Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1014,2,Mod(239,1014)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1014.239");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1014.g (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.09683076496\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(24\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
239.1 | −0.707107 | − | 0.707107i | −1.68568 | + | 0.398108i | 1.00000i | 2.32916 | + | 2.32916i | 1.47346 | + | 0.910449i | −2.38633 | − | 2.38633i | 0.707107 | − | 0.707107i | 2.68302 | − | 1.34216i | − | 3.29393i | |||
239.2 | −0.707107 | − | 0.707107i | −1.13362 | − | 1.30955i | 1.00000i | −0.0594916 | − | 0.0594916i | −0.124399 | + | 1.72758i | −3.26082 | − | 3.26082i | 0.707107 | − | 0.707107i | −0.429819 | + | 2.96905i | 0.0841338i | ||||
239.3 | −0.707107 | − | 0.707107i | −0.257671 | + | 1.71278i | 1.00000i | 2.81946 | + | 2.81946i | 1.39332 | − | 1.02892i | −0.454181 | − | 0.454181i | 0.707107 | − | 0.707107i | −2.86721 | − | 0.882666i | − | 3.98732i | |||
239.4 | −0.707107 | − | 0.707107i | 1.58955 | + | 0.688001i | 1.00000i | −0.822256 | − | 0.822256i | −0.637488 | − | 1.61047i | −1.88206 | − | 1.88206i | 0.707107 | − | 0.707107i | 2.05331 | + | 2.18722i | 1.16285i | ||||
239.5 | −0.707107 | − | 0.707107i | −0.739750 | + | 1.56613i | 1.00000i | −2.01447 | − | 2.01447i | 1.63050 | − | 0.584341i | −2.99993 | − | 2.99993i | 0.707107 | − | 0.707107i | −1.90554 | − | 2.31709i | 2.84889i | ||||
239.6 | −0.707107 | − | 0.707107i | −1.68568 | − | 0.398108i | 1.00000i | 2.32916 | + | 2.32916i | 0.910449 | + | 1.47346i | 2.38633 | + | 2.38633i | 0.707107 | − | 0.707107i | 2.68302 | + | 1.34216i | − | 3.29393i | |||
239.7 | −0.707107 | − | 0.707107i | 1.72717 | + | 0.129918i | 1.00000i | −1.54530 | − | 1.54530i | −1.12943 | − | 1.31316i | −0.651496 | − | 0.651496i | 0.707107 | − | 0.707107i | 2.96624 | + | 0.448782i | 2.18538i | ||||
239.8 | −0.707107 | − | 0.707107i | −0.257671 | − | 1.71278i | 1.00000i | 2.81946 | + | 2.81946i | −1.02892 | + | 1.39332i | 0.454181 | + | 0.454181i | 0.707107 | − | 0.707107i | −2.86721 | + | 0.882666i | − | 3.98732i | |||
239.9 | −0.707107 | − | 0.707107i | 1.72717 | − | 0.129918i | 1.00000i | −1.54530 | − | 1.54530i | −1.31316 | − | 1.12943i | 0.651496 | + | 0.651496i | 0.707107 | − | 0.707107i | 2.96624 | − | 0.448782i | 2.18538i | ||||
239.10 | −0.707107 | − | 0.707107i | 1.58955 | − | 0.688001i | 1.00000i | −0.822256 | − | 0.822256i | −1.61047 | − | 0.637488i | 1.88206 | + | 1.88206i | 0.707107 | − | 0.707107i | 2.05331 | − | 2.18722i | 1.16285i | ||||
239.11 | −0.707107 | − | 0.707107i | −1.13362 | + | 1.30955i | 1.00000i | −0.0594916 | − | 0.0594916i | 1.72758 | − | 0.124399i | 3.26082 | + | 3.26082i | 0.707107 | − | 0.707107i | −0.429819 | − | 2.96905i | 0.0841338i | ||||
239.12 | −0.707107 | − | 0.707107i | −0.739750 | − | 1.56613i | 1.00000i | −2.01447 | − | 2.01447i | −0.584341 | + | 1.63050i | 2.99993 | + | 2.99993i | 0.707107 | − | 0.707107i | −1.90554 | + | 2.31709i | 2.84889i | ||||
