Properties

Label 1014.2.g.d.239.8
Level $1014$
Weight $2$
Character 1014.239
Analytic conductor $8.097$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1014,2,Mod(239,1014)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1014.239"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1014, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.9349208943630483456.9
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 239.8
Root \(0.500000 + 0.410882i\) of defining polynomial
Character \(\chi\) \(=\) 1014.239
Dual form 1014.2.g.d.437.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +(1.53819 + 0.796225i) q^{3} +1.00000i q^{4} +(-2.02097 - 2.02097i) q^{5} +(0.524648 + 1.65068i) q^{6} +(2.53819 + 2.53819i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(1.73205 + 2.44949i) q^{9} -2.85808i q^{10} +(-2.97155 + 2.97155i) q^{11} +(-0.796225 + 1.53819i) q^{12} +3.58954i q^{14} +(-1.49949 - 4.71778i) q^{15} -1.00000 q^{16} +3.45408 q^{17} +(-0.507306 + 2.95680i) q^{18} +(-1.58784 + 1.58784i) q^{19} +(2.02097 - 2.02097i) q^{20} +(1.88324 + 5.92518i) q^{21} -4.20241 q^{22} +3.03237 q^{23} +(-1.65068 + 0.524648i) q^{24} +3.16864i q^{25} +(0.713876 + 5.14688i) q^{27} +(-2.53819 + 2.53819i) q^{28} +2.01416i q^{29} +(2.27568 - 4.39627i) q^{30} +(-1.21829 + 1.21829i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(-6.93684 + 2.20478i) q^{33} +(2.44240 + 2.44240i) q^{34} -10.2592i q^{35} +(-2.44949 + 1.73205i) q^{36} +(3.42423 + 3.42423i) q^{37} -2.24555 q^{38} +2.85808 q^{40} +(-5.61494 - 5.61494i) q^{41} +(-2.85808 + 5.52139i) q^{42} +1.95035i q^{43} +(-2.97155 - 2.97155i) q^{44} +(1.44992 - 8.45077i) q^{45} +(2.14421 + 2.14421i) q^{46} +(0.957390 - 0.957390i) q^{47} +(-1.53819 - 0.796225i) q^{48} +5.88481i q^{49} +(-2.24057 + 2.24057i) q^{50} +(5.31303 + 2.75023i) q^{51} +7.22186i q^{53} +(-3.13461 + 4.14418i) q^{54} +12.0108 q^{55} -3.58954 q^{56} +(-3.70668 + 1.17812i) q^{57} +(-1.42423 + 1.42423i) q^{58} +(7.27501 - 7.27501i) q^{59} +(4.71778 - 1.49949i) q^{60} +0.274207 q^{61} -1.72293 q^{62} +(-1.82100 + 10.6135i) q^{63} -1.00000i q^{64} +(-6.46410 - 3.34607i) q^{66} +(3.00229 - 3.00229i) q^{67} +3.45408i q^{68} +(4.66435 + 2.41445i) q^{69} +(7.25436 - 7.25436i) q^{70} +(7.80205 + 7.80205i) q^{71} +(-2.95680 - 0.507306i) q^{72} +(-10.0822 - 10.0822i) q^{73} +4.84259i q^{74} +(-2.52295 + 4.87397i) q^{75} +(-1.58784 - 1.58784i) q^{76} -15.0847 q^{77} +1.58051 q^{79} +(2.02097 + 2.02097i) q^{80} +(-3.00000 + 8.48528i) q^{81} -7.94072i q^{82} +(2.58938 + 2.58938i) q^{83} +(-5.92518 + 1.88324i) q^{84} +(-6.98059 - 6.98059i) q^{85} +(-1.37910 + 1.37910i) q^{86} +(-1.60373 + 