) 8.42047 8.42047i 0.0133235 0.0133235i
\(633\) 358.046 0.565634
\(634\) 297.962i 0.469971i
\(635\) 88.8052 88.8052i 0.139851 0.139851i
\(636\) 199.923i 0.314344i
\(637\) 0 0
\(638\) −14.3538 −0.0224982
\(639\) 80.7269 + 80.7269i 0.126333 + 0.126333i
\(640\) 20.2872 0.0316987
\(641\) 1213.91i 1.89378i 0.321565 + 0.946888i \(0.395791\pi\)
−0.321565 + 0.946888i \(0.604209\pi\)
\(642\) 201.846 + 201.846i 0.314402 + 0.314402i
\(643\) −413.804 413.804i −0.643552 0.643552i 0.307875 0.951427i \(-0.400382\pi\)
−0.951427 + 0.307875i \(0.900382\pi\)
\(644\) 7.78976 7.78976i 0.0120959 0.0120959i
\(645\) 81.6462 81.6462i 0.126583 0.126583i
\(646\) 156.764 0.242669
\(647\) 117.913i 0.182245i −0.995840 0.0911227i \(-0.970954\pi\)
0.995840 0.0911227i \(-0.0290455\pi\)
\(648\) 18.0000 18.0000i 0.0277778 0.0277778i
\(649\) 230.785i 0.355600i
\(650\) 0 0
\(651\) −63.3487 −0.0973098
\(652\) 92.8897 + 92.8897i 0.142469 + 0.142469i
\(653\) −1088.62 −1.66711 −0.833553 0.552439i \(-0.813697\pi\)
−0.833553 + 0.552439i \(0.813697\pi\)
\(654\) 378.679i 0.579021i
\(655\) −302.900 302.900i −0.462443 0.462443i
\(656\) 177.779 + 177.779i 0.271005 + 0.271005i
\(657\) −17.0385 + 17.0385i −0.0259338 + 0.0259338i
\(658\) 45.1000 45.1000i 0.0685410 0.0685410i
\(659\) 1222.68 1.85535 0.927676 0.373387i \(-0.121804\pi\)
0.927676 + 0.373387i \(0.121804\pi\)
\(660\) 15.2154i 0.0230536i
\(661\) 667.851 667.851i 1.01036 1.01036i 0.0104193 0.999946i \(-0.496683\pi\)
0.999946 0.0104193i \(-0.00331661\pi\)
\(662\) 591.741i 0.893869i
\(663\) 0 0
\(664\) 439.195 0.661438
\(665\) 27.3487 + 27.3487i 0.0411258 + 0.0411258i
\(666\) −18.8616 −0.0283207
\(667\) 22.0460i 0.0330525i
\(668\) 239.023 + 239.023i 0.357819 + 0.357819i
\(669\) −241.468 241.468i −0.360939 0.360939i
\(670\) 118.410 118.410i 0.176732 0.176732i
\(671\) 179.138 179.138i 0.266972 0.266972i
\(672\) −10.1436 −0.0150946
\(673\) 411.779i 0.611857i −0.952055 0.305928i \(-0.901033\pi\)
0.952055 0.305928i \(-0.0989668\pi\)
\(674\) −48.9385 + 48.9385i −0.0726091 + 0.0726091i
\(675\) 113.196i 0.167698i
\(676\) 0 0
\(677\) −948.600 −1.40118 −0.700591 0.713563i \(-0.747080\pi\)
−0.700591 + 0.713563i \(0.747080\pi\)
\(678\) −256.823 256.823i −0.378795 0.378795i
\(679\) 5.90519 0.00869690
\(680\) 26.9845i 0.0396831i
\(681\) 168.646 + 168.646i 0.247645 + 0.247645i
\(682\) −86.5359 86.5359i −0.126885 0.126885i
\(683\) −101.809 + 101.809i −0.149061 + 0.149061i −0.777699 0.628637i \(-0.783613\pi\)
0.628637 + 0.777699i \(0.283613\pi\)