239.13 | 0.707107 | + | 0.707107i | −0.739750 | − | 1.56613i | 1.00000i | 2.01447 | + | 2.01447i | 0.584341 | − | 1.63050i | −2.99993 | − | 2.99993i | −0.707107 | + | 0.707107i | −1.90554 | + | 2.31709i | 2.84889i | ||||
239.14 | 0.707107 | + | 0.707107i | −1.13362 | + | 1.30955i | 1.00000i | 0.0594916 | + | 0.0594916i | −1.72758 | + | 0.124399i | −3.26082 | − | 3.26082i | −0.707107 | + | 0.707107i | −0.429819 | − | 2.96905i | 0.0841338i | ||||
239.15 | 0.707107 | + | 0.707107i | 1.58955 | − | 0.688001i | 1.00000i | 0.822256 | + | 0.822256i | 1.61047 | + | 0.637488i | −1.88206 | − | 1.88206i | −0.707107 | + | 0.707107i | 2.05331 | − | 2.18722i | 1.16285i | ||||
239.16 | 0.707107 | + | 0.707107i | 1.72717 | − | 0.129918i | 1.00000i | 1.54530 | + | 1.54530i | 1.31316 | + | 1.12943i | −0.651496 | − | 0.651496i | −0.707107 | + | 0.707107i | 2.96624 | − | 0.448782i | 2.18538i | ||||
239.17 | 0.707107 | + | 0.707107i | −0.257671 | − | 1.71278i | 1.00000i | −2.81946 | − | 2.81946i | 1.02892 | − | 1.39332i | −0.454181 | − | 0.454181i | −0.707107 | + | 0.707107i | −2.86721 | + | 0.882666i | − | 3.98732i | |||
239.18 | 0.707107 | + | 0.707107i | 1.72717 | + | 0.129918i | 1.00000i | 1.54530 | + | 1.54530i | 1.12943 | + | 1.31316i | 0.651496 | + | 0.651496i | −0.707107 | + | 0.707107i | 2.96624 | + | 0.448782i | 2.18538i | ||||
239.19 | 0.707107 | + | 0.707107i | −1.68568 | − | 0.398108i | 1.00000i | −2.32916 | − | 2.32916i | −0.910449 | − | 1.47346i | −2.38633 | − | 2.38633i | −0.707107 | + | 0.707107i | 2.68302 | + | 1.34216i | − | 3.29393i | |||
239.20 | 0.707107 | + | 0.707107i | −0.739750 | + | 1.56613i | 1.00000i | 2.01447 | + | 2.01447i | −1.63050 | + | 0.584341i | 2.99993 | + | 2.99993i | −0.707107 | + | 0.707107i | −1.90554 | − | 2.31709i | 2.84889i | ||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
13.b | even | 2 | 1 | inner |
13.d | odd | 4 | 2 | inner |
39.d | odd | 2 | 1 | inner |
39.f | even | 4 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1014.2.g.e | ✓ | 48 |
3.b | odd | 2 | 1 | inner | 1014.2.g.e | ✓ | 48 |
13.b | even | 2 | 1 | inner | 1014.2.g.e | ✓ | 48 |
13.d | odd | 4 | 2 | inner | 1014.2.g.e | ✓ | 48 |
39.d | odd | 2 | 1 | inner | 1014.2.g.e | ✓ | 48 |
39.f | even | 4 | 2 | inner | 1014.2.g.e | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1014.2.g.e | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
1014.2.g.e | ✓ | 48 | 3.b | odd | 2 | 1 | inner |
1014.2.g.e | ✓ | 48 | 13.b | even | 2 | 1 | inner |
1014.2.g.e | ✓ | 48 | 13.d | odd | 4 | 2 | inner |
1014.2.g.e | ✓ | 48 | 39.d | odd | 2 | 1 | inner |
1014.2.g.e | ✓ | 48 | 39.f | even | 4 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1014, [\chi])\):
\( T_{5}^{24} + 461T_{5}^{20} + 64954T_{5}^{16} + 3312721T_{5}^{12} + 50551376T_{5}^{8} + 81750528T_{5}^{4} + 4096 \)
|
\( T_{7}^{24} + 957T_{7}^{20} + 293514T_{7}^{16} + 31671457T_{7}^{12} + 981804448T_{7}^{8} + 853511424T_{7}^{4} + 116985856 \)
|