Properties

Label 1014.2.g.d.437.3
Level $1014$
Weight $2$
Character 1014.437
Analytic conductor $8.097$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(239,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.9349208943630483456.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 437.3
Root \(0.500000 + 1.74530i\) of defining polynomial
Character \(\chi\) \(=\) 1014.437
Dual form 1014.2.g.d.239.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(0.796225 - 1.53819i) q^{3} -1.00000i q^{4} +(-2.76293 + 2.76293i) q^{5} +(0.524648 + 1.65068i) q^{6} +(1.79623 - 1.79623i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-1.73205 - 2.44949i) q^{9} -3.90738i q^{10} +(-0.412157 - 0.412157i) q^{11} +(-1.53819 - 0.796225i) q^{12} +2.54025i q^{14} +(2.05000 + 6.44983i) q^{15} -1.00000 q^{16} +1.09400 q^{17} +(2.95680 + 0.507306i) q^{18} +(0.971553 + 0.971553i) q^{19} +(2.76293 + 2.76293i) q^{20} +(-1.33273 - 4.19313i) q^{21} +0.582877 q^{22} -1.75292 q^{23} +(1.65068 - 0.524648i) q^{24} -10.2676i q^{25} +(-5.14688 + 0.713876i) q^{27} +(-1.79623 - 1.79623i) q^{28} -5.92330i q^{29} +(-6.01029 - 3.11115i) q^{30} +(-6.49983 - 6.49983i) q^{31} +(0.707107 - 0.707107i) q^{32} +(-0.962144 + 0.305805i) q^{33} +(-0.773575 + 0.773575i) q^{34} +9.92570i q^{35} +(-2.44949 + 1.73205i) q^{36} +(-2.18840 + 2.18840i) q^{37} -1.37398 q^{38} -3.90738 q^{40} +(3.74650 - 3.74650i) q^{41} +(3.90738 + 2.02261i) q^{42} -3.76778i q^{43} +(-0.412157 + 0.412157i) q^{44} +(11.5533 + 1.98224i) q^{45} +(1.23950 - 1.23950i) q^{46} +(-5.51114 - 5.51114i) q^{47} +(-0.796225 + 1.53819i) q^{48} +0.547150i q^{49} +(7.26029 + 7.26029i) q^{50} +(0.871071 - 1.68278i) q^{51} -3.04435i q^{53} +(3.13461 - 4.14418i) q^{54} +2.27752 q^{55} +2.54025 q^{56} +(2.26801 - 0.720857i) q^{57} +(4.18840 + 4.18840i) q^{58} +(-5.99556 - 5.99556i) q^{59} +(6.44983 - 2.05000i) q^{60} +9.34533 q^{61} +9.19215 q^{62} +(-7.51099 - 1.28868i) q^{63} +1.00000i q^{64} +(0.464102 - 0.896575i) q^{66} +(-4.66788 - 4.66788i) q^{67} -1.09400i q^{68} +(-1.39572 + 2.69632i) q^{69} +(-7.01853 - 7.01853i) q^{70} +(0.601383 - 0.601383i) q^{71} +(0.507306 - 2.95680i) q^{72} +(5.18078 - 5.18078i) q^{73} -3.09487i q^{74} +(-15.7935 - 8.17533i) q^{75} +(0.971553 - 0.971553i) q^{76} -1.48065 q^{77} -13.1089 q^{79} +(2.76293 - 2.76293i) q^{80} +(-3.00000 + 8.48528i) q^{81} +5.29835i q^{82} +(-5.15394 + 5.15394i) q^{83} +(-4.19313 + 1.33273i) q^{84} +(-3.02265 + 3.02265i) q^{85} +(2.66422 + 2.66422i) q^{86} +(-9.11115 - 4.71628i) q^{87} -0.582877i q^{88} +(-6.85191 - 6.85191i) q^{89} +(-9.57108 + 6.76778i) q^{90} +1.75292i q^{92} +(-15.1733 + 4.82264i) q^{93} +7.79393 q^{94} -5.36867 q^{95} +(-0.524648 - 1.65068i) q^{96} +(-0.433704 - 0.433704i) q^{97} +(-0.386893 - 0.386893i) q^{98} +(-0.295697 + 1.72345i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{7} + 24 q^{15} - 16 q^{16} - 32 q^{19} + 24 q^{21} - 16 q^{28} - 16 q^{31} - 24 q^{33} - 24 q^{34} + 8 q^{37} + 48 q^{45} + 48 q^{55} + 24 q^{57} + 24 q^{58} + 24 q^{60} + 48 q^{61} - 48 q^{66}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0.796225 1.53819i 0.459701 0.888074i
\(4\) 1.00000i 0.500000i
\(5\) −2.76293 + 2.76293i −1.23562 + 1.23562i −0.273849 + 0.961773i \(0.588297\pi\)
−0.961773 + 0.273849i \(0.911703\pi\)
\(6\) 0.524648 + 1.65068i 0.214186 + 0.673887i
\(7\) 1.79623 1.79623i 0.678909 0.678909i −0.280844 0.959753i \(-0.590614\pi\)
0.959753 + 0.280844i \(0.0906144\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) −1.73205 2.44949i −0.577350 0.816497i
\(10\) 3.90738i 1.23562i
\(11\) −0.412157 0.412157i −0.124270 0.124270i 0.642237 0.766506i \(-0.278007\pi\)
−0.766506 + 0.642237i \(0.778007\pi\)
\(12\) −1.53819 0.796225i −0.444037 0.229850i
\(13\) 0 0
\(14\) 2.54025i 0.678909i
\(15\) 2.05000 + 6.44983i 0.529307 + 1.66534i
\(16\) −1.00000 −0.250000
\(17\) 1.09400 0.265334 0.132667 0.991161i \(-0.457646\pi\)
0.132667 + 0.991161i \(0.457646\pi\)
\(18\) 2.95680 + 0.507306i 0.696923 + 0.119573i
\(19\) 0.971553 + 0.971553i 0.222890 + 0.222890i 0.809714 0.586825i \(-0.199622\pi\)
−0.586825 + 0.809714i \(0.699622\pi\)
\(20\) 2.76293 + 2.76293i 0.617811 + 0.617811i
\(21\) −1.33273 4.19313i −0.290826 0.915017i
\(22\) 0.582877 0.124270
\(23\) −1.75292 −0.365509 −0.182755 0.983159i \(-0.558501\pi\)
−0.182755 + 0.983159i \(0.558501\pi\)
\(24\) 1.65068 0.524648i 0.336944 0.107093i
\(25\) 10.2676i 2.05352i
\(26\) 0 0
\(27\) −5.14688 + 0.713876i −0.990518 + 0.137386i
\(28\) −1.79623 1.79623i −0.339455 0.339455i
\(29\) 5.92330i 1.09993i −0.835188 0.549965i \(-0.814641\pi\)
0.835188 0.549965i \(-0.185359\pi\)
\(30\) −6.01029 3.11115i −1.09732 0.568016i
\(31\) −6.49983 6.49983i −1.16740 1.16740i −0.982816 0.184588i \(-0.940905\pi\)
−0.184588 0.982816i \(-0.559095\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) −0.962144 + 0.305805i −0.167488 + 0.0532339i
\(34\) −0.773575 + 0.773575i −0.132667 + 0.132667i
\(35\) 9.92570i 1.67775i
\(36\) −2.44949 + 1.73205i −0.408248 + 0.288675i
\(37\) −2.18840 + 2.18840i −0.359772 + 0.359772i −0.863729 0.503957i \(-0.831877\pi\)
0.503957 + 0.863729i \(0.331877\pi\)
\(38\) −1.37398 −0.222890
\(39\) 0 0
\(40\) −3.90738 −0.617811
\(41\) 3.74650 3.74650i 0.585105 0.585105i −0.351197 0.936302i \(-0.614225\pi\)
0.936302 + 0.351197i \(0.114225\pi\)
\(42\) 3.90738 + 2.02261i 0.602922 + 0.312095i
\(43\) 3.76778i 0.574581i −0.957844 0.287290i \(-0.907246\pi\)
0.957844 0.287290i \(-0.0927545\pi\)
\(44\) −0.412157 + 0.412157i −0.0621349 + 0.0621349i
\(45\) 11.5533 + 1.98224i 1.72227 + 0.295494i
\(46\) 1.23950 1.23950i 0.182755 0.182755i
\(47\) −5.51114 5.51114i −0.803883 0.803883i 0.179817 0.983700i \(-0.442449\pi\)
−0.983700 + 0.179817i \(0.942449\pi\)
\(48\) −0.796225 + 1.53819i −0.114925 + 0.222018i
\(49\) 0.547150i 0.0781643i
\(50\) 7.26029 + 7.26029i 1.02676 + 1.02676i
\(51\) 0.871071 1.68278i 0.121974 0.235636i
\(52\) 0 0
\(53\) 3.04435i 0.418173i −0.977897 0.209087i \(-0.932951\pi\)
0.977897 0.209087i \(-0.0670490\pi\)
\(54\) 3.13461 4.14418i 0.426566 0.563952i
\(55\) 2.27752 0.307101
\(56\) 2.54025 0.339455
\(57\) 2.26801 0.720857i 0.300405 0.0954799i
\(58\) 4.18840 + 4.18840i 0.549965 + 0.549965i
\(59\) −5.99556 5.99556i −0.780556 0.780556i 0.199369 0.979925i \(-0.436111\pi\)
−0.979925 + 0.199369i \(0.936111\pi\)
\(60\) 6.44983 2.05000i 0.832670 0.264653i
\(61\) 9.34533 1.19655 0.598273 0.801292i \(-0.295854\pi\)
0.598273 + 0.801292i \(0.295854\pi\)
\(62\) 9.19215 1.16740
\(63\) −7.51099 1.28868i −0.946296 0.162359i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) 0.464102 0.896575i 0.0571270 0.110361i
\(67\) −4.66788 4.66788i −0.570272 0.570272i 0.361932 0.932204i \(-0.382117\pi\)
−0.932204 + 0.361932i \(0.882117\pi\)
\(68\) 1.09400i 0.132667i
\(69\) −1.39572 + 2.69632i −0.168025 + 0.324599i
\(70\) −7.01853 7.01853i −0.838875 0.838875i