\(684\) −88.3923 + 88.3923i −0.129229 + 0.129229i
\(685\) −233.169 −0.340393
\(686\) 141.913i 0.206870i
\(687\) −353.645 + 353.645i −0.514767 + 0.514767i
\(688\) 148.708i 0.216145i
\(689\) 0 0
\(690\) −23.3693 −0.0338685
\(691\) 111.135 + 111.135i 0.160832 + 0.160832i 0.782935 0.622103i \(-0.213722\pi\)
−0.622103 + 0.782935i \(0.713722\pi\)
\(692\) 485.205 0.701163
\(693\) 7.60770i 0.0109779i
\(694\) 552.133 + 552.133i 0.795581 + 0.795581i
\(695\) −176.420 176.420i −0.253842 0.253842i
\(696\) 14.3538 14.3538i 0.0206233 0.0206233i
\(697\) 236.469 236.469i 0.339267 0.339267i
\(698\) 378.420 0.542150
\(699\) 401.769i 0.574777i
\(700\) −31.8949 + 31.8949i −0.0455641 + 0.0455641i
\(701\) 779.520i 1.11201i 0.831178 + 0.556006i \(0.187667\pi\)
−0.831178 + 0.556006i \(0.812333\pi\)
\(702\) 0 0
\(703\) 92.6232 0.131754
\(704\) −13.8564 13.8564i −0.0196824 0.0196824i
\(705\) −135.300 −0.191915
\(706\) 103.741i 0.146942i
\(707\) 81.5974 + 81.5974i 0.115414 + 0.115414i
\(708\) 230.785 + 230.785i 0.325967 + 0.325967i
\(709\) −43.0179 + 43.0179i −0.0606740 + 0.0606740i −0.736793 0.676119i \(-0.763661\pi\)
0.676119 + 0.736793i \(0.263661\pi\)
\(710\) −68.2384 + 68.2384i −0.0961104 + 0.0961104i
\(711\) 12.6307 0.0177647
\(712\) 78.0666i 0.109644i
\(713\) −132.910 + 132.910i −0.186410 + 0.186410i
\(714\) 13.4923i 0.0188967i
\(715\) 0 0
\(716\) −53.4359 −0.0746312
\(717\) −242.454 242.454i −0.338150 0.338150i
\(718\) −410.238 −0.571363
\(719\) 335.290i 0.466328i 0.972437 + 0.233164i \(0.0749078\pi\)
−0.972437 + 0.233164i \(0.925092\pi\)
\(720\) 15.2154 + 15.2154i 0.0211325 + 0.0211325i
\(721\) 52.2102 + 52.2102i 0.0724136 + 0.0724136i
\(722\) 73.0666 73.0666i 0.101200 0.101200i
\(723\) −92.5936 + 92.5936i −0.128069 + 0.128069i
\(724\) 512.287 0.707579
\(725\) 90.2666i 0.124506i
\(726\) 199.186 199.186i 0.274361 0.274361i
\(727\) 537.577i 0.739445i −0.929142 0.369723i \(-0.879453\pi\)
0.929142 0.369723i \(-0.120547\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) −14.4026 14.4026i −0.0197296 0.0197296i
\(731\) −197.800 −0.270588
\(732\) 358.277i 0.489449i
\(733\) 479.946 + 479.946i 0.654770 + 0.654770i 0.954138 0.299368i \(-0.0967759\pi\)
−0.299368 + 0.954138i \(0.596776\pi\)
\(734\) 351.292 + 351.292i 0.478600 + 0.478600i
\(735\) 105.258 105.258i 0.143208 0.143208i
\(736\) −21.2820 + 21.2820i −0.0289158 + 0.0289158i
\(737\) −161.751 −0.219473
\(738\) 266.669i 0.361340i
\(739\) −512.788 + 512.788i −0.693895 + 0.693895i −0.963087 0.269192i \(-0.913243\pi\)
0.269192 + 0.963087i \(0.413243\pi\)