3.09816i) q^{87} -4.20241i q^{88} +(6.96131 - 6.96131i) q^{89} +(7.00085 - 4.95035i) q^{90} +3.03237i q^{92} +(-2.84400 + 0.903931i) q^{93} +1.35395 q^{94} +6.41797 q^{95} +(-0.524648 - 1.65068i) q^{96} +(5.67277 - 5.67277i) q^{97} +(-4.16119 + 4.16119i) q^{98} +(-12.4257 - 2.13191i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{7} + 24 q^{15} - 16 q^{16} - 32 q^{19} + 24 q^{21} - 16 q^{28} - 16 q^{31} - 24 q^{33} - 24 q^{34} + 8 q^{37} + 48 q^{45} + 48 q^{55} + 24 q^{57} + 24 q^{58} + 24 q^{60} + 48 q^{61} - 48 q^{66}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 1.53819 + 0.796225i 0.888074 + 0.459701i
\(4\) 1.00000i 0.500000i
\(5\) −2.02097 2.02097i −0.903805 0.903805i 0.0919576 0.995763i \(-0.470688\pi\)
−0.995763 + 0.0919576i \(0.970688\pi\)
\(6\) 0.524648 + 1.65068i 0.214186 + 0.673887i
\(7\) 2.53819 + 2.53819i 0.959345 + 0.959345i 0.999205 0.0398600i \(-0.0126912\pi\)
−0.0398600 + 0.999205i \(0.512691\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 1.73205 + 2.44949i 0.577350 + 0.816497i
\(10\) 2.85808i 0.903805i
\(11\) −2.97155 + 2.97155i −0.895957 + 0.895957i −0.995076 0.0991187i \(-0.968398\pi\)
0.0991187 + 0.995076i \(0.468398\pi\)
\(12\) −0.796225 + 1.53819i −0.229850 + 0.444037i
\(13\) 0 0
\(14\) 3.58954i 0.959345i
\(15\) −1.49949 4.71778i −0.387166 1.21813i
\(16\) −1.00000 −0.250000
\(17\) 3.45408 0.837737 0.418869 0.908047i \(-0.362427\pi\)
0.418869 + 0.908047i \(0.362427\pi\)
\(18\) −0.507306 + 2.95680i −0.119573 + 0.696923i
\(19\) −1.58784 + 1.58784i −0.364276 + 0.364276i −0.865385 0.501108i \(-0.832926\pi\)
0.501108 + 0.865385i \(0.332926\pi\)
\(20\) 2.02097 2.02097i 0.451903 0.451903i
\(21\) 1.88324 + 5.92518i 0.410958 + 1.29298i
\(22\) −4.20241 −0.895957
\(23\) 3.03237 0.632292 0.316146 0.948711i \(-0.397611\pi\)
0.316146 + 0.948711i \(0.397611\pi\)
\(24\) −1.65068 + 0.524648i −0.336944 + 0.107093i
\(25\) 3.16864i 0.633728i
\(26\) 0 0
\(27\) 0.713876 + 5.14688i 0.137386 + 0.990518i
\(28\) −2.53819 + 2.53819i −0.479673 + 0.479673i
\(29\) 2.01416i 0.374021i 0.982358 + 0.187010i \(0.0598798\pi\)
−0.982358 + 0.187010i \(0.940120\pi\)
\(30\) 2.27568 4.39627i 0.415480 0.802646i
\(31\) −1.21829 + 1.21829i −0.218812 + 0.218812i −0.807998 0.589186i \(-0.799449\pi\)
0.589186 + 0.807998i \(0.299449\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) −6.93684 + 2.20478i −1.20755 + 0.383804i
\(34\) 2.44240 + 2.44240i 0.418869 + 0.418869i
\(35\) 10.2592i 1.73412i
\(36\) −2.44949 + 1.73205i −0.408248 + 0.288675i
\(37\) 3.42423 + 3.42423i 0.562940 + 0.562940i 0.930141 0.367202i \(-0.119684\pi\)
−0.367202 + 0.930141i \(0.619684\pi\)
\(38\) −2.24555 −0.364276