\(71\) 0.601383 0.601383i 0.0713711 0.0713711i −0.670520 0.741891i \(-0.733929\pi\)
0.741891 + 0.670520i \(0.233929\pi\)
\(72\) 0.507306 2.95680i 0.0597866 0.348462i
\(73\) 5.18078 5.18078i 0.606365 0.606365i −0.335629 0.941994i \(-0.608949\pi\)
0.941994 + 0.335629i \(0.108949\pi\)
\(74\) 3.09487i 0.359772i
\(75\) −15.7935 8.17533i −1.82368 0.944006i
\(76\) 0.971553 0.971553i 0.111445 0.111445i
\(77\) −1.48065 −0.168736
\(78\) 0 0
\(79\) −13.1089 −1.47486 −0.737431 0.675422i \(-0.763961\pi\)
−0.737431 + 0.675422i \(0.763961\pi\)
\(80\) 2.76293 2.76293i 0.308905 0.308905i
\(81\) −3.00000 + 8.48528i −0.333333 + 0.942809i
\(82\) 5.29835i 0.585105i
\(83\) −5.15394 + 5.15394i −0.565719 + 0.565719i −0.930926 0.365208i \(-0.880998\pi\)
0.365208 + 0.930926i \(0.380998\pi\)
\(84\) −4.19313 + 1.33273i −0.457508 + 0.145413i
\(85\) −3.02265 + 3.02265i −0.327852 + 0.327852i
\(86\) 2.66422 + 2.66422i 0.287290 + 0.287290i
\(87\) −9.11115 4.71628i −0.976818 0.505638i
\(88\) 0.582877i 0.0621349i
\(89\) −6.85191 6.85191i −0.726301 0.726301i 0.243580 0.969881i \(-0.421678\pi\)
−0.969881 + 0.243580i \(0.921678\pi\)
\(90\) −9.57108 + 6.76778i −1.00888 + 0.713386i
\(91\) 0 0
\(92\) 1.75292i 0.182755i
\(93\) −15.1733 + 4.82264i −1.57340 + 0.500084i
\(94\) 7.79393 0.803883
\(95\) −5.36867 −0.550814
\(96\) −0.524648 1.65068i −0.0535466 0.168472i
\(97\) −0.433704 0.433704i −0.0440360 0.0440360i 0.684746 0.728782i \(-0.259913\pi\)
−0.728782 + 0.684746i \(0.759913\pi\)
\(98\) −0.386893 0.386893i −0.0390821 0.0390821i
\(99\) −0.295697 + 1.72345i −0.0297187 + 0.173213i
\(100\) −10.2676 −1.02676
\(101\) 5.83579 0.580682 0.290341 0.956923i \(-0.406231\pi\)
0.290341 + 0.956923i \(0.406231\pi\)
\(102\) 0.573965 + 1.80584i 0.0568310 + 0.178805i
\(103\) 2.07313i 0.204272i −0.994770 0.102136i \(-0.967432\pi\)
0.994770 0.102136i \(-0.0325677\pi\)
\(104\) 0 0
\(105\) 15.2676 + 7.90310i 1.48997 + 0.771263i
\(106\) 2.15268 + 2.15268i 0.209087 + 0.209087i
\(107\) 3.45856i 0.334351i −0.985927 0.167176i \(-0.946535\pi\)
0.985927 0.167176i \(-0.0534647\pi\)
\(108\) 0.713876 + 5.14688i 0.0686928 + 0.495259i
\(109\) 10.9901 + 10.9901i 1.05266 + 1.05266i 0.998534 + 0.0541251i \(0.0172370\pi\)
0.0541251 + 0.998534i \(0.482763\pi\)
\(110\) −1.61045 + 1.61045i −0.153551 + 0.153551i
\(111\) 1.62372 + 5.10864i 0.154116 + 0.484891i
\(112\) −1.79623 + 1.79623i −0.169727 + 0.169727i
\(113\) 10.8971i 1.02512i −0.858653 0.512558i \(-0.828698\pi\)
0.858653 0.512558i \(-0.171302\pi\)
\(114\) −1.09400 + 2.11345i −0.102463 + 0.197942i
\(115\) 4.84320 4.84320i 0.451631 0.451631i
\(116\) −5.92330 −0.549965
\(117\) 0 0
\(118\) 8.47900 0.780556
\(119\) 1.96507 1.96507i 0.180138 0.180138i
\(120\) −3.11115 + 6.01029i −0.284008 + 0.548662i
\(121\) 10.6603i 0.969114i
\(122\) −6.60814 + 6.60814i −0.598273 + 0.598273i
\(123\) −2.77977 8.74588i −0.250643 0.788589i
\(124\) −6.49983 + 6.49983i −0.583702 + 0.583702i
\(125\) 14.5541 + 14.5541i 1.30175 + 1.30175i
\(126\) 6.22231 4.39984i 0.554327 0.391968i
\(127\) 9.31325i 0.826417i 0.910636 + 0.413209i \(0.135592\pi\)
−0.910636 + 0.413209i \(0.864408\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) −5.79555 3.00000i −0.510270 0.264135i
\(130\) 0 0
\(131\) 0.917828i 0.0801910i −0.999196 0.0400955i \(-0.987234\pi\)
0.999196 0.0400955i \(-0.0127662\pi\)
\(132\) 0.305805 + 0.962144i 0.0266169 + 0.0837439i
\(133\) 3.49026 0.302644
\(134\) 6.60137 0.570272
\(135\) 12.2481 16.1929i 1.05415 1.39366i
\(136\) 0.773575 + 0.773575i 0.0663335 + 0.0663335i
\(137\) −6.09427 6.09427i −0.520669 0.520669i 0.397104 0.917773i \(-0.370015\pi\)
−0.917773 + 0.397104i \(0.870015\pi\)
\(138\) −0.919666 2.89351i −0.0782871 0.246312i
\(139\) 3.31325 0.281026 0.140513 0.990079i \(-0.455125\pi\)
0.140513 + 0.990079i \(0.455125\pi\)
\(140\) 9.92570 0.838875
\(141\) −12.8653 + 4.08907i −1.08345 + 0.344362i
\(142\) 0.850484i 0.0713711i
\(143\) 0 0
\(144\) 1.73205 + 2.44949i 0.144338 + 0.204124i
\(145\) 16.3657 + 16.3657i 1.35910 + 1.35910i
\(146\) 7.32673i 0.606365i
\(147\) 0.841620 + 0.435655i 0.0694156 + 0.0359322i
\(148\) 2.18840 + 2.18840i 0.179886 + 0.179886i
\(149\) 5.55437 5.55437i 0.455032 0.455032i −0.441989 0.897021i \(-0.645727\pi\)
0.897021 + 0.441989i \(0.145727\pi\)
\(150\) 16.9485 5.38688i 1.38384 0.439837i
\(151\) −10.2600 + 10.2600i −0.834946 + 0.834946i −0.988189 0.153243i \(-0.951028\pi\)
0.153243 + 0.988189i \(0.451028\pi\)
\(152\) 1.37398i 0.111445i
\(153\) −1.89486 2.67974i −0.153191 0.216644i
\(154\) 1.04698 1.04698i 0.0843680 0.0843680i
\(155\) 35.9172 2.88494
\(156\) 0 0
\(157\) −6.71547 −0.535953 −0.267976 0.963425i \(-0.586355\pi\)
−0.267976 + 0.963425i \(0.586355\pi\)
\(158\) 9.26936 9.26936i 0.737431 0.737431i
\(159\) −4.68278 2.42398i −0.371369 0.192235i
\(160\) 3.90738i 0.308905i
\(161\) −3.14864 + 3.14864i −0.248148 + 0.248148i
\(162\) −3.87868 8.12132i −0.304738 0.638071i
\(163\) 1.11345 1.11345i 0.0872118 0.0872118i −0.662155 0.749367i \(-0.730358\pi\)
0.749367 + 0.662155i \(0.230358\pi\)
\(164\) −3.74650 3.74650i −0.292552 0.292552i
\(165\) 1.81342 3.50326i 0.141175 0.272728i
\(166\) 7.28877i 0.565719i
\(167\) 17.2850 + 17.2850i 1.33755 + 1.33755i 0.898427 + 0.439123i \(0.144711\pi\)
0.439123 + 0.898427i \(0.355289\pi\)
\(168\) 2.02261 3.90738i 0.156048 0.301461i
\(169\) 0 0
\(170\) 4.27467i 0.327852i
\(171\) 0.697030 4.06259i 0.0533032 0.310674i
\(172\) −3.76778 −0.287290
\(173\) 20.7673 1.57891 0.789456 0.613807i \(-0.210363\pi\)
0.789456 + 0.613807i \(0.210363\pi\)
\(174\) 9.77747 3.10764i 0.741228 0.235590i
\(175\) −18.4429 18.4429i −1.39415 1.39415i
\(176\) 0.412157 + 0.412157i 0.0310675 + 0.0310675i
\(177\) −13.9961 + 4.44849i −1.05201 + 0.334369i
\(178\) 9.69006 0.726301
\(179\) 14.0004 1.04644 0.523218 0.852199i \(-0.324731\pi\)
0.523218 + 0.852199i \(0.324731\pi\)
\(180\) 1.98224 11.5533i 0.147747 0.861134i
\(181\) 25.5405i 1.89841i 0.314653 + 0.949207i \(0.398112\pi\)
−0.314653 + 0.949207i \(0.601888\pi\)
\(182\) 0 0
\(183\) 7.44098 14.3749i 0.550053 1.06262i
\(184\) −1.23950 1.23950i −0.0913773 0.0913773i
\(185\) 12.0928i 0.889083i
\(186\) 7.31902 14.1393i 0.536656 1.03674i
\(187\) −0.450899 0.450899i −0.0329730 0.0329730i
\(188\) −5.51114 + 5.51114i −0.401941 + 0.401941i
\(189\) −7.96267 + 10.5272i −0.579199 + 0.765744i
\(190\) 3.79623 3.79623i 0.275407 0.275407i
\(191\) 23.6463i 1.71099i 0.517814 + 0.855493i \(0.326746\pi\)
−0.517814 + 0.855493i \(0.673254\pi\)
\(192\) 1.53819 + 0.796225i 0.111009 + 0.0574626i
\(193\) 7.49437 7.49437i 0.539457 0.539457i −0.383913 0.923369i \(-0.625424\pi\)
0.923369 + 0.383913i \(0.125424\pi\)
\(194\) 0.613350 0.0440360
\(195\) 0 0
\(196\) 0.547150 0.0390821
\(197\) −2.45207 + 2.45207i −0.174703 + 0.174703i −0.789042 0.614339i \(-0.789423\pi\)
0.614339 + 0.789042i \(0.289423\pi\)
\(198\) −1.00957 1.42775i −0.0717472 0.101466i
\(199\) 3.08804i 0.218905i 0.993992 + 0.109453i \(0.0349098\pi\)