\(740\) 15.9437i 0.0215455i
\(741\) 0 0
\(742\) 84.4974 0.113878
\(743\) −801.509 801.509i −1.07875 1.07875i −0.996622 0.0821246i \(-0.973829\pi\)
−0.0821246 0.996622i \(-0.526171\pi\)
\(744\) 173.072 0.232623
\(745\) 320.092i 0.429654i
\(746\) 131.836 + 131.836i 0.176724 + 0.176724i
\(747\) 329.396 + 329.396i 0.440959 + 0.440959i
\(748\) −18.4308 + 18.4308i −0.0246401 + 0.0246401i
\(749\) 85.3102 85.3102i 0.113899 0.113899i
\(750\) 205.492 0.273990
\(751\) 1384.43i 1.84345i −0.387849 0.921723i \(-0.626782\pi\)
0.387849 0.921723i \(-0.373218\pi\)
\(752\) −123.215 + 123.215i −0.163850 + 0.163850i
\(753\) 729.846i 0.969251i
\(754\) 0 0
\(755\) 315.482 0.417857
\(756\) −7.60770 7.60770i −0.0100631 0.0100631i
\(757\) −125.836 −0.166230 −0.0831148 0.996540i \(-0.526487\pi\)
−0.0831148 + 0.996540i \(0.526487\pi\)
\(758\) 49.5974i 0.0654319i
\(759\) 15.9615 + 15.9615i 0.0210297 + 0.0210297i
\(760\) −74.7180 74.7180i −0.0983131 0.0983131i
\(761\) 3.55514 3.55514i 0.00467166 0.00467166i −0.704767 0.709439i \(-0.748949\pi\)
0.709439 + 0.704767i \(0.248949\pi\)
\(762\) 121.310 121.310i 0.159200 0.159200i
\(763\) −160.049 −0.209762
\(764\) 258.564i 0.338435i
\(765\) 20.2384 20.2384i 0.0264554 0.0264554i
\(766\) 349.110i 0.455758i
\(767\) 0 0
\(768\) 27.7128 0.0360844
\(769\) 958.405 + 958.405i 1.24630 + 1.24630i 0.957342 + 0.288959i \(0.0933091\pi\)
0.288959 + 0.957342i \(0.406691\pi\)
\(770\) −6.43078 −0.00835166
\(771\) 432.431i 0.560870i
\(772\) 320.564 + 320.564i 0.415238 + 0.415238i
\(773\) −76.8165 76.8165i −0.0993746 0.0993746i 0.655672 0.755046i \(-0.272386\pi\)
−0.755046 + 0.655672i \(0.772386\pi\)
\(774\) 111.531 111.531i 0.144097 0.144097i
\(775\) 544.196 544.196i 0.702189 0.702189i
\(776\) −16.1333 −0.0207903
\(777\) 7.97183i 0.0102598i
\(778\) 644.305 644.305i 0.828156 0.828156i
\(779\) 1309.53i 1.68104i
\(780\) 0 0
\(781\) 93.2154 0.119354
\(782\) 28.3078 + 28.3078i 0.0361992 + 0.0361992i
\(783\) 21.5307 0.0274978
\(784\) 191.713i 0.244532i
\(785\) 340.805 + 340.805i 0.434147 + 0.434147i
\(786\) −413.769 413.769i −0.526424 0.526424i
\(787\) 486.883 486.883i 0.618657 0.618657i −0.326530 0.945187i \(-0.605879\pi\)
0.945187 + 0.326530i \(0.105879\pi\)
\(788\) −218.536 + 218.536i −0.277330 + 0.277330i
\(789\) −164.354 −0.208307
\(790\) 10.6767i 0.0135148i
\(791\) −108.546 + 108.546i −0.137227 + 0.137227i
\(792\) 20.7846i 0.0262432i
\(793\) 0 0
\(794\) 865.384 1.08990
\(795\) −126.746 126.746i −0.159429 0.159429i
\(796\) 50.1999 0.0630652