\(39\) 0 0
\(40\) 2.85808 0.451903
\(41\) −5.61494 5.61494i −0.876906 0.876906i 0.116307 0.993213i \(-0.462894\pi\)
−0.993213 + 0.116307i \(0.962894\pi\)
\(42\) −2.85808 + 5.52139i −0.441012 + 0.851969i
\(43\) 1.95035i 0.297425i 0.988880 + 0.148712i \(0.0475129\pi\)
−0.988880 + 0.148712i \(0.952487\pi\)
\(44\) −2.97155 2.97155i −0.447978 0.447978i
\(45\) 1.44992 8.45077i 0.216142 1.25977i
\(46\) 2.14421 + 2.14421i 0.316146 + 0.316146i
\(47\) 0.957390 0.957390i 0.139650 0.139650i −0.633826 0.773476i \(-0.718516\pi\)
0.773476 + 0.633826i \(0.218516\pi\)
\(48\) −1.53819 0.796225i −0.222018 0.114925i
\(49\) 5.88481i 0.840687i
\(50\) −2.24057 + 2.24057i −0.316864 + 0.316864i
\(51\) 5.31303 + 2.75023i 0.743973 + 0.385109i
\(52\) 0 0
\(53\) 7.22186i 0.991999i 0.868323 + 0.495999i \(0.165198\pi\)
−0.868323 + 0.495999i \(0.834802\pi\)
\(54\) −3.13461 + 4.14418i −0.426566 + 0.563952i
\(55\) 12.0108 1.61954
\(56\) −3.58954 −0.479673
\(57\) −3.70668 + 1.17812i −0.490962 + 0.156046i
\(58\) −1.42423 + 1.42423i −0.187010 + 0.187010i
\(59\) 7.27501 7.27501i 0.947125 0.947125i −0.0515453 0.998671i \(-0.516415\pi\)
0.998671 + 0.0515453i \(0.0164147\pi\)
\(60\) 4.71778 1.49949i 0.609063 0.193583i
\(61\) 0.274207 0.0351086 0.0175543 0.999846i \(-0.494412\pi\)
0.0175543 + 0.999846i \(0.494412\pi\)
\(62\) −1.72293 −0.218812
\(63\) −1.82100 + 10.6135i −0.229424 + 1.33718i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) −6.46410 3.34607i −0.795676 0.411872i
\(67\) 3.00229 3.00229i 0.366788 0.366788i −0.499516 0.866304i \(-0.666489\pi\)
0.866304 + 0.499516i \(0.166489\pi\)
\(68\) 3.45408i 0.418869i
\(69\) 4.66435 + 2.41445i 0.561522 + 0.290665i
\(70\) 7.25436 7.25436i 0.867061 0.867061i
\(71\) 7.80205 + 7.80205i 0.925933 + 0.925933i 0.997440 0.0715067i \(-0.0227807\pi\)
−0.0715067 + 0.997440i \(0.522781\pi\)
\(72\) −2.95680 0.507306i −0.348462 0.0597866i
\(73\) −10.0822 10.0822i −1.18003 1.18003i −0.979735 0.200296i \(-0.935810\pi\)
−0.200296 0.979735i \(-0.564190\pi\)
\(74\) 4.84259i 0.562940i
\(75\) −2.52295 + 4.87397i −0.291325 + 0.562797i
\(76\) −1.58784 1.58784i −0.182138 0.182138i
\(77\) −15.0847 −1.71906
\(78\) 0 0
\(79\) 1.58051 0.177821 0.0889105 0.996040i \(-0.471661\pi\)
0.0889105 + 0.996040i \(0.471661\pi\)
\(80\) 2.02097 + 2.02097i 0.225951 + 0.225951i
\(81\) −3.00000 + 8.48528i −0.333333 + 0.942809i
\(82\) 7.94072i 0.876906i
\(83\) 2.58938 + 2.58938i 0.284221 + 0.284221i 0.834790 0.550569i \(-0.185589\pi\)
−0.550569 + 0.834790i \(0.685589\pi\)
\(84\) −5.92518 + 1.88324i −0.646491 + 0.205479i
\(85\) −6.98059 6.98059i −0.757152 0.757152i
\(86\) −1.37910 + 1.37910i −0.148712 + 0.148712i