−0.993992 + 0.109453i \(0.965090\pi\)
\(200\) 7.26029 7.26029i 0.513380 0.513380i
\(201\) −10.8968 + 3.46340i −0.768598 + 0.244289i
\(202\) −4.12652 + 4.12652i −0.290341 + 0.290341i
\(203\) −10.6396 10.6396i −0.746752 0.746752i
\(204\) −1.68278 0.871071i −0.117818 0.0609871i
\(205\) 20.7026i 1.44594i
\(206\) 1.46593 + 1.46593i 0.102136 + 0.102136i
\(207\) 3.03615 + 4.29376i 0.211027 + 0.298437i
\(208\) 0 0
\(209\) 0.800864i 0.0553969i
\(210\) −16.3842 + 5.20750i −1.13061 + 0.359351i
\(211\) −4.95801 −0.341323 −0.170662 0.985330i \(-0.554591\pi\)
−0.170662 + 0.985330i \(0.554591\pi\)
\(212\) −3.04435 −0.209087
\(213\) −0.446205 1.40388i −0.0305734 0.0961921i
\(214\) 2.44557 + 2.44557i 0.167176 + 0.167176i
\(215\) 10.4101 + 10.4101i 0.709964 + 0.709964i
\(216\) −4.14418 3.13461i −0.281976 0.213283i
\(217\) −23.3503 −1.58512
\(218\) −15.5423 −1.05266
\(219\) −3.84395 12.0941i −0.259750 0.817243i
\(220\) 2.27752i 0.153551i
\(221\) 0 0
\(222\) −4.76050 2.46422i −0.319504 0.165387i
\(223\) −13.4803 13.4803i −0.902710 0.902710i 0.0929595 0.995670i \(-0.470367\pi\)
−0.995670 + 0.0929595i \(0.970367\pi\)
\(224\) 2.54025i 0.169727i
\(225\) −25.1504 + 17.7840i −1.67669 + 1.18560i
\(226\) 7.70543 + 7.70543i 0.512558 + 0.512558i
\(227\) −3.79025 + 3.79025i −0.251568 + 0.251568i −0.821613 0.570045i \(-0.806926\pi\)
0.570045 + 0.821613i \(0.306926\pi\)
\(228\) −0.720857 2.26801i −0.0477399 0.150202i
\(229\) −2.78436 + 2.78436i −0.183996 + 0.183996i −0.793094 0.609099i \(-0.791531\pi\)
0.609099 + 0.793094i \(0.291531\pi\)
\(230\) 6.84932i 0.451631i
\(231\) −1.17893 + 2.27752i −0.0775681 + 0.149850i
\(232\) 4.18840 4.18840i 0.274982 0.274982i
\(233\) 3.83663 0.251346 0.125673 0.992072i \(-0.459891\pi\)
0.125673 + 0.992072i \(0.459891\pi\)
\(234\) 0 0
\(235\) 30.4538 1.98659
\(236\) −5.99556 + 5.99556i −0.390278 + 0.390278i
\(237\) −10.4376 + 20.1639i −0.677995 + 1.30979i
\(238\) 2.77903i 0.180138i
\(239\) −0.751524 + 0.751524i −0.0486121 + 0.0486121i −0.730995 0.682383i \(-0.760944\pi\)
0.682383 + 0.730995i \(0.260944\pi\)
\(240\) −2.05000 6.44983i −0.132327 0.416335i
\(241\) 19.7732 19.7732i 1.27371 1.27371i 0.329577 0.944129i \(-0.393094\pi\)
0.944129 0.329577i \(-0.106906\pi\)
\(242\) 7.53794 + 7.53794i 0.484557 + 0.484557i
\(243\) 10.6633 + 11.3708i 0.684050 + 0.729435i
\(244\) 9.34533i 0.598273i
\(245\) −1.51174 1.51174i −0.0965815 0.0965815i
\(246\) 8.14986 + 4.21868i 0.519616 + 0.268973i
\(247\) 0 0
\(248\) 9.19215i 0.583702i
\(249\) 3.82404 + 12.0314i 0.242339 + 0.762461i
\(250\) −20.5825 −1.30175
\(251\) 15.1264 0.954770 0.477385 0.878694i \(-0.341585\pi\)
0.477385 + 0.878694i \(0.341585\pi\)
\(252\) −1.28868 + 7.51099i −0.0811793 + 0.473148i
\(253\) 0.722478 + 0.722478i 0.0454218 + 0.0454218i
\(254\) −6.58546 6.58546i −0.413209 0.413209i
\(255\) 2.24270 + 7.05612i 0.140443 + 0.441871i
\(256\) 1.00000 0.0625000
\(257\) 0.357201 0.0222816 0.0111408 0.999938i \(-0.496454\pi\)
0.0111408 + 0.999938i \(0.496454\pi\)
\(258\) 6.21940 1.97676i 0.387203 0.123067i
\(259\) 7.86174i 0.488505i
\(260\) 0 0
\(261\) −14.5091 + 10.2595i −0.898088 + 0.635044i
\(262\) 0.649002 + 0.649002i 0.0400955 + 0.0400955i
\(263\) 2.14777i 0.132437i 0.997805 + 0.0662186i \(0.0210935\pi\)
−0.997805 + 0.0662186i \(0.978907\pi\)
\(264\) −0.896575 0.464102i −0.0551804 0.0285635i
\(265\) 8.41133 + 8.41133i 0.516704 + 0.516704i
\(266\) −2.46798 + 2.46798i −0.151322 + 0.151322i
\(267\) −15.9952 + 5.08387i −0.978890 + 0.311128i
\(268\) −4.66788 + 4.66788i −0.285136 + 0.285136i
\(269\) 24.5235i 1.49522i −0.664135 0.747612i \(-0.731200\pi\)
0.664135 0.747612i \(-0.268800\pi\)
\(270\) 2.78938 + 20.1108i 0.169756 + 1.22391i
\(271\) −15.5041 + 15.5041i −0.941805 + 0.941805i −0.998397 0.0565921i \(-0.981977\pi\)
0.0565921 + 0.998397i \(0.481977\pi\)
\(272\) −1.09400 −0.0663335
\(273\) 0 0
\(274\) 8.61860 0.520669
\(275\) −4.23186 + 4.23186i −0.255191 + 0.255191i
\(276\) 2.69632 + 1.39572i 0.162300 + 0.0840125i
\(277\) 18.6503i 1.12059i 0.828293 + 0.560295i \(0.189312\pi\)
−0.828293 + 0.560295i \(0.810688\pi\)
\(278\) −2.34282 + 2.34282i −0.140513 + 0.140513i
\(279\) −4.66323 + 27.1793i −0.279180 + 1.62718i
\(280\) −7.01853 + 7.01853i −0.419438 + 0.419438i
\(281\) 11.2782 + 11.2782i 0.672801 + 0.672801i 0.958361 0.285560i \(-0.0921797\pi\)
−0.285560 + 0.958361i \(0.592180\pi\)
\(282\) 6.20573 11.9885i 0.369546 0.713907i
\(283\) 4.71513i 0.280285i 0.990131 + 0.140143i \(0.0447561\pi\)
−0.990131 + 0.140143i \(0.955244\pi\)
\(284\) −0.601383 0.601383i −0.0356855 0.0356855i
\(285\) −4.27467 + 8.25803i −0.253210 + 0.489164i
\(286\) 0 0
\(287\) 13.4591i 0.794466i
\(288\) −2.95680 0.507306i −0.174231 0.0298933i
\(289\) −15.8032 −0.929598
\(290\) −23.1446 −1.35910
\(291\) −1.01244 + 0.321793i −0.0593505 + 0.0188638i
\(292\) −5.18078 5.18078i −0.303182 0.303182i
\(293\) 15.1005 + 15.1005i 0.882179 + 0.882179i 0.993756 0.111576i \(-0.0355900\pi\)
−0.111576 + 0.993756i \(0.535590\pi\)
\(294\) −0.903170 + 0.287061i −0.0526739 + 0.0167417i
\(295\) 33.1307 1.92894
\(296\) −3.09487 −0.179886
\(297\) 2.41555 + 1.82709i 0.140164 + 0.106019i
\(298\) 7.85507i 0.455032i
\(299\) 0 0
\(300\) −8.17533 + 15.7935i −0.472003 + 0.911839i
\(301\) −6.76778 6.76778i −0.390088 0.390088i
\(302\) 14.5098i 0.834946i
\(303\) 4.64660 8.97654i 0.266940 0.515689i
\(304\) −0.971553 0.971553i −0.0557224 0.0557224i
\(305\) −25.8205 + 25.8205i −1.47848 + 1.47848i
\(306\) 3.23474 + 0.554993i 0.184917 + 0.0317268i
\(307\) 16.2259 16.2259i 0.926063 0.926063i −0.0713857 0.997449i \(-0.522742\pi\)
0.997449 + 0.0713857i \(0.0227421\pi\)
\(308\) 1.48065i 0.0843680i
\(309\) −3.18887 1.65068i −0.181409 0.0939040i
\(310\) −25.3973 + 25.3973i −1.44247 + 1.44247i
\(311\) −32.8464 −1.86255 −0.931275 0.364317i \(-0.881303\pi\)
−0.931275 + 0.364317i \(0.881303\pi\)
\(312\) 0 0
\(313\) 11.0629 0.625311 0.312655 0.949867i \(-0.398782\pi\)
0.312655 + 0.949867i \(0.398782\pi\)
\(314\) 4.74855 4.74855i 0.267976 0.267976i
\(315\) 24.3129 17.1918i 1.36988 0.968649i
\(316\) 13.1089i 0.737431i
\(317\) −17.5500 + 17.5500i −0.985704 + 0.985704i −0.999899 0.0141948i \(-0.995481\pi\)
0.0141948 + 0.999899i \(0.495481\pi\)
\(318\) 5.02524 1.59721i 0.281802 0.0895670i
\(319\) −2.44133 + 2.44133i −0.136688 + 0.136688i
\(320\) −2.76293 2.76293i −0.154453 0.154453i
\(321\) −5.31992 2.75379i −0.296929 0.153702i
\(322\) 4.45285i 0.248148i
\(323\) 1.06288 + 1.06288i 0.0591402 + 0.0591402i
\(324\) 8.48528 + 3.00000i 0.471405 + 0.166667i
\(325\) 0 0
\(326\) 1.57465i 0.0872118i
\(327\) 25.6554 8.15424i 1.41875 0.450931i
\(328\) 5.29835 0.292552
\(329\) −19.7985 −1.09153
\(330\) 1.19490 + 3.75946i 0.0657769 + 0.206952i
\(331\) 3.26963 + 3.26963i 0.179715 + 0.179715i 0.791232 0.611517i \(-0.209440\pi\)
−0.611517 + 0.791232i \(0.709440\pi\)
\(332\) 5.15394 + 5.15394i 0.282859 + 0.282859i
\(333\) 9.15090 + 1.57005i 0.501466 + 0.0860380i