\(797\) 713.587i 0.895341i 0.894198 + 0.447671i \(0.147746\pi\)
−0.894198 + 0.447671i \(0.852254\pi\)
\(798\) 37.3590 + 37.3590i 0.0468158 + 0.0468158i
\(799\) 163.892 + 163.892i 0.205122 + 0.205122i
\(800\) 87.1384 87.1384i 0.108923 0.108923i
\(801\) 58.5500 58.5500i 0.0730961 0.0730961i
\(802\) −549.100 −0.684663
\(803\) 19.6743i 0.0245010i
\(804\) 161.751 161.751i 0.201183 0.201183i
\(805\) 9.87703i 0.0122696i
\(806\) 0 0
\(807\) −361.608 −0.448089
\(808\) −222.928 222.928i −0.275901 0.275901i
\(809\) −257.600 −0.318418 −0.159209 0.987245i \(-0.550894\pi\)
−0.159209 + 0.987245i \(0.550894\pi\)
\(810\) 22.8231i 0.0281766i
\(811\) 127.258 + 127.258i 0.156914 + 0.156914i 0.781198 0.624283i \(-0.214609\pi\)
−0.624283 + 0.781198i \(0.714609\pi\)
\(812\) −6.06664 6.06664i −0.00747123 0.00747123i
\(813\) −659.993 + 659.993i −0.811800 + 0.811800i
\(814\) −10.8897 + 10.8897i −0.0133780 + 0.0133780i
\(815\) −117.779 −0.144515
\(816\) 36.8616i 0.0451735i
\(817\) −547.692 + 547.692i −0.670370 + 0.670370i
\(818\) 152.374i 0.186277i
\(819\) 0 0
\(820\) −225.415 −0.274897
\(821\) −1116.87 1116.87i −1.36038 1.36038i −0.873428 0.486953i \(-0.838108\pi\)
−0.486953 0.873428i \(-0.661892\pi\)
\(822\) −318.515 −0.387488
\(823\) 617.920i 0.750814i −0.926860 0.375407i \(-0.877503\pi\)
0.926860 0.375407i \(-0.122497\pi\)
\(824\) −142.641 142.641i −0.173108 0.173108i
\(825\) −65.3538 65.3538i −0.0792168 0.0792168i
\(826\) 97.5411 97.5411i 0.118088 0.118088i
\(827\) −349.847 + 349.847i −0.423032 + 0.423032i −0.886246 0.463214i \(-0.846696\pi\)
0.463214 + 0.886246i \(0.346696\pi\)
\(828\) −31.9230 −0.0385544
\(829\) 247.646i 0.298729i 0.988782 + 0.149364i \(0.0477227\pi\)
−0.988782 + 0.149364i \(0.952277\pi\)
\(830\) −278.438 + 278.438i −0.335468 + 0.335468i
\(831\) 119.138i 0.143368i
\(832\) 0 0
\(833\) −255.002 −0.306125
\(834\) −240.995 240.995i −0.288963 0.288963i
\(835\) −303.069 −0.362957
\(836\) 102.067i 0.122089i
\(837\) 129.804 + 129.804i 0.155082 + 0.155082i
\(838\) −76.8231 76.8231i −0.0916743 0.0916743i
\(839\) 598.868 598.868i 0.713788 0.713788i −0.253538 0.967325i \(-0.581594\pi\)
0.967325 + 0.253538i \(0.0815943\pi\)
\(840\) 6.43078 6.43078i 0.00765569 0.00765569i
\(841\) −823.831 −0.979585
\(842\) 235.513i 0.279707i
\(843\) −120.588 + 120.588i −0.143047 + 0.143047i
\(844\) 413.436i 0.489853i
\(845\) 0 0
\(846\) −184.823 −0.218467
\(847\) −84.1858 84.1858i −0.0993930 0.0993930i
\(848\) −230.851 −0.272230
\(849\) 737.520i 0.868693i
\(850\) −115.905 115.905i −0.136359 0.136359i