\(87\) −1.60373 + 3.09816i −0.171938 + 0.332158i
\(88\) 4.20241i 0.447978i
\(89\) 6.96131 6.96131i 0.737897 0.737897i −0.234273 0.972171i \(-0.575271\pi\)
0.972171 + 0.234273i \(0.0752711\pi\)
\(90\) 7.00085 4.95035i 0.737954 0.521812i
\(91\) 0 0
\(92\) 3.03237i 0.316146i
\(93\) −2.84400 + 0.903931i −0.294910 + 0.0937332i
\(94\) 1.35395 0.139650
\(95\) 6.41797 0.658470
\(96\) −0.524648 1.65068i −0.0535466 0.168472i
\(97\) 5.67277 5.67277i 0.575983 0.575983i −0.357811 0.933794i \(-0.616477\pi\)
0.933794 + 0.357811i \(0.116477\pi\)
\(98\) −4.16119 + 4.16119i −0.420343 + 0.420343i
\(99\) −12.4257 2.13191i −1.24883 0.214265i
\(100\) −3.16864 −0.316864
\(101\) −2.10685 −0.209639 −0.104820 0.994491i \(-0.533427\pi\)
−0.104820 + 0.994491i \(0.533427\pi\)
\(102\) 1.81217 + 5.70158i 0.179432 + 0.564541i
\(103\) 14.2629i 1.40537i −0.711503 0.702683i \(-0.751985\pi\)
0.711503 0.702683i \(-0.248015\pi\)
\(104\) 0 0
\(105\) 8.16864 15.7806i 0.797178 1.54003i
\(106\) −5.10662 + 5.10662i −0.495999 + 0.495999i
\(107\) 13.8455i 1.33850i −0.743039 0.669248i \(-0.766616\pi\)
0.743039 0.669248i \(-0.233384\pi\)
\(108\) −5.14688 + 0.713876i −0.495259 + 0.0686928i
\(109\) −5.84220 + 5.84220i −0.559581 + 0.559581i −0.929188 0.369607i \(-0.879492\pi\)
0.369607 + 0.929188i \(0.379492\pi\)
\(110\) 8.49295 + 8.49295i 0.809771 + 0.809771i
\(111\) 2.54065 + 7.99357i 0.241148 + 0.758716i
\(112\) −2.53819 2.53819i −0.239836 0.239836i
\(113\) 18.0041i 1.69368i −0.531845 0.846841i \(-0.678501\pi\)
0.531845 0.846841i \(-0.321499\pi\)
\(114\) −3.45408 1.78796i −0.323504 0.167458i
\(115\) −6.12832 6.12832i −0.571469 0.571469i
\(116\) −2.01416 −0.187010
\(117\) 0 0
\(118\) 10.2884 0.947125
\(119\) 8.76711 + 8.76711i 0.803679 + 0.803679i
\(120\) 4.39627 + 2.27568i 0.401323 + 0.207740i
\(121\) 6.66025i 0.605478i
\(122\) 0.193894 + 0.193894i 0.0175543 + 0.0175543i
\(123\) −4.16608 13.1076i −0.375643 1.18187i
\(124\) −1.21829 1.21829i −0.109406 0.109406i
\(125\) −3.70112 + 3.70112i −0.331039 + 0.331039i
\(126\) −8.79254 + 6.21727i −0.783302 + 0.553878i
\(127\) 20.6932i 1.83623i −0.396317 0.918114i \(-0.629712\pi\)
0.396317 0.918114i \(-0.370288\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) −1.55291 + 3.00000i −0.136726 + 0.264135i
\(130\) 0 0
\(131\) 4.68295i 0.409151i 0.978851 + 0.204576i \(0.0655814\pi\)
−0.978851 + 0.204576i \(0.934419\pi\)
\(132\) −2.20478 6.93684i −0.191902 0.603774i
\(133\) −8.06049 −0.698933
\(134\) 4.24588 0.366788
\(135\) 8.95897 11.8444i 0.771065 1.01940i
\(136\) −2.44240 + 2.44240i −0.209434 + 0.209434i
\(137\) 3.87494 3.87494i 0.331058 0.331058i −0.521930 0.852988i \(-0.674788\pi\)