\(334\) −24.4446 −1.33755
\(335\) 25.7941 1.40928
\(336\) 1.33273 + 4.19313i 0.0727066 + 0.228754i
\(337\) 7.78436i 0.424041i 0.977265 + 0.212021i \(0.0680044\pi\)
−0.977265 + 0.212021i \(0.931996\pi\)
\(338\) 0 0
\(339\) −16.7618 8.67656i −0.910378 0.471246i
\(340\) 3.02265 + 3.02265i 0.163926 + 0.163926i
\(341\) 5.35789i 0.290146i
\(342\) 2.37981 + 3.36556i 0.128685 + 0.181989i
\(343\) 13.5564 + 13.5564i 0.731976 + 0.731976i
\(344\) 2.66422 2.66422i 0.143645 0.143645i
\(345\) −3.59348 11.3060i −0.193467 0.608697i
\(346\) −14.6847 + 14.6847i −0.789456 + 0.789456i
\(347\) 10.8435i 0.582111i 0.956706 + 0.291056i \(0.0940065\pi\)
−0.956706 + 0.291056i \(0.905994\pi\)
\(348\) −4.71628 + 9.11115i −0.252819 + 0.488409i
\(349\) 10.8700 10.8700i 0.581856 0.581856i −0.353557 0.935413i \(-0.615028\pi\)
0.935413 + 0.353557i \(0.115028\pi\)
\(350\) 26.0822 1.39415
\(351\) 0 0
\(352\) −0.582877 −0.0310675
\(353\) 1.32046 1.32046i 0.0702808 0.0702808i −0.671093 0.741373i \(-0.734175\pi\)
0.741373 + 0.671093i \(0.234175\pi\)
\(354\) 6.75120 13.0423i 0.358822 0.693191i
\(355\) 3.32316i 0.176375i
\(356\) −6.85191 + 6.85191i −0.363150 + 0.363150i
\(357\) −1.45801 4.58729i −0.0771661 0.242785i
\(358\) −9.89976 + 9.89976i −0.523218 + 0.523218i
\(359\) −12.1336 12.1336i −0.640387 0.640387i 0.310264 0.950650i \(-0.399583\pi\)
−0.950650 + 0.310264i \(0.899583\pi\)
\(360\) 6.76778 + 9.57108i 0.356693 + 0.504440i
\(361\) 17.1122i 0.900641i
\(362\) −18.0599 18.0599i −0.949207 0.949207i
\(363\) −16.3975 8.48796i −0.860645 0.445503i
\(364\) 0 0
\(365\) 28.6283i 1.49847i
\(366\) 4.90300 + 15.4261i 0.256284 + 0.806337i
\(367\) −9.06282 −0.473075 −0.236538 0.971622i \(-0.576013\pi\)
−0.236538 + 0.971622i \(0.576013\pi\)
\(368\) 1.75292 0.0913773
\(369\) −15.6661 2.68788i −0.815546 0.139926i
\(370\) 8.55093 + 8.55093i 0.444541 + 0.444541i
\(371\) −5.46833 5.46833i −0.283902 0.283902i
\(372\) 4.82264 + 15.1733i 0.250042 + 0.786699i
\(373\) −7.57587 −0.392264 −0.196132 0.980578i \(-0.562838\pi\)
−0.196132 + 0.980578i \(0.562838\pi\)
\(374\) 0.637668 0.0329730
\(375\) 33.9752 10.7986i 1.75447 0.557636i
\(376\) 7.79393i 0.401941i
\(377\) 0 0
\(378\) −1.81342 13.0743i −0.0932723 0.672472i
\(379\) −8.53980 8.53980i −0.438660 0.438660i 0.452901 0.891561i \(-0.350389\pi\)
−0.891561 + 0.452901i \(0.850389\pi\)
\(380\) 5.36867i 0.275407i
\(381\) 14.3255 + 7.41544i 0.733920 + 0.379905i
\(382\) −16.7205 16.7205i −0.855493 0.855493i
\(383\) 26.0444 26.0444i 1.33081 1.33081i 0.426157 0.904649i \(-0.359867\pi\)
0.904649 0.426157i \(-0.140133\pi\)
\(384\) −1.65068 + 0.524648i −0.0842359 + 0.0267733i
\(385\) 4.09094 4.09094i 0.208494 0.208494i
\(386\) 10.5986i 0.539457i
\(387\) −9.22913 + 6.52598i −0.469143 + 0.331734i
\(388\) −0.433704 + 0.433704i −0.0220180 + 0.0220180i
\(389\) −14.1012 −0.714961 −0.357481 0.933921i \(-0.616364\pi\)
−0.357481 + 0.933921i \(0.616364\pi\)
\(390\) 0 0
\(391\) −1.91770 −0.0969820
\(392\) −0.386893 + 0.386893i −0.0195411 + 0.0195411i
\(393\) −1.41179 0.730798i −0.0712155 0.0368639i
\(394\) 3.46775i 0.174703i
\(395\) 36.2189 36.2189i 1.82237 1.82237i
\(396\) 1.72345 + 0.295697i 0.0866066 + 0.0148593i
\(397\) 5.55214 5.55214i 0.278654 0.278654i −0.553918 0.832571i \(-0.686868\pi\)
0.832571 + 0.553918i \(0.186868\pi\)
\(398\) −2.18357 2.18357i −0.109453 0.109453i
\(399\) 2.77903 5.36867i 0.139126 0.268770i
\(400\) 10.2676i 0.513380i
\(401\) −15.4546 15.4546i −0.771764 0.771764i 0.206650 0.978415i \(-0.433744\pi\)
−0.978415 + 0.206650i \(0.933744\pi\)
\(402\) 5.25618 10.1542i 0.262154 0.506444i
\(403\) 0 0
\(404\) 5.83579i 0.290341i
\(405\) −15.1555 31.7331i −0.753081 1.57683i
\(406\) 15.0466 0.746752
\(407\) 1.80393 0.0894175
\(408\) 1.80584 0.573965i 0.0894026 0.0284155i
\(409\) 1.58498 + 1.58498i 0.0783720 + 0.0783720i 0.745206 0.666834i \(-0.232351\pi\)
−0.666834 + 0.745206i \(0.732351\pi\)
\(410\) −14.6390 14.6390i −0.722968 0.722968i
\(411\) −14.2266 + 4.52173i −0.701744 + 0.223041i
\(412\) −2.07313 −0.102136
\(413\) −21.5388 −1.05985
\(414\) −5.18303 0.889267i −0.254732 0.0437051i
\(415\) 28.4800i 1.39803i
\(416\) 0 0
\(417\) 2.63809 5.09640i 0.129188 0.249572i
\(418\) 0.566296 + 0.566296i 0.0276985 + 0.0276985i
\(419\) 33.3854i 1.63098i 0.578770 + 0.815491i \(0.303533\pi\)
−0.578770 + 0.815491i \(0.696467\pi\)
\(420\) 7.90310 15.2676i 0.385632 0.744983i
\(421\) −2.25285 2.25285i −0.109797 0.109797i 0.650074 0.759871i \(-0.274738\pi\)
−0.759871 + 0.650074i \(0.774738\pi\)
\(422\) 3.50584 3.50584i 0.170662 0.170662i
\(423\) −3.95391 + 23.0451i −0.192246 + 1.12049i
\(424\) 2.15268 2.15268i 0.104543 0.104543i
\(425\) 11.2328i 0.544869i
\(426\) 1.30821 + 0.677177i 0.0633828 + 0.0328093i
\(427\) 16.7863 16.7863i 0.812346 0.812346i
\(428\) −3.45856 −0.167176
\(429\) 0 0
\(430\) −14.7221 −0.709964
\(431\) 15.3329 15.3329i 0.738562 0.738562i −0.233738 0.972300i \(-0.575096\pi\)
0.972300 + 0.233738i \(0.0750958\pi\)
\(432\) 5.14688 0.713876i 0.247629 0.0343464i
\(433\) 30.0520i 1.44421i −0.691786 0.722103i \(-0.743176\pi\)
0.691786 0.722103i \(-0.256824\pi\)
\(434\) 16.5112 16.5112i 0.792561 0.792561i
\(435\) 38.2043 12.1427i 1.83176 0.582200i
\(436\) 10.9901 10.9901i 0.526330 0.526330i
\(437\) −1.70306 1.70306i −0.0814682 0.0814682i
\(438\) 11.2699 + 5.83373i 0.538497 + 0.278746i
\(439\) 20.8459i 0.994920i −0.867487 0.497460i \(-0.834266\pi\)
0.867487 0.497460i \(-0.165734\pi\)
\(440\) 1.61045 + 1.61045i 0.0767753 + 0.0767753i
\(441\) 1.34024 0.947691i 0.0638209 0.0451282i
\(442\) 0 0
\(443\) 13.0363i 0.619374i −0.950839 0.309687i \(-0.899776\pi\)
0.950839 0.309687i \(-0.100224\pi\)
\(444\) 5.10864 1.62372i 0.242445 0.0770582i
\(445\) 37.8627 1.79487
\(446\) 19.0641 0.902710
\(447\) −4.12114 12.9662i −0.194923 0.613281i
\(448\) 1.79623 + 1.79623i 0.0848637 + 0.0848637i
\(449\) −13.4636 13.4636i −0.635385 0.635385i 0.314028 0.949414i \(-0.398321\pi\)
−0.949414 + 0.314028i \(0.898321\pi\)
\(450\) 5.20882 30.3592i 0.245546 1.43115i
\(451\) −3.08829 −0.145422
\(452\) −10.8971 −0.512558
\(453\) 7.61254 + 23.9511i 0.357668 + 1.12532i
\(454\) 5.36023i 0.251568i
\(455\) 0 0
\(456\) 2.11345 + 1.09400i 0.0989712 + 0.0512313i
\(457\) 15.0333 + 15.0333i 0.703228 + 0.703228i 0.965102 0.261874i \(-0.0843406\pi\)
−0.261874 + 0.965102i \(0.584341\pi\)
\(458\) 3.93768i 0.183996i
\(459\) −5.63069 + 0.780980i −0.262818 + 0.0364530i
\(460\) −4.84320 4.84320i −0.225816 0.225816i
\(461\) −1.07969 + 1.07969i −0.0502864 + 0.0502864i −0.731803 0.681516i \(-0.761321\pi\)
0.681516 + 0.731803i \(0.261321\pi\)
\(462\) −0.776820 2.44408i −0.0361410 0.113709i
\(463\) 21.3272 21.3272i 0.991159 0.991159i −0.00880240 0.999961i \(-0.502802\pi\)
0.999961 + 0.00880240i \(0.00280193\pi\)
\(464\) 5.92330i 0.274982i
\(465\) 28.5982 55.2474i 1.32621 2.56204i
\(466\) −2.71290 + 2.71290i −0.125673 + 0.125673i
\(467\) 11.2935 0.522601 0.261300 0.965258i \(-0.415849\pi\)