\(851\) 16.7255 + 16.7255i 0.0196540 + 0.0196540i
\(852\) −93.2154 + 93.2154i −0.109408 + 0.109408i
\(853\) 519.210 519.210i 0.608687 0.608687i −0.333916 0.942603i \(-0.608370\pi\)
0.942603 + 0.333916i \(0.108370\pi\)
\(854\) 151.426 0.177313
\(855\) 112.077i 0.131084i
\(856\) −233.072 + 233.072i −0.272280 + 0.272280i
\(857\) 226.756i 0.264593i −0.991210 0.132297i \(-0.957765\pi\)
0.991210 0.132297i \(-0.0422351\pi\)
\(858\) 0 0
\(859\) 950.656 1.10670 0.553350 0.832949i \(-0.313349\pi\)
0.553350 + 0.832949i \(0.313349\pi\)
\(860\) 94.2769 + 94.2769i 0.109624 + 0.109624i
\(861\) 112.708 0.130903
\(862\) 724.956i 0.841017i
\(863\) −773.711 773.711i −0.896537 0.896537i 0.0985910 0.995128i \(-0.468566\pi\)
−0.995128 + 0.0985910i \(0.968566\pi\)
\(864\) 20.7846 + 20.7846i 0.0240563 + 0.0240563i
\(865\) −307.608 + 307.608i −0.355616 + 0.355616i
\(866\) 197.292 197.292i 0.227820 0.227820i
\(867\) 451.532 0.520798
\(868\) 73.1487i 0.0842728i
\(869\) 7.29234 7.29234i 0.00839165 0.00839165i
\(870\) 18.1999i 0.0209195i
\(871\) 0 0
\(872\) 437.261 0.501447
\(873\) −12.1000 12.1000i −0.0138602 0.0138602i
\(874\) 156.764 0.179364
\(875\) 86.8513i 0.0992586i
\(876\) −19.6743 19.6743i −0.0224593 0.0224593i
\(877\) −646.713 646.713i −0.737415 0.737415i 0.234662 0.972077i \(-0.424602\pi\)
−0.972077 + 0.234662i \(0.924602\pi\)
\(878\) −272.238 + 272.238i −0.310067 + 0.310067i
\(879\) −530.081 + 530.081i −0.603050 + 0.603050i
\(880\) 17.5692 0.0199650
\(881\) 783.997i 0.889895i 0.895557 + 0.444947i \(0.146778\pi\)
−0.895557 + 0.444947i \(0.853222\pi\)
\(882\) 143.785 143.785i 0.163021 0.163021i
\(883\) 1089.81i 1.23421i 0.786881 + 0.617105i \(0.211695\pi\)
−0.786881 + 0.617105i \(0.788305\pi\)
\(884\) 0 0
\(885\) −292.623 −0.330648
\(886\) −74.7358 74.7358i −0.0843519 0.0843519i
\(887\) −1057.03 −1.19169 −0.595846 0.803099i \(-0.703183\pi\)
−0.595846 + 0.803099i \(0.703183\pi\)
\(888\) 21.7795i 0.0245264i
\(889\) −51.2717 51.2717i −0.0576735 0.0576735i
\(890\) 49.4923 + 49.4923i 0.0556093 + 0.0556093i
\(891\) 15.5885 15.5885i 0.0174955 0.0174955i
\(892\) 278.823 278.823i 0.312582 0.312582i
\(893\) 907.608 1.01636
\(894\) 437.254i 0.489098i
\(895\) 33.8770 33.8770i 0.0378514 0.0378514i
\(896\) 11.7128i 0.0130723i
\(897\) 0 0
\(898\) 1032.45 1.14972
\(899\) 103.510 + 103.510i 0.115139 + 0.115139i
\(900\) 130.708 0.145231
\(901\) 307.061i 0.340801i
\(902\) 153.962 + 153.962i 0.170689 + 0.170689i
\(903\) −47.1384 47.1384i −0.0522020 0.0522020i
\(904\) 296.554 296.554i 0.328046 0.328046i