0.852988 + 0.521930i \(0.174788\pi\)
\(138\) 1.59092 + 5.00547i 0.135428 + 0.426094i
\(139\) 14.6932 1.24626 0.623132 0.782117i \(-0.285860\pi\)
0.623132 + 0.782117i \(0.285860\pi\)
\(140\) 10.2592 0.867061
\(141\) 2.23494 0.710348i 0.188216 0.0598221i
\(142\) 11.0338i 0.925933i
\(143\) 0 0
\(144\) −1.73205 2.44949i −0.144338 0.204124i
\(145\) 4.07056 4.07056i 0.338042 0.338042i
\(146\) 14.2584i 1.18003i
\(147\) −4.68563 + 9.05195i −0.386464 + 0.746592i
\(148\) −3.42423 + 3.42423i −0.281470 + 0.281470i
\(149\) −7.30774 7.30774i −0.598673 0.598673i 0.341286 0.939959i \(-0.389137\pi\)
−0.939959 + 0.341286i \(0.889137\pi\)
\(150\) −5.23041 + 1.66242i −0.427061 + 0.135736i
\(151\) 6.48932 + 6.48932i 0.528094 + 0.528094i 0.920004 0.391910i \(-0.128186\pi\)
−0.391910 + 0.920004i \(0.628186\pi\)
\(152\) 2.24555i 0.182138i
\(153\) 5.98264 + 8.46073i 0.483668 + 0.684010i
\(154\) −10.6665 10.6665i −0.859532 0.859532i
\(155\) 4.92427 0.395527
\(156\) 0 0
\(157\) −14.1431 −1.12874 −0.564372 0.825520i \(-0.690882\pi\)
−0.564372 + 0.825520i \(0.690882\pi\)
\(158\) 1.11759 + 1.11759i 0.0889105 + 0.0889105i
\(159\) −5.75023 + 11.1086i −0.456023 + 0.880968i
\(160\) 2.85808i 0.225951i
\(161\) 7.69672 + 7.69672i 0.606587 + 0.606587i
\(162\) −8.12132 + 3.87868i −0.638071 + 0.304738i
\(163\) 0.787963 + 0.787963i 0.0617181 + 0.0617181i 0.737292 0.675574i \(-0.236104\pi\)
−0.675574 + 0.737292i \(0.736104\pi\)
\(164\) 5.61494 5.61494i 0.438453 0.438453i
\(165\) 18.4749 + 9.56333i 1.43827 + 0.744504i
\(166\) 3.66193i 0.284221i
\(167\) 3.94925 3.94925i 0.305602 0.305602i −0.537598 0.843201i \(-0.680668\pi\)
0.843201 + 0.537598i \(0.180668\pi\)
\(168\) −5.52139 2.85808i −0.425985 0.220506i
\(169\) 0 0
\(170\) 9.87205i 0.757152i
\(171\) −6.63963 1.13918i −0.507745 0.0871153i
\(172\) −1.95035 −0.148712
\(173\) −17.4953 −1.33014 −0.665072 0.746779i \(-0.731599\pi\)
−0.665072 + 0.746779i \(0.731599\pi\)
\(174\) −3.32474 + 1.05673i −0.252048 + 0.0801102i
\(175\) −8.04261 + 8.04261i −0.607964 + 0.607964i
\(176\) 2.97155 2.97155i 0.223989 0.223989i
\(177\) 16.9829 5.39779i 1.27651 0.405723i
\(178\) 9.84478 0.737897
\(179\) 9.21508 0.688768 0.344384 0.938829i \(-0.388088\pi\)
0.344384 + 0.938829i \(0.388088\pi\)
\(180\) 8.45077 + 1.44992i 0.629883 + 0.108071i
\(181\) 13.8110i 1.02656i −0.858220 0.513282i \(-0.828429\pi\)
0.858220 0.513282i \(-0.171571\pi\)
\(182\) 0 0
\(183\) 0.421783 + 0.218331i 0.0311791 + 0.0161395i
\(184\) −2.14421 + 2.14421i −0.158073 + 0.158073i
\(185\) 13.8405i 1.01758i
\(186\) −2.65019 1.37184i −0.194321 0.100588i
\(187\) −10.2640 + 10.2640i −0.750577 + 0.750577i