0.261300 + 0.965258i \(0.415849\pi\)
\(468\) 0 0
\(469\) −16.7691 −0.774326
\(470\) −21.5341 + 21.5341i −0.993295 + 0.993295i
\(471\) −5.34703 + 10.3297i −0.246378 + 0.475966i
\(472\) 8.47900i 0.390278i
\(473\) −1.55291 + 1.55291i −0.0714031 + 0.0714031i
\(474\) −6.87753 21.6385i −0.315896 0.993891i
\(475\) 9.97552 9.97552i 0.457708 0.457708i
\(476\) −1.96507 1.96507i −0.0900689 0.0900689i
\(477\) −7.45709 + 5.27296i −0.341437 + 0.241432i
\(478\) 1.06282i 0.0486121i
\(479\) 20.5591 + 20.5591i 0.939371 + 0.939371i 0.998264 0.0588932i \(-0.0187571\pi\)
−0.0588932 + 0.998264i \(0.518757\pi\)
\(480\) 6.01029 + 3.11115i 0.274331 + 0.142004i
\(481\) 0 0
\(482\) 27.9636i 1.27371i
\(483\) 2.33618 + 7.35023i 0.106300 + 0.334447i
\(484\) −10.6603 −0.484557
\(485\) 2.39659 0.108824
\(486\) −15.5804 0.500258i −0.706743 0.0226921i
\(487\) 1.79164 + 1.79164i 0.0811869 + 0.0811869i 0.746534 0.665347i \(-0.231716\pi\)
−0.665347 + 0.746534i \(0.731716\pi\)
\(488\) 6.60814 + 6.60814i 0.299137 + 0.299137i
\(489\) −0.826137 2.59924i −0.0373592 0.117542i
\(490\) 2.13792 0.0965815
\(491\) −36.9151 −1.66596 −0.832978 0.553307i \(-0.813366\pi\)
−0.832978 + 0.553307i \(0.813366\pi\)
\(492\) −8.74588 + 2.77977i −0.394295 + 0.125321i
\(493\) 6.48009i 0.291849i
\(494\) 0 0
\(495\) −3.94478 5.57877i −0.177305 0.250747i
\(496\) 6.49983 + 6.49983i 0.291851 + 0.291851i
\(497\) 2.16044i 0.0969090i
\(498\) −11.2115 5.80351i −0.502400 0.260061i
\(499\) −22.3461 22.3461i −1.00035 1.00035i −1.00000 0.000347536i \(-0.999889\pi\)
−0.000347536 1.00000i \(-0.500111\pi\)
\(500\) 14.5541 14.5541i 0.650877 0.650877i
\(501\) 40.3502 12.8248i 1.80272 0.572970i
\(502\) −10.6960 + 10.6960i −0.477385 + 0.477385i
\(503\) 23.3454i 1.04092i −0.853886 0.520460i \(-0.825760\pi\)
0.853886 0.520460i \(-0.174240\pi\)
\(504\) −4.39984 6.22231i −0.195984 0.277164i
\(505\) −16.1239 + 16.1239i −0.717504 + 0.717504i
\(506\) −1.02174 −0.0454218
\(507\) 0 0
\(508\) 9.31325 0.413209
\(509\) −13.1852 + 13.1852i −0.584424 + 0.584424i −0.936116 0.351692i \(-0.885606\pi\)
0.351692 + 0.936116i \(0.385606\pi\)
\(510\) −6.57525 3.40360i −0.291157 0.150714i
\(511\) 18.6117i 0.823333i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −5.69404 4.30690i −0.251398 0.190154i
\(514\) −0.252579 + 0.252579i −0.0111408 + 0.0111408i
\(515\) 5.72793 + 5.72793i 0.252403 + 0.252403i
\(516\) −3.00000 + 5.79555i −0.132068 + 0.255135i
\(517\) 4.54291i 0.199797i
\(518\) −5.55909 5.55909i −0.244252 0.244252i
\(519\) 16.5355 31.9441i 0.725827 1.40219i
\(520\) 0 0
\(521\) 20.1922i 0.884637i 0.896858 + 0.442318i \(0.145844\pi\)
−0.896858 + 0.442318i \(0.854156\pi\)
\(522\) 3.00492 17.5140i 0.131522 0.766566i
\(523\) 28.2236 1.23413 0.617066 0.786912i \(-0.288321\pi\)
0.617066 + 0.786912i \(0.288321\pi\)
\(524\) −0.917828 −0.0400955
\(525\) −43.0534 + 13.6840i −1.87901 + 0.597218i
\(526\) −1.51870 1.51870i −0.0662186 0.0662186i
\(527\) −7.11081 7.11081i −0.309752 0.309752i
\(528\) 0.962144 0.305805i 0.0418719 0.0133085i
\(529\) −19.9273 −0.866403
\(530\) −11.8954 −0.516704
\(531\) −4.30145 + 25.0707i −0.186667 + 1.08797i
\(532\) 3.49026i 0.151322i
\(533\) 0 0
\(534\) 7.71547 14.9051i 0.333881 0.645009i
\(535\) 9.55577 + 9.55577i 0.413132 + 0.413132i
\(536\) 6.60137i 0.285136i
\(537\) 11.1474 21.5352i 0.481048 0.929313i
\(538\) 17.3407 + 17.3407i 0.747612 + 0.747612i
\(539\) 0.225511 0.225511i 0.00971346 0.00971346i
\(540\) −16.1929 12.2481i −0.696831 0.527074i
\(541\) 13.2334 13.2334i 0.568947 0.568947i −0.362887 0.931833i \(-0.618209\pi\)
0.931833 + 0.362887i \(0.118209\pi\)
\(542\) 21.9261i 0.941805i
\(543\) 39.2862 + 20.3360i 1.68593 + 0.872702i
\(544\) 0.773575 0.773575i 0.0331668 0.0331668i
\(545\) −60.7298 −2.60138
\(546\) 0 0
\(547\) −14.7212 −0.629433 −0.314717 0.949186i \(-0.601909\pi\)
−0.314717 + 0.949186i \(0.601909\pi\)
\(548\) −6.09427 + 6.09427i −0.260334 + 0.260334i
\(549\) −16.1866 22.8913i −0.690826 0.976976i
\(550\) 5.98476i 0.255191i
\(551\) 5.75480 5.75480i 0.245163 0.245163i
\(552\) −2.89351 + 0.919666i −0.123156 + 0.0391436i
\(553\) −23.5465 + 23.5465i −1.00130 + 1.00130i
\(554\) −13.1878 13.1878i −0.560295 0.560295i
\(555\) −18.6011 9.62862i −0.789571 0.408712i
\(556\) 3.31325i 0.140513i
\(557\) 8.71827 + 8.71827i 0.369405 + 0.369405i 0.867260 0.497855i \(-0.165879\pi\)
−0.497855 + 0.867260i \(0.665879\pi\)
\(558\) −15.9213 22.5161i −0.674001 0.953181i
\(559\) 0 0
\(560\) 9.92570i 0.419438i
\(561\) −1.05259 + 0.334551i −0.0444402 + 0.0141248i
\(562\) −15.9498 −0.672801
\(563\) −19.7326 −0.831628 −0.415814 0.909450i \(-0.636503\pi\)
−0.415814 + 0.909450i \(0.636503\pi\)
\(564\) 4.08907 + 12.8653i 0.172181 + 0.541726i
\(565\) 30.1080 + 30.1080i 1.26665 + 1.26665i
\(566\) −3.33410 3.33410i −0.140143 0.140143i
\(567\) 9.85280 + 20.6302i 0.413779 + 0.866385i
\(568\) 0.850484 0.0356855
\(569\) 34.9006 1.46311 0.731555 0.681782i \(-0.238795\pi\)
0.731555 + 0.681782i \(0.238795\pi\)
\(570\) −2.81666 8.86196i −0.117977 0.371187i
\(571\) 2.37582i 0.0994248i 0.998764 + 0.0497124i \(0.0158305\pi\)
−0.998764 + 0.0497124i \(0.984170\pi\)
\(572\) 0 0
\(573\) 36.3725 + 18.8278i 1.51948 + 0.786542i
\(574\) 9.51702 + 9.51702i 0.397233 + 0.397233i
\(575\) 17.9983i 0.750581i
\(576\) 2.44949 1.73205i 0.102062 0.0721688i
\(577\) −3.78848 3.78848i −0.157716 0.157716i 0.623838 0.781554i \(-0.285573\pi\)
−0.781554 + 0.623838i \(0.785573\pi\)
\(578\) 11.1745 11.1745i 0.464799 0.464799i
\(579\) −5.56055 17.4950i −0.231089 0.727066i
\(580\) 16.3657 16.3657i 0.679548 0.679548i
\(581\) 18.5153i 0.768143i
\(582\) 0.488365 0.943448i 0.0202434 0.0391072i
\(583\) −1.25475 + 1.25475i −0.0519663 + 0.0519663i
\(584\) 7.32673 0.303182
\(585\) 0 0
\(586\) −21.3553 −0.882179
\(587\) 7.18566 7.18566i 0.296584 0.296584i −0.543090 0.839674i \(-0.682746\pi\)
0.839674 + 0.543090i \(0.182746\pi\)
\(588\) 0.435655 0.841620i 0.0179661 0.0347078i
\(589\) 12.6299i 0.520404i
\(590\) −23.4269 + 23.4269i −0.964471 + 0.964471i
\(591\) 1.81935 + 5.72415i 0.0748380 + 0.235460i
\(592\) 2.18840 2.18840i 0.0899429 0.0899429i
\(593\) 9.76893 + 9.76893i 0.401162 + 0.401162i 0.878642 0.477481i \(-0.158450\pi\)
−0.477481 + 0.878642i \(0.658450\pi\)
\(594\) −3.00000 + 0.416102i −0.123091 + 0.0170729i
\(595\) 10.8587i 0.445164i
\(596\) −5.55437 5.55437i −0.227516 0.227516i
\(597\) 4.74998 + 2.45877i 0.194404 + 0.100631i
\(598\) 0 0
\(599\) 35.2538i 1.44043i 0.693750 + 0.720216i \(0.255957\pi\)
−0.693750 + 0.720216i \(0.744043\pi\)
\(600\) −5.38688 16.9485i −0.219918 0.691921i
\(601\) 9.14384 0.372985 0.186493 0.982456i \(-0.440288\pi\)
0.186493 + 0.982456i \(0.440288\pi\)
\(602\) 9.57108 0.390088
\(603\) −3.34892 + 19.5189i −0.136378 + 0.794872i
\(604\) 10.2600 + 10.2600i 0.417473 + 0.417473i
\(605\) 29.4536 + 29.4536i 1.19746 + 1.19746i
\(606\) 3.06173 + 9.63301i 0.124374 + 0.391314i