\(905\) −324.777 + 324.777i −0.358870 + 0.358870i
\(906\) 430.956 0.475669
\(907\) 546.669i 0.602722i −0.953510 0.301361i \(-0.902559\pi\)
0.953510 0.301361i \(-0.0974410\pi\)
\(908\) −194.736 + 194.736i −0.214467 + 0.214467i
\(909\) 334.392i 0.367868i
\(910\) 0 0
\(911\) 724.743 0.795547 0.397774 0.917484i \(-0.369783\pi\)
0.397774 + 0.917484i \(0.369783\pi\)
\(912\) −102.067 102.067i −0.111915 0.111915i
\(913\) 380.354 0.416598
\(914\) 101.923i 0.111513i
\(915\) −227.138 227.138i −0.248239 0.248239i
\(916\) −408.354 408.354i −0.445801 0.445801i
\(917\) −174.879 + 174.879i −0.190708 + 0.190708i
\(918\) 27.6462 27.6462i 0.0301157 0.0301157i
\(919\) −941.108 −1.02406 −0.512028 0.858969i \(-0.671106\pi\)
−0.512028 + 0.858969i \(0.671106\pi\)
\(920\) 26.9845i 0.0293310i
\(921\) −426.970 + 426.970i −0.463594 + 0.463594i
\(922\) 405.100i 0.439371i
\(923\) 0 0
\(924\) −8.78461 −0.00950715
\(925\) −68.4820 68.4820i −0.0740345 0.0740345i
\(926\) −446.495 −0.482176
\(927\) 213.962i 0.230811i
\(928\) 16.5744 + 16.5744i 0.0178603 + 0.0178603i
\(929\) 260.130 + 260.130i 0.280010 + 0.280010i 0.833113 0.553103i \(-0.186556\pi\)
−0.553103 + 0.833113i \(0.686556\pi\)
\(930\) −109.723 + 109.723i −0.117982 + 0.117982i
\(931\) −706.081 + 706.081i −0.758411 + 0.758411i
\(932\) −463.923 −0.497772
\(933\) 542.785i 0.581763i
\(934\) −161.818 + 161.818i −0.173253 + 0.173253i
\(935\) 23.3693i 0.0249939i
\(936\) 0 0
\(937\) 1387.56 1.48085 0.740426 0.672138i \(-0.234624\pi\)
0.740426 + 0.672138i \(0.234624\pi\)
\(938\) −68.3641 68.3641i −0.0728829 0.0728829i
\(939\) −455.254 −0.484828
\(940\) 156.231i 0.166203i
\(941\) 61.6012 + 61.6012i 0.0654635 + 0.0654635i 0.739081 0.673617i \(-0.235260\pi\)
−0.673617 + 0.739081i \(0.735260\pi\)
\(942\) 465.549 + 465.549i 0.494213 + 0.494213i
\(943\) 236.469 236.469i 0.250763 0.250763i
\(944\) −266.487 + 266.487i −0.282296 + 0.282296i
\(945\) 9.64617 0.0102076
\(946\) 128.785i 0.136136i
\(947\) −54.5064 + 54.5064i −0.0575569 + 0.0575569i −0.735299 0.677742i \(-0.762958\pi\)
0.677742 + 0.735299i \(0.262958\pi\)
\(948\) 14.5847i 0.0153847i
\(949\) 0 0
\(950\) −641.864 −0.675646
\(951\) 258.042 + 258.042i 0.271338 + 0.271338i
\(952\) −15.5795 −0.0163651
\(953\) 1079.56i 1.13280i −0.824131 0.566399i \(-0.808336\pi\)
0.824131 0.566399i \(-0.191664\pi\)
\(954\) −173.138 173.138i −0.181487 0.181487i
\(955\) 163.923 + 163.923i 0.171647 + 0.171647i
\(956\) 279.962 279.962i 0.292847 0.292847i
\(957\) 12.4308 12.4308i 0.0129893 0.0129893i
\(958\) −178.259 −0.186074