\(188\) 0.957390 + 0.957390i 0.0698248 + 0.0698248i
\(189\) −11.2518 + 14.8757i −0.818448 + 1.08205i
\(190\) 4.53819 + 4.53819i 0.329235 + 0.329235i
\(191\) 22.7030i 1.64273i 0.570402 + 0.821366i \(0.306788\pi\)
−0.570402 + 0.821366i \(0.693212\pi\)
\(192\) 0.796225 1.53819i 0.0574626 0.111009i
\(193\) 14.1745 + 14.1745i 1.02030 + 1.02030i 0.999790 + 0.0205099i \(0.00652896\pi\)
0.0205099 + 0.999790i \(0.493471\pi\)
\(194\) 8.02251 0.575983
\(195\) 0 0
\(196\) −5.88481 −0.420343
\(197\) 13.1786 + 13.1786i 0.938935 + 0.938935i 0.998240 0.0593051i \(-0.0188885\pi\)
−0.0593051 + 0.998240i \(0.518888\pi\)
\(198\) −7.27879 10.2938i −0.517281 0.731546i
\(199\) 4.51039i 0.319733i 0.987139 + 0.159866i \(0.0511064\pi\)
−0.987139 + 0.159866i \(0.948894\pi\)
\(200\) −2.24057 2.24057i −0.158432 0.158432i
\(201\) 7.00859 2.22759i 0.494348 0.157122i
\(202\) −1.48977 1.48977i −0.104820 0.104820i
\(203\) −5.11233 + 5.11233i −0.358815 + 0.358815i
\(204\) −2.75023 + 5.31303i −0.192554 + 0.371986i
\(205\) 22.6952i 1.58510i
\(206\) 10.0854 10.0854i 0.702683 0.702683i
\(207\) 5.25221 + 7.42775i 0.365054 + 0.516264i
\(208\) 0 0
\(209\) 9.43672i 0.652752i
\(210\) 16.9347 5.38247i 1.16860 0.371426i
\(211\) −8.57683 −0.590453 −0.295227 0.955427i \(-0.595395\pi\)
−0.295227 + 0.955427i \(0.595395\pi\)
\(212\) −7.22186 −0.495999
\(213\) 5.78884 + 18.2132i 0.396645 + 1.24795i
\(214\) 9.79025 9.79025i 0.669248 0.669248i
\(215\) 3.94159 3.94159i 0.268814 0.268814i
\(216\) −4.14418 3.13461i −0.281976 0.213283i
\(217\) −6.18452 −0.419833
\(218\) −8.26212 −0.559581
\(219\) −7.48062 23.5360i −0.505494 1.59042i
\(220\) 12.0108i 0.809771i
\(221\) 0 0
\(222\) −3.85579 + 7.44882i −0.258784 + 0.499932i
\(223\) 14.9027 14.9027i 0.997958 0.997958i −0.00203979 0.999998i \(-0.500649\pi\)
0.999998 + 0.00203979i \(0.000649285\pi\)
\(224\) 3.58954i 0.239836i
\(225\) −7.76155 + 5.48825i −0.517437 + 0.365883i
\(226\) 12.7308 12.7308i 0.846841 0.846841i
\(227\) 3.55443 + 3.55443i 0.235916 + 0.235916i 0.815157 0.579241i \(-0.196651\pi\)
−0.579241 + 0.815157i \(0.696651\pi\)
\(228\) −1.17812 3.70668i −0.0780231 0.245481i
\(229\) 9.92484 + 9.92484i 0.655852 + 0.655852i 0.954396 0.298544i \(-0.0965010\pi\)
−0.298544 + 0.954396i \(0.596501\pi\)
\(230\) 8.66676i 0.571469i
\(231\) −23.2032 12.0108i −1.52666 0.790255i
\(232\) −1.42423 1.42423i −0.0935052 0.0935052i
\(233\) 18.7944 1.23126 0.615630 0.788035i \(-0.288902\pi\)
0.615630 + 0.788035i \(0.288902\pi\)
\(234\) 0 0
\(235\) −3.86971 −0.252432
\(236\) 7.27501 + 7.27501i 0.473563 + 0.473563i
\(237\) 2.43112 + 1.25844i 0.157918 + 0.0817445i
\(238\) 12.3986i 0.803679i