\(607\) −19.9279 −0.808847 −0.404423 0.914572i \(-0.632528\pi\)
−0.404423 + 0.914572i \(0.632528\pi\)
\(608\) 1.37398 0.0557224
\(609\) −24.8372 + 7.89418i −1.00645 + 0.319888i
\(610\) 36.5157i 1.47848i
\(611\) 0 0
\(612\) −2.67974 + 1.89486i −0.108322 + 0.0765953i
\(613\) 10.6247 + 10.6247i 0.429127 + 0.429127i 0.888331 0.459204i \(-0.151865\pi\)
−0.459204 + 0.888331i \(0.651865\pi\)
\(614\) 22.9469i 0.926063i
\(615\) 31.8446 + 16.4840i 1.28410 + 0.664698i
\(616\) −1.04698 1.04698i −0.0421840 0.0421840i
\(617\) 7.20247 7.20247i 0.289961 0.289961i −0.547104 0.837065i \(-0.684270\pi\)
0.837065 + 0.547104i \(0.184270\pi\)
\(618\) 3.42208 1.08766i 0.137656 0.0437523i
\(619\) −18.1131 + 18.1131i −0.728027 + 0.728027i −0.970226 0.242199i \(-0.922131\pi\)
0.242199 + 0.970226i \(0.422131\pi\)
\(620\) 35.9172i 1.44247i
\(621\) 9.02207 1.25137i 0.362043 0.0502157i
\(622\) 23.2259 23.2259i 0.931275 0.931275i
\(623\) −24.6151 −0.986185
\(624\) 0 0
\(625\) −29.0857 −1.16343
\(626\) −7.82263 + 7.82263i −0.312655 + 0.312655i
\(627\) −1.23188 0.637668i −0.0491965 0.0254660i
\(628\) 6.71547i 0.267976i
\(629\) −2.39412 + 2.39412i −0.0954596 + 0.0954596i
\(630\) −5.03537 + 29.3483i −0.200614 + 1.16926i
\(631\) 14.2008 14.2008i 0.565325 0.565325i −0.365490 0.930815i \(-0.619099\pi\)
0.930815 + 0.365490i \(0.119099\pi\)
\(632\) −9.26936 9.26936i −0.368716 0.368716i
\(633\) −3.94769 + 7.62635i −0.156907 + 0.303120i
\(634\) 24.8194i 0.985704i
\(635\) −25.7319 25.7319i −1.02114 1.02114i
\(636\) −2.42398 + 4.68278i −0.0961173 + 0.185684i
\(637\) 0 0
\(638\) 3.45256i 0.136688i
\(639\) −2.51471 0.431456i −0.0994803 0.0170681i
\(640\) 3.90738 0.154453
\(641\) −44.6833 −1.76489 −0.882443 0.470420i \(-0.844102\pi\)
−0.882443 + 0.470420i \(0.844102\pi\)
\(642\) 5.70897 1.81452i 0.225315 0.0716136i
\(643\) 6.35599 + 6.35599i 0.250656 + 0.250656i 0.821239 0.570584i \(-0.193283\pi\)
−0.570584 + 0.821239i \(0.693283\pi\)
\(644\) 3.14864 + 3.14864i 0.124074 + 0.124074i
\(645\) 24.3015 7.72393i 0.956872 0.304130i
\(646\) −1.50314 −0.0591402
\(647\) −37.9737 −1.49290 −0.746451 0.665441i \(-0.768244\pi\)
−0.746451 + 0.665441i \(0.768244\pi\)
\(648\) −8.12132 + 3.87868i −0.319036 + 0.152369i
\(649\) 4.94222i 0.193999i
\(650\) 0 0
\(651\) −18.5921 + 35.9172i −0.728682 + 1.40771i
\(652\) −1.11345 1.11345i −0.0436059 0.0436059i
\(653\) 18.4886i 0.723513i −0.932273 0.361757i \(-0.882177\pi\)
0.932273 0.361757i \(-0.117823\pi\)
\(654\) −12.3752 + 23.9070i −0.483908 + 0.934839i
\(655\) 2.53590 + 2.53590i 0.0990857 + 0.0990857i
\(656\) −3.74650 + 3.74650i −0.146276 + 0.146276i
\(657\) −21.6637 3.71690i −0.845180 0.145010i
\(658\) 13.9997 13.9997i 0.545763 0.545763i
\(659\) 0.743853i 0.0289764i 0.999895 + 0.0144882i \(0.00461190\pi\)
−0.999895 + 0.0144882i \(0.995388\pi\)
\(660\) −3.50326 1.81342i −0.136364 0.0705873i
\(661\) 19.8275 19.8275i 0.771200 0.771200i −0.207116 0.978316i \(-0.566408\pi\)
0.978316 + 0.207116i \(0.0664078\pi\)
\(662\) −4.62395 −0.179715
\(663\) 0 0
\(664\) −7.28877 −0.282859
\(665\) −9.64335 + 9.64335i −0.373953 + 0.373953i
\(666\) −7.58086 + 5.36048i −0.293752 + 0.207714i
\(667\) 10.3831i 0.402034i
\(668\) 17.2850 17.2850i 0.668775 0.668775i
\(669\) −31.4687 + 10.0019i −1.21665 + 0.386697i
\(670\) −18.2392 + 18.2392i −0.704640 + 0.704640i
\(671\) −3.85174 3.85174i −0.148695 0.148695i
\(672\) −3.90738 2.02261i −0.150730 0.0780238i
\(673\) 27.6374i 1.06534i 0.846322 + 0.532672i \(0.178812\pi\)
−0.846322 + 0.532672i \(0.821188\pi\)
\(674\) −5.50437 5.50437i −0.212021 0.212021i
\(675\) 7.32980 + 52.8461i 0.282124 + 2.03405i
\(676\) 0 0
\(677\) 34.0927i 1.31029i −0.755504 0.655145i \(-0.772608\pi\)
0.755504 0.655145i \(-0.227392\pi\)
\(678\) 17.9877 5.71715i 0.690812 0.219566i
\(679\) −1.55806 −0.0597928
\(680\) −4.27467 −0.163926
\(681\) 2.81223 + 8.84802i 0.107765 + 0.339057i
\(682\) −3.78860 3.78860i −0.145073 0.145073i
\(683\) 16.4785 + 16.4785i 0.630531 + 0.630531i 0.948201 0.317670i \(-0.102900\pi\)
−0.317670 + 0.948201i \(0.602900\pi\)
\(684\) −4.06259 0.697030i −0.155337 0.0266516i
\(685\) 33.6762 1.28670
\(686\) −19.1716 −0.731976
\(687\) 2.06589 + 6.49985i 0.0788188 + 0.247985i
\(688\) 3.76778i 0.143645i
\(689\) 0 0
\(690\) 10.5356 + 5.45361i 0.401082 + 0.207615i
\(691\) −7.22628 7.22628i −0.274901 0.274901i 0.556169 0.831069i \(-0.312271\pi\)
−0.831069 + 0.556169i \(0.812271\pi\)
\(692\) 20.7673i 0.789456i
\(693\) 2.56456 + 3.62684i 0.0974197 + 0.137772i
\(694\) −7.66753 7.66753i −0.291056 0.291056i
\(695\) −9.15429 + 9.15429i −0.347242 + 0.347242i
\(696\) −3.10764 9.77747i −0.117795 0.370614i
\(697\) 4.09867 4.09867i 0.155248 0.155248i
\(698\) 15.3725i 0.581856i
\(699\) 3.05482 5.90146i 0.115544 0.223214i
\(700\) −18.4429 + 18.4429i −0.697077 + 0.697077i
\(701\) 31.9420 1.20643 0.603217 0.797577i \(-0.293885\pi\)
0.603217 + 0.797577i \(0.293885\pi\)
\(702\) 0 0
\(703\) −4.25230 −0.160379
\(704\) 0.412157 0.412157i 0.0155337 0.0155337i
\(705\) 24.2481 46.8438i 0.913237 1.76424i
\(706\) 1.86741i 0.0702808i
\(707\) 10.4824 10.4824i 0.394231 0.394231i
\(708\) 4.44849 + 13.9961i 0.167184 + 0.526007i
\(709\) −5.25088 + 5.25088i −0.197201 + 0.197201i −0.798799 0.601598i \(-0.794531\pi\)
0.601598 + 0.798799i \(0.294531\pi\)
\(710\) −2.34983 2.34983i −0.0881876 0.0881876i
\(711\) 22.7052 + 32.1100i 0.851512 + 1.20422i
\(712\) 9.69006i 0.363150i
\(713\) 11.3937 + 11.3937i 0.426697 + 0.426697i
\(714\) 4.27467 + 2.21273i 0.159976 + 0.0828095i
\(715\) 0 0
\(716\) 14.0004i 0.523218i
\(717\) 0.557604 + 1.75437i 0.0208241 + 0.0655181i
\(718\) 17.1595 0.640387
\(719\) −28.9186 −1.07848 −0.539240 0.842152i \(-0.681289\pi\)
−0.539240 + 0.842152i \(0.681289\pi\)
\(720\) −11.5533 1.98224i −0.430567 0.0738736i
\(721\) −3.72381 3.72381i −0.138682 0.138682i
\(722\) 12.1001 + 12.1001i 0.450320 + 0.450320i
\(723\) −14.6710 46.1589i −0.545621 1.71667i
\(724\) 25.5405 0.949207
\(725\) −60.8181 −2.25873
\(726\) 17.5967 5.59288i 0.653074 0.207571i
\(727\) 13.5518i 0.502608i 0.967908 + 0.251304i \(0.0808594\pi\)
−0.967908 + 0.251304i \(0.919141\pi\)
\(728\) 0 0
\(729\) 25.9808 7.34847i 0.962250 0.272166i
\(730\) −20.2433 20.2433i −0.749237 0.749237i
\(731\) 4.12195i 0.152456i
\(732\) −14.3749 7.44098i −0.531311 0.275027i
\(733\) 13.9665 + 13.9665i 0.515864 + 0.515864i 0.916317 0.400453i \(-0.131147\pi\)
−0.400453 + 0.916317i \(0.631147\pi\)
\(734\) 6.40838 6.40838i 0.236538 0.236538i
\(735\) −3.52903 + 1.12166i −0.130170 + 0.0413729i
\(736\) −1.23950 + 1.23950i −0.0456887 + 0.0456887i
\(737\) 3.84779i 0.141735i
\(738\) 12.9782 9.17701i 0.477736 0.337810i
\(739\) −1.39265 + 1.39265i −0.0512293 + 0.0512293i −0.732257 0.681028i \(-0.761533\pi\)
0.681028 + 0.732257i \(0.261533\pi\)
\(740\) −12.0928 −0.444541
\(741\) 0 0
\(742\) 7.73339 0.283902
\(743\) 4.23148 4.23148i 0.155238 0.155238i −0.625215 0.780453i \(-0.714989\pi\)
0.780453 + 0.625215i \(0.214989\pi\)