\(959\) 134.620i 0.140376i
\(960\) −17.5692 + 17.5692i −0.0183013 + 0.0183013i
\(961\) 287.077i 0.298727i
\(962\) 0 0
\(963\) −349.608 −0.363040
\(964\) −106.918 106.918i −0.110911 0.110911i
\(965\) −406.459 −0.421201
\(966\) 13.4923i 0.0139672i
\(967\) −493.745 493.745i −0.510594 0.510594i 0.404114 0.914709i \(-0.367580\pi\)
−0.914709 + 0.404114i \(0.867580\pi\)
\(968\) 230.000 + 230.000i 0.237603 + 0.237603i
\(969\) −135.762 + 135.762i −0.140105 + 0.140105i
\(970\) 10.2281 10.2281i 0.0105444 0.0105444i
\(971\) −1694.52 −1.74513 −0.872566 0.488497i \(-0.837545\pi\)
−0.872566 + 0.488497i \(0.837545\pi\)
\(972\) 31.1769i 0.0320750i
\(973\) −101.856 + 101.856i −0.104683 + 0.104683i
\(974\) 1054.88i 1.08304i
\(975\) 0 0
\(976\) −413.703 −0.423876
\(977\) 390.060 + 390.060i 0.399243 + 0.399243i 0.877966 0.478723i \(-0.158900\pi\)
−0.478723 + 0.877966i \(0.658900\pi\)
\(978\) −160.890 −0.164509
\(979\) 67.6077i 0.0690579i
\(980\) 121.541 + 121.541i 0.124021 + 0.124021i
\(981\) 327.946 + 327.946i 0.334298 + 0.334298i
\(982\) −700.726 + 700.726i −0.713570 + 0.713570i
\(983\) 1123.12 1123.12i 1.14254 1.14254i 0.154559 0.987984i \(-0.450604\pi\)
0.987984 0.154559i \(-0.0493956\pi\)
\(984\) −307.923 −0.312930
\(985\) 277.092i 0.281312i
\(986\) 22.0460 22.0460i 0.0223590 0.0223590i
\(987\) 78.1154i 0.0791443i
\(988\) 0 0
\(989\) −197.800 −0.200000
\(990\) 13.1769 + 13.1769i 0.0133100 + 0.0133100i
\(991\) 610.985 0.616533 0.308267 0.951300i \(-0.400251\pi\)
0.308267 + 0.951300i \(0.400251\pi\)
\(992\) 199.846i 0.201458i
\(993\) 512.463 + 512.463i 0.516075 + 0.516075i
\(994\) 39.3975 + 39.3975i 0.0396353 + 0.0396353i
\(995\) −31.8255 + 31.8255i −0.0319854 + 0.0319854i
\(996\) −380.354 + 380.354i −0.381881 + 0.381881i
\(997\) −412.123 −0.413363 −0.206682 0.978408i \(-0.566266\pi\)
−0.206682 + 0.978408i \(0.566266\pi\)
\(998\) 558.131i 0.559249i
\(999\) 16.3346 16.3346i 0.0163509 0.0163509i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.3.f.a.775.2 4
13.5 odd 4 inner 1014.3.f.a.577.2 4
13.8 odd 4 78.3.f.a.31.2 4
13.12 even 2 78.3.f.a.73.2 yes 4
39.8 even 4 234.3.i.b.109.2 4
39.38 odd 2 234.3.i.b.73.2 4
52.47 even 4 624.3.ba.a.577.1 4
52.51 odd 2 624.3.ba.a.385.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.3.f.a.31.2 4 13.8 odd 4
78.3.f.a.73.2 yes 4 13.12 even 2
234.3.i.b.73.2 4 39.38 odd 2
234.3.i.b.109.2 4 39.8 even 4
624.3.ba.a.385.1 4 52.51 odd 2
624.3.ba.a.577.1 4 52.47 even 4
1014.3.f.a.577.2 4 13.5 odd 4 inner
1014.3.f.a.775.2 4 1.1 even 1 trivial