\(239\) −6.82142 6.82142i −0.441241 0.441241i 0.451188 0.892429i \(-0.351000\pi\)
−0.892429 + 0.451188i \(0.851000\pi\)
\(240\) 1.49949 + 4.71778i 0.0967914 + 0.304531i
\(241\) 5.99419 + 5.99419i 0.386119 + 0.386119i 0.873301 0.487181i \(-0.161975\pi\)
−0.487181 + 0.873301i \(0.661975\pi\)
\(242\) 4.70951 4.70951i 0.302739 0.302739i
\(243\) −11.3708 + 10.6633i −0.729435 + 0.684050i
\(244\) 0.274207i 0.0175543i
\(245\) 11.8930 11.8930i 0.759817 0.759817i
\(246\) 6.32260 12.2143i 0.403114 0.778757i
\(247\) 0 0
\(248\) 1.72293i 0.109406i
\(249\) 1.92122 + 6.04468i 0.121753 + 0.383066i
\(250\) −5.23418 −0.331039
\(251\) 7.03975 0.444345 0.222173 0.975007i \(-0.428685\pi\)
0.222173 + 0.975007i \(0.428685\pi\)
\(252\) −10.6135 1.82100i −0.668590 0.114712i
\(253\) −9.01084 + 9.01084i −0.566507 + 0.566507i
\(254\) 14.6323 14.6323i 0.918114 0.918114i
\(255\) −5.17935 16.2956i −0.324343 1.02047i
\(256\) 1.00000 0.0625000
\(257\) 1.63199 0.101801 0.0509003 0.998704i \(-0.483791\pi\)
0.0509003 + 0.998704i \(0.483791\pi\)
\(258\) −3.21940 + 1.02324i −0.200431 + 0.0637044i
\(259\) 17.3827i 1.08011i
\(260\) 0 0
\(261\) −4.93367 + 3.48863i −0.305387 + 0.215941i
\(262\) −3.31135 + 3.31135i −0.204576 + 0.204576i
\(263\) 10.5679i 0.651646i −0.945431 0.325823i \(-0.894359\pi\)
0.945431 0.325823i \(-0.105641\pi\)
\(264\) 3.34607 6.46410i 0.205936 0.397838i
\(265\) 14.5952 14.5952i 0.896574 0.896574i
\(266\) −5.69963 5.69963i −0.349467 0.349467i
\(267\) 16.2506 5.16504i 0.994519 0.316095i
\(268\) 3.00229 + 3.00229i 0.183394 + 0.183394i
\(269\) 8.61859i 0.525485i 0.964866 + 0.262742i \(0.0846269\pi\)
−0.964866 + 0.262742i \(0.915373\pi\)
\(270\) 14.7102 2.04032i 0.895235 0.124170i
\(271\) −14.0234 14.0234i −0.851858 0.851858i 0.138504 0.990362i \(-0.455771\pi\)
−0.990362 + 0.138504i \(0.955771\pi\)
\(272\) −3.45408 −0.209434
\(273\) 0 0
\(274\) 5.47999 0.331058
\(275\) −9.41578 9.41578i −0.567793 0.567793i
\(276\) −2.41445 + 4.66435i −0.145333 + 0.280761i
\(277\) 15.5025i 0.931452i 0.884929 + 0.465726i \(0.154207\pi\)
−0.884929 + 0.465726i \(0.845793\pi\)
\(278\) 10.3897 + 10.3897i 0.623132 + 0.623132i
\(279\) −5.09435 0.874052i −0.304991 0.0523281i
\(280\) 7.25436 + 7.25436i 0.433531 + 0.433531i
\(281\) 11.9452 11.9452i 0.712591 0.712591i −0.254486 0.967077i \(-0.581906\pi\)
0.967077 + 0.254486i \(0.0819061\pi\)
\(282\) 2.08264 + 1.07805i 0.124019 + 0.0641970i
\(283\) 1.57972i 0.0939046i −0.998897 0.0469523i \(-0.985049\pi\)
0.998897 0.0469523i \(-0.0149509\pi\)
\(284\) −7.80205 + 7.80205i −0.462967 + 0.462967i
\(285\) 9.87205 + 5.11015i 0.584770 + 0.302699i
\(286\) 0 0
\(287\) 28.5035i 1.68251i
\(288\) 0.507306 2.95680i 0.0298933 0.174231i