\(744\) −14.1393 7.31902i −0.518370 0.268328i
\(745\) 30.6927i 1.12449i
\(746\) 5.35695 5.35695i 0.196132 0.196132i
\(747\) 21.5514 + 3.69764i 0.788525 + 0.135290i
\(748\) −0.450899 + 0.450899i −0.0164865 + 0.0164865i
\(749\) −6.21235 6.21235i −0.226994 0.226994i
\(750\) −16.3883 + 31.6598i −0.598417 + 1.15605i
\(751\) 17.5041i 0.638733i −0.947631 0.319366i \(-0.896530\pi\)
0.947631 0.319366i \(-0.103470\pi\)
\(752\) 5.51114 + 5.51114i 0.200971 + 0.200971i
\(753\) 12.0440 23.2673i 0.438909 0.847906i
\(754\) 0 0
\(755\) 56.6953i 2.06335i
\(756\) 10.5272 + 7.96267i 0.382872 + 0.289600i
\(757\) 8.00336 0.290887 0.145443 0.989367i \(-0.453539\pi\)
0.145443 + 0.989367i \(0.453539\pi\)
\(758\) 12.0771 0.438660
\(759\) 1.68656 0.536052i 0.0612183 0.0194575i
\(760\) −3.79623 3.79623i −0.137704 0.137704i
\(761\) −13.8584 13.8584i −0.502368 0.502368i 0.409805 0.912173i \(-0.365597\pi\)
−0.912173 + 0.409805i \(0.865597\pi\)
\(762\) −15.3732 + 4.88617i −0.556912 + 0.177007i
\(763\) 39.4813 1.42932
\(764\) 23.6463 0.855493
\(765\) 12.6393 + 2.16857i 0.456976 + 0.0784047i
\(766\) 36.8323i 1.33081i
\(767\) 0 0
\(768\) 0.796225 1.53819i 0.0287313 0.0555046i
\(769\) −30.3616 30.3616i −1.09487 1.09487i −0.995001 0.0998650i \(-0.968159\pi\)
−0.0998650 0.995001i \(-0.531841\pi\)
\(770\) 5.78547i 0.208494i
\(771\) 0.284412 0.549443i 0.0102429 0.0197877i
\(772\) −7.49437 7.49437i −0.269728 0.269728i
\(773\) −6.55172 + 6.55172i −0.235649 + 0.235649i −0.815046 0.579397i \(-0.803288\pi\)
0.579397 + 0.815046i \(0.303288\pi\)
\(774\) 1.91142 11.1406i 0.0687044 0.400439i
\(775\) −66.7377 + 66.7377i −2.39729 + 2.39729i
\(776\) 0.613350i 0.0220180i
\(777\) 12.0928 + 6.25971i 0.433828 + 0.224566i
\(778\) 9.97109 9.97109i 0.357481 0.357481i
\(779\) 7.27984 0.260827
\(780\) 0 0
\(781\) −0.495728 −0.0177385
\(782\) 1.35602 1.35602i 0.0484910 0.0484910i
\(783\) 4.22850 + 30.4865i 0.151114 + 1.08950i
\(784\) 0.547150i 0.0195411i
\(785\) 18.5544 18.5544i 0.662235 0.662235i
\(786\) 1.51504 0.481536i 0.0540397 0.0171758i
\(787\) 30.1223 30.1223i 1.07375 1.07375i 0.0766903 0.997055i \(-0.475565\pi\)
0.997055 0.0766903i \(-0.0244353\pi\)
\(788\) 2.45207 + 2.45207i 0.0873514 + 0.0873514i
\(789\) 3.30368 + 1.71011i 0.117614 + 0.0608815i
\(790\) 51.2213i 1.82237i
\(791\) −19.5737 19.5737i −0.695960 0.695960i
\(792\) −1.42775 + 1.00957i −0.0507330 + 0.0358736i
\(793\) 0 0
\(794\) 7.85191i 0.278654i
\(795\) 19.6355 6.24090i 0.696400 0.221342i
\(796\) 3.08804 0.109453
\(797\) −21.0322 −0.744998 −0.372499 0.928033i \(-0.621499\pi\)
−0.372499 + 0.928033i \(0.621499\pi\)
\(798\) 1.83115 + 5.76130i 0.0648222 + 0.203948i
\(799\) −6.02919 6.02919i −0.213297 0.213297i
\(800\) −7.26029 7.26029i −0.256690 0.256690i
\(801\) −4.91582 + 28.6515i −0.173692 + 1.01235i
\(802\) 21.8561 0.771764
\(803\) −4.27059 −0.150706
\(804\) 3.46340 + 10.8968i 0.122145 + 0.384299i
\(805\) 17.3990i 0.613233i
\(806\) 0 0
\(807\) −37.7218 19.5262i −1.32787 0.687356i
\(808\) 4.12652 + 4.12652i 0.145171 + 0.145171i
\(809\) 27.1206i 0.953508i 0.879037 + 0.476754i \(0.158187\pi\)
−0.879037 + 0.476754i \(0.841813\pi\)
\(810\) 33.1552 + 11.7221i 1.16496 + 0.411874i
\(811\) −39.1597 39.1597i −1.37508 1.37508i −0.852726 0.522359i \(-0.825052\pi\)
−0.522359 0.852726i \(-0.674948\pi\)
\(812\) −10.6396 + 10.6396i −0.373376 + 0.373376i
\(813\) 11.5035 + 36.1929i 0.403444 + 1.26934i
\(814\) −1.27557 + 1.27557i −0.0447088 + 0.0447088i
\(815\) 6.15276i 0.215522i
\(816\) −0.871071 + 1.68278i −0.0304936 + 0.0589091i
\(817\) 3.66060 3.66060i 0.128068 0.128068i
\(818\) −2.24149 −0.0783720
\(819\) 0 0
\(820\) 20.7026 0.722968
\(821\) 6.07641 6.07641i 0.212068 0.212068i −0.593077 0.805145i \(-0.702087\pi\)
0.805145 + 0.593077i \(0.202087\pi\)
\(822\) 6.86235 13.2570i 0.239352 0.462392i
\(823\) 8.51217i 0.296715i 0.988934 + 0.148358i \(0.0473987\pi\)
−0.988934 + 0.148358i \(0.952601\pi\)
\(824\) 1.46593 1.46593i 0.0510680 0.0510680i
\(825\) 3.13989 + 9.87892i 0.109317 + 0.343940i
\(826\) 15.2302 15.2302i 0.529926 0.529926i
\(827\) 18.9976 + 18.9976i 0.660613 + 0.660613i 0.955524 0.294912i \(-0.0952903\pi\)
−0.294912 + 0.955524i \(0.595290\pi\)
\(828\) 4.29376 3.03615i 0.149219 0.105513i
\(829\) 16.5329i 0.574211i 0.957899 + 0.287106i \(0.0926931\pi\)
−0.957899 + 0.287106i \(0.907307\pi\)
\(830\) 20.1384 + 20.1384i 0.699014 + 0.699014i
\(831\) 28.6877 + 14.8499i 0.995167 + 0.515136i
\(832\) 0 0
\(833\) 0.598582i 0.0207396i
\(834\) 1.73829 + 5.46912i 0.0601920 + 0.189380i
\(835\) −95.5144 −3.30541
\(836\) −0.800864 −0.0276985
\(837\) 38.0939 + 28.8138i 1.31672 + 0.995950i
\(838\) −23.6070 23.6070i −0.815491 0.815491i
\(839\) −29.3294 29.3294i −1.01256 1.01256i −0.999920 0.0126419i \(-0.995976\pi\)
−0.0126419 0.999920i \(-0.504024\pi\)
\(840\) 5.20750 + 16.3842i 0.179676 + 0.565307i
\(841\) −6.08547 −0.209844
\(842\) 3.18601 0.109797
\(843\) 26.3280 8.36801i 0.906784 0.288210i
\(844\) 4.95801i 0.170662i
\(845\) 0 0
\(846\) −13.4995 19.0912i −0.464122 0.656368i
\(847\) −19.1482 19.1482i −0.657941 0.657941i
\(848\) 3.04435i 0.104543i
\(849\) 7.25276 + 3.75430i 0.248914 + 0.128847i
\(850\) 7.94276 + 7.94276i 0.272435 + 0.272435i
\(851\) 3.83610 3.83610i 0.131500 0.131500i
\(852\) −1.40388 + 0.446205i −0.0480961 + 0.0152867i
\(853\) 13.7858 13.7858i 0.472018 0.472018i −0.430549 0.902567i \(-0.641680\pi\)
0.902567 + 0.430549i \(0.141680\pi\)
\(854\) 23.7394i 0.812346i
\(855\) 9.29881 + 13.1505i 0.318013 + 0.449738i
\(856\) 2.44557 2.44557i 0.0835879 0.0835879i
\(857\) 41.5499 1.41932 0.709659 0.704545i \(-0.248849\pi\)
0.709659 + 0.704545i \(0.248849\pi\)
\(858\) 0 0
\(859\) 44.2270 1.50900 0.754502 0.656298i \(-0.227878\pi\)
0.754502 + 0.656298i \(0.227878\pi\)
\(860\) 10.4101 10.4101i 0.354982 0.354982i
\(861\) −20.7026 10.7165i −0.705544 0.365217i
\(862\) 21.6840i 0.738562i
\(863\) 14.7459 14.7459i 0.501956 0.501956i −0.410089 0.912045i \(-0.634502\pi\)
0.912045 + 0.410089i \(0.134502\pi\)
\(864\) −3.13461 + 4.14418i −0.106642 + 0.140988i
\(865\) −57.3788 + 57.3788i −1.95094 + 1.95094i
\(866\) 21.2499 + 21.2499i 0.722103 + 0.722103i
\(867\) −12.5829 + 24.3083i −0.427337 + 0.825552i
\(868\) 23.3503i 0.792561i
\(869\) 5.40290 + 5.40290i 0.183281 + 0.183281i
\(870\) −18.4283 + 35.6007i −0.624778 + 1.20698i
\(871\) 0 0
\(872\) 15.5423i 0.526330i
\(873\) −0.311156 + 1.81355i −0.0105310 + 0.0613794i
\(874\) 2.40848 0.0814682
\(875\) 52.2847 1.76755
\(876\) −12.0941 + 3.84395i −0.408622 + 0.129875i
\(877\) −31.9277 31.9277i −1.07812 1.07812i −0.996678 0.0814427i \(-0.974047\pi\)
−0.0814427 0.996678i \(-0.525953\pi\)
\(878\) 14.7403 + 14.7403i 0.497460 + 0.497460i
\(879\) 35.2508 11.2040i 1.18898 0.377902i
\(880\) −2.27752 −0.0767753
\(881\) 31.1330 1.04890 0.524448 0.851442i \(-0.324272\pi\)
0.524448 + 0.851442i \(0.324272\pi\)
\(882\) −0.277572 + 1.61781i −0.00934635 + 0.0544745i
