Properties

Label 1014.2.g.e
Level $1014$
Weight $2$
Character orbit 1014.g
Analytic conductor $8.097$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(239,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 48 q - 4 q^{3} + 20 q^{9} - 48 q^{16} - 32 q^{22} + 116 q^{27} + 8 q^{40} - 40 q^{42} + 4 q^{48} - 144 q^{55} - 80 q^{61} + 96 q^{66} - 56 q^{79} + 84 q^{81} + 224 q^{87} - 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
239.1 −0.707107 0.707107i −1.68568 + 0.398108i 1.00000i 2.32916 + 2.32916i 1.47346 + 0.910449i −2.38633 2.38633i 0.707107 0.707107i 2.68302 1.34216i 3.29393i
239.2 −0.707107 0.707107i −1.13362 1.30955i 1.00000i −0.0594916 0.0594916i −0.124399 + 1.72758i −3.26082 3.26082i 0.707107 0.707107i −0.429819 + 2.96905i 0.0841338i
239.3 −0.707107 0.707107i −0.257671 + 1.71278i 1.00000i 2.81946 + 2.81946i 1.39332 1.02892i −0.454181 0.454181i 0.707107 0.707107i −2.86721 0.882666i 3.98732i
239.4 −0.707107 0.707107i 1.58955 + 0.688001i 1.00000i −0.822256 0.822256i −0.637488 1.61047i −1.88206 1.88206i 0.707107 0.707107i 2.05331 + 2.18722i 1.16285i
239.5 −0.707107 0.707107i −0.739750 + 1.56613i 1.00000i −2.01447 2.01447i 1.63050 0.584341i −2.99993 2.99993i 0.707107 0.707107i −1.90554 2.31709i 2.84889i
239.6 −0.707107 0.707107i −1.68568 0.398108i 1.00000i 2.32916 + 2.32916i 0.910449 + 1.47346i 2.38633 + 2.38633i 0.707107 0.707107i 2.68302 + 1.34216i 3.29393i
239.7 −0.707107 0.707107i 1.72717 + 0.129918i 1.00000i −1.54530 1.54530i −1.12943 1.31316i −0.651496 0.651496i 0.707107 0.707107i 2.96624 + 0.448782i 2.18538i
239.8 −0.707107 0.707107i −0.257671 1.71278i 1.00000i 2.81946 + 2.81946i −1.02892 + 1.39332i 0.454181 + 0.454181i 0.707107 0.707107i −2.86721 + 0.882666i 3.98732i
239.9 −0.707107 0.707107i 1.72717 0.129918i 1.00000i −1.54530 1.54530i −1.31316 1.12943i 0.651496 + 0.651496i 0.707107 0.707107i 2.96624 0.448782i 2.18538i
239.10 −0.707107 0.707107i 1.58955 0.688001i 1.00000i −0.822256 0.822256i −1.61047 0.637488i 1.88206 + 1.88206i 0.707107 0.707107i 2.05331 2.18722i 1.16285i
239.11 −0.707107 0.707107i −1.13362 + 1.30955i 1.00000i −0.0594916 0.0594916i 1.72758 0.124399i 3.26082 + 3.26082i 0.707107 0.707107i −0.429819 2.96905i 0.0841338i
239.12 −0.707107 0.707107i −0.739750 1.56613i 1.00000i −2.01447 2.01447i −0.584341 + 1.63050i 2.99993 + 2.99993i 0.707107 0.707107i −1.90554 + 2.31709i 2.84889i
239.13 0.707107 + 0.707107i −0.739750 1.56613i 1.00000i 2.01447 + 2.01447i 0.584341 1.63050i −2.99993 2.99993i −0.707107 + 0.707107i −1.90554 + 2.31709i 2.84889i
239.14 0.707107 + 0.707107i −1.13362 + 1.30955i 1.00000i 0.0594916 + 0.0594916i −1.72758 + 0.124399i −3.26082 3.26082i −0.707107 + 0.707107i −0.429819 2.96905i 0.0841338i
239.15 0.707107 + 0.707107i 1.58955 0.688001i 1.00000i 0.822256 + 0.822256i 1.61047 + 0.637488i −1.88206 1.88206i −0.707107 + 0.707107i 2.05331 2.18722i 1.16285i
239.16 0.707107 + 0.707107i 1.72717 0.129918i 1.00000i 1.54530 + 1.54530i 1.31316 + 1.12943i −0.651496 0.651496i −0.707107 + 0.707107i 2.96624 0.448782i 2.18538i
239.17 0.707107 + 0.707107i −0.257671 1.71278i 1.00000i −2.81946 2.81946i 1.02892 1.39332i −0.454181 0.454181i −0.707107 + 0.707107i −2.86721 + 0.882666i 3.98732i
239.18 0.707107 + 0.707107i 1.72717 + 0.129918i 1.00000i 1.54530 + 1.54530i 1.12943 + 1.31316i 0.651496 + 0.651496i −0.707107 + 0.707107i 2.96624 + 0.448782i 2.18538i
239.19 0.707107 + 0.707107i −1.68568 0.398108i 1.00000i −2.32916 2.32916i −0.910449 1.47346i −2.38633 2.38633i −0.707107 + 0.707107i 2.68302 + 1.34216i 3.29393i
239.20 0.707107 + 0.707107i −0.739750 + 1.56613i 1.00000i 2.01447 + 2.01447i −1.63050 + 0.584341i 2.99993 + 2.99993i −0.707107 + 0.707107i −1.90554 2.31709i 2.84889i
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 239.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.b even 2 1 inner
13.d odd 4 2 inner
39.d odd 2 1 inner
39.f even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.2.g.e 48
3.b odd 2 1 inner 1014.2.g.e 48
13.b even 2 1 inner 1014.2.g.e 48
13.d odd 4 2 inner 1014.2.g.e 48
39.d odd 2 1 inner 1014.2.g.e 48
39.f even 4 2 inner 1014.2.g.e 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1014.2.g.e 48 1.a even 1 1 trivial
1014.2.g.e 48 3.b odd 2 1 inner
1014.2.g.e 48 13.b even 2 1 inner
1014.2.g.e 48 13.d odd 4 2 inner
1014.2.g.e 48 39.d odd 2 1 inner
1014.2.g.e 48 39.f even 4 2 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1014, [\chi])\):

\( T_{5}^{24} + 461T_{5}^{20} + 64954T_{5}^{16} + 3312721T_{5}^{12} + 50551376T_{5}^{8} + 81750528T_{5}^{4} + 4096 \) Copy content Toggle raw display
\( T_{7}^{24} + 957T_{7}^{20} + 293514T_{7}^{16} + 31671457T_{7}^{12} + 981804448T_{7}^{8} + 853511424T_{7}^{4} + 116985856 \) Copy content Toggle raw display