\(883\) 45.7983i 1.54123i −0.637298 0.770617i \(-0.719948\pi\)
0.637298 0.770617i \(-0.280052\pi\)
\(884\) 0 0
\(885\) 26.3795 50.9612i 0.886737 1.71304i
\(886\) 9.21806 + 9.21806i 0.309687 + 0.309687i
\(887\) 29.5730i 0.992965i −0.868047 0.496482i \(-0.834625\pi\)
0.868047 0.496482i \(-0.165375\pi\)
\(888\) −2.46422 + 4.76050i −0.0826936 + 0.159752i
\(889\) 16.7287 + 16.7287i 0.561062 + 0.561062i
\(890\) −26.7730 + 26.7730i −0.897433 + 0.897433i
\(891\) 4.73373 2.26079i 0.158586 0.0757395i
\(892\) −13.4803 + 13.4803i −0.451355 + 0.451355i
\(893\) 10.7087i 0.358354i
\(894\) 12.0826 + 6.25440i 0.404102 + 0.209179i
\(895\) −38.6821 + 38.6821i −1.29300 + 1.29300i
\(896\) −2.54025 −0.0848637
\(897\) 0 0
\(898\) 19.0404 0.635385
\(899\) −38.5004 + 38.5004i −1.28406 + 1.28406i
\(900\) 17.7840 + 25.1504i 0.592801 + 0.838347i
\(901\) 3.33051i 0.110956i
\(902\) 2.18375 2.18375i 0.0727109 0.0727109i
\(903\) −15.7988 + 5.02145i −0.525751 + 0.167103i
\(904\) 7.70543 7.70543i 0.256279 0.256279i
\(905\) −70.5668 70.5668i −2.34572 2.34572i
\(906\) −22.3188 11.5531i −0.741493 0.383825i
\(907\) 58.1044i 1.92933i −0.263487 0.964663i \(-0.584873\pi\)
0.263487 0.964663i \(-0.415127\pi\)
\(908\) 3.79025 + 3.79025i 0.125784 + 0.125784i
\(909\) −10.1079 14.2947i −0.335257 0.474125i
\(910\) 0 0
\(911\) 52.8673i 1.75157i 0.482701 + 0.875785i \(0.339656\pi\)
−0.482701 + 0.875785i \(0.660344\pi\)
\(912\) −2.26801 + 0.720857i −0.0751012 + 0.0238700i
\(913\) 4.24846 0.140604
\(914\) −21.2603 −0.703228
\(915\) 19.1579 + 60.2758i 0.633340 + 1.99266i
\(916\) 2.78436 + 2.78436i 0.0919978 + 0.0919978i
\(917\) −1.64863 1.64863i −0.0544424 0.0544424i
\(918\) 3.42926 4.53373i 0.113182 0.149636i
\(919\) −6.15017 −0.202875 −0.101438 0.994842i \(-0.532344\pi\)
−0.101438 + 0.994842i \(0.532344\pi\)
\(920\) 6.84932 0.225816
\(921\) −12.0391 37.8781i −0.396700 1.24812i
\(922\) 1.52692i 0.0502864i
\(923\) 0 0
\(924\) 2.27752 + 1.17893i 0.0749250 + 0.0387840i
\(925\) 22.4697 + 22.4697i 0.738799 + 0.738799i
\(926\) 30.1612i 0.991159i
\(927\) −5.07812 + 3.59077i −0.166787 + 0.117936i
\(928\) −4.18840 4.18840i −0.137491 0.137491i
\(929\) −25.3106 + 25.3106i −0.830414 + 0.830414i −0.987573 0.157160i \(-0.949766\pi\)
0.157160 + 0.987573i \(0.449766\pi\)
\(930\) 18.8439 + 59.2878i 0.617915 + 1.94412i
\(931\) −0.531585 + 0.531585i −0.0174220 + 0.0174220i
\(932\) 3.83663i 0.125673i
\(933\) −26.1532 + 50.5240i −0.856216 + 1.65408i
\(934\) −7.98571 + 7.98571i −0.261300 + 0.261300i
\(935\) 2.49161 0.0814844
\(936\) 0 0
\(937\) −13.8585 −0.452737 −0.226369 0.974042i \(-0.572685\pi\)
−0.226369 + 0.974042i \(0.572685\pi\)
\(938\) 11.8576 11.8576i 0.387163 0.387163i
\(939\) 8.80854 17.0168i 0.287456 0.555322i
\(940\) 30.4538i 0.993295i
\(941\) −10.8257 + 10.8257i −0.352908 + 0.352908i −0.861190 0.508283i \(-0.830281\pi\)
0.508283 + 0.861190i \(0.330281\pi\)
\(942\) −3.52326 11.0851i −0.114794 0.361172i
\(943\) −6.56731 + 6.56731i −0.213861 + 0.213861i
\(944\) 5.99556 + 5.99556i 0.195139 + 0.195139i
\(945\) −7.08572 51.0864i −0.230499 1.66184i
\(946\) 2.19615i 0.0714031i
\(947\) −15.0501 15.0501i −0.489061 0.489061i 0.418949 0.908010i \(-0.362399\pi\)
−0.908010 + 0.418949i \(0.862399\pi\)
\(948\) 20.1639 + 10.4376i 0.654893 + 0.338998i
\(949\) 0 0
\(950\) 14.1075i 0.457708i
\(951\) 13.0214 + 40.9689i 0.422249 + 1.32851i
\(952\) 2.77903 0.0900689
\(953\) 20.6433 0.668703 0.334351 0.942448i \(-0.391483\pi\)
0.334351 + 0.942448i \(0.391483\pi\)
\(954\) 1.54441 9.00151i 0.0500023 0.291435i
\(955\) −65.3332 65.3332i −2.11413 2.11413i
\(956\) 0.751524 + 0.751524i 0.0243060 + 0.0243060i
\(957\) 1.81138 + 5.69907i 0.0585535 + 0.184225i
\(958\) −29.0750 −0.939371
\(959\) −21.8934 −0.706974
\(960\) −6.44983 + 2.05000i −0.208167 + 0.0661634i
\(961\) 53.4956i 1.72566i
\(962\) 0 0
\(963\) −8.47170 + 5.99040i −0.272997 + 0.193038i
\(964\) −19.7732 19.7732i −0.636853 0.636853i
\(965\) 41.4129i 1.33313i
\(966\) −6.84932 3.54547i −0.220373 0.114074i
\(967\) 3.56933 + 3.56933i 0.114782 + 0.114782i 0.762165 0.647383i \(-0.224137\pi\)
−0.647383 + 0.762165i \(0.724137\pi\)
\(968\) 7.53794 7.53794i 0.242279 0.242279i
\(969\) 2.48120 0.788618i 0.0797076 0.0253341i
\(970\) −1.69465 + 1.69465i −0.0544118 + 0.0544118i
\(971\) 37.0559i 1.18918i −0.804029 0.594590i \(-0.797314\pi\)
0.804029 0.594590i \(-0.202686\pi\)
\(972\) 11.3708 10.6633i 0.364717 0.342025i
\(973\) 5.95134 5.95134i 0.190791 0.190791i
\(974\) −2.53376 −0.0811869
\(975\) 0 0
\(976\) −9.34533 −0.299137
\(977\) −34.5163 + 34.5163i −1.10427 + 1.10427i −0.110385 + 0.993889i \(0.535208\pi\)
−0.993889 + 0.110385i \(0.964792\pi\)
\(978\) 2.42211 + 1.25378i 0.0774505 + 0.0400914i
\(979\) 5.64812i 0.180515i
\(980\) −1.51174 + 1.51174i −0.0482907 + 0.0482907i
\(981\) 7.88471 45.9555i 0.251740 1.46725i
\(982\) 26.1029 26.1029i 0.832978 0.832978i
\(983\) 33.9032 + 33.9032i 1.08134 + 1.08134i 0.996384 + 0.0849587i \(0.0270758\pi\)
0.0849587 + 0.996384i \(0.472924\pi\)
\(984\) 4.21868 8.14986i 0.134487 0.259808i
\(985\) 13.5498i 0.431733i
\(986\) 4.58212 + 4.58212i 0.145924 + 0.145924i
\(987\) −15.7641 + 30.4538i −0.501776 + 0.969357i
\(988\) 0 0
\(989\) 6.60462i 0.210015i
\(990\) 6.73417 + 1.15540i 0.214026 + 0.0367210i
\(991\) −48.7016 −1.54706 −0.773529 0.633761i \(-0.781510\pi\)
−0.773529 + 0.633761i \(0.781510\pi\)
\(992\) −9.19215 −0.291851
\(993\) 7.63267 2.42595i 0.242215 0.0769850i
\(994\) 1.52766 + 1.52766i 0.0484545 + 0.0484545i
\(995\) −8.53204 8.53204i −0.270484 0.270484i
\(996\) 12.0314 3.82404i 0.381231 0.121169i
\(997\) −5.53393 −0.175261 −0.0876306 0.996153i \(-0.527930\pi\)
−0.0876306 + 0.996153i \(0.527930\pi\)
\(998\) 31.6021 1.00035
\(999\) 9.70121 12.8257i 0.306933 0.405787i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.2.g.d.437.3 16
3.2 odd 2 inner 1014.2.g.d.437.7 16
13.4 even 6 78.2.k.a.11.1 16
13.5 odd 4 inner 1014.2.g.d.239.7 16
13.8 odd 4 1014.2.g.c.239.3 16
13.11 odd 12 78.2.k.a.71.4 yes 16
13.12 even 2 1014.2.g.c.437.7 16
39.5 even 4 inner 1014.2.g.d.239.3 16
39.8 even 4 1014.2.g.c.239.7 16
39.11 even 12 78.2.k.a.71.1 yes 16
39.17 odd 6 78.2.k.a.11.4 yes 16
39.38 odd 2 1014.2.g.c.437.3 16
52.11 even 12 624.2.cn.d.305.2 16
52.43 odd 6 624.2.cn.d.401.4 16
156.11 odd 12 624.2.cn.d.305.4 16
156.95 even 6 624.2.cn.d.401.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.k.a.11.1 16 13.4 even 6
78.2.k.a.11.4 yes 16 39.17 odd 6
78.2.k.a.71.1 yes 16 39.11 even 12
78.2.k.a.71.4 yes 16 13.11 odd 12
624.2.cn.d.305.2 16 52.11 even 12
624.2.cn.d.305.4 16 156.11 odd 12
624.2.cn.d.401.2 16 156.95 even 6
624.2.cn.d.401.4 16 52.43 odd 6
1014.2.g.c.239.3 16 13.8 odd 4
1014.2.g.c.239.7 16 39.8 even 4
1014.2.g.c.437.3 16 39.38 odd 2
1014.2.g.c.437.7 16 13.12 even 2
1014.2.g.d.239.3 16 39.5 even 4 inner
1014.2.g.d.239.7 16 13.5 odd 4 inner
1014.2.g.d.437.3 16 1.1 even 1 trivial
1014.2.g.d.437.7 16 3.2 odd 2 inner