\(289\) −5.06933 −0.298196
\(290\) 5.75665 0.338042
\(291\) 13.2426 4.20899i 0.776295 0.246735i
\(292\) 10.0822 10.0822i 0.590016 0.590016i
\(293\) 2.76136 2.76136i 0.161321 0.161321i −0.621831 0.783152i \(-0.713611\pi\)
0.783152 + 0.621831i \(0.213611\pi\)
\(294\) −9.71393 + 3.08745i −0.566528 + 0.180064i
\(295\) −29.4051 −1.71203
\(296\) −4.84259 −0.281470
\(297\) −17.4155 13.1729i −1.01055 0.764370i
\(298\) 10.3347i 0.598673i
\(299\) 0 0
\(300\) −4.87397 2.52295i −0.281399 0.145663i
\(301\) −4.95035 + 4.95035i −0.285333 + 0.285333i
\(302\) 9.17729i 0.528094i
\(303\) −3.24073 1.67753i −0.186175 0.0963714i
\(304\) 1.58784 1.58784i 0.0910691 0.0910691i
\(305\) −0.554165 0.554165i −0.0317314 0.0317314i
\(306\) −1.75228 + 10.2130i −0.100171 + 0.583839i
\(307\) −21.7994 21.7994i −1.24416 1.24416i −0.958260 0.285899i \(-0.907708\pi\)
−0.285899 0.958260i \(-0.592292\pi\)
\(308\) 15.0847i 0.859532i
\(309\) 11.3565 21.9390i 0.646048 1.24807i
\(310\) 3.48199 + 3.48199i 0.197764 + 0.197764i
\(311\) −20.9295 −1.18681 −0.593403 0.804906i \(-0.702216\pi\)
−0.593403 + 0.804906i \(0.702216\pi\)
\(312\) 0 0
\(313\) −32.6685 −1.84653 −0.923267 0.384159i \(-0.874491\pi\)
−0.923267 + 0.384159i \(0.874491\pi\)
\(314\) −10.0007 10.0007i −0.564372 0.564372i
\(315\) 25.1298 17.7695i 1.41591 1.00120i
\(316\) 1.58051i 0.0889105i
\(317\) −5.21085 5.21085i −0.292671 0.292671i 0.545464 0.838134i \(-0.316354\pi\)
−0.838134 + 0.545464i \(0.816354\pi\)
\(318\) −11.9210 + 3.78893i −0.668495 + 0.212473i
\(319\) −5.98519 5.98519i −0.335106 0.335106i
\(320\) −2.02097 + 2.02097i −0.112976 + 0.112976i
\(321\) 11.0241 21.2970i 0.615308 1.18868i
\(322\) 10.8848i 0.606587i
\(323\) −5.48454 + 5.48454i −0.305168 + 0.305168i
\(324\) −8.48528 3.00000i −0.471405 0.166667i
\(325\) 0 0
\(326\) 1.11435i 0.0617181i
\(327\) −13.6381 + 4.33470i −0.754189 + 0.239709i
\(328\) 7.94072 0.438453
\(329\) 4.86007 0.267944
\(330\) 6.30146 + 19.8261i 0.346884 + 1.09139i
\(331\) −12.8956 + 12.8956i −0.708809 + 0.708809i −0.966285 0.257476i \(-0.917109\pi\)
0.257476 + 0.966285i \(0.417109\pi\)
\(332\) −2.58938 + 2.58938i −0.142110 + 0.142110i
\(333\) −2.45667 + 14.3186i −0.134625 + 0.784652i
\(334\) 5.58509 0.305602
\(335\) −12.1351 −0.663010
\(336\) −1.88324 5.92518i −0.102739 0.323245i
\(337\) 4.92484i 0.268273i 0.990963 + 0.134136i \(0.0428260\pi\)
−0.990963 + 0.134136i \(0.957174\pi\)
\(338\) 0 0
\(339\) 14.3353 27.6937i 0.778587 1.50412i
\(340\) 6.98059 6.98059i 0.378576 0.378576i
\(341\) 7.24045i 0.392093i
\(342\) −3.88941 5.50045i −0.210315 0.297430i
\(343\) 2.83057 2.83057i 0.152836 0.152836i
\(344\) −1.37910 1.37910i −0.0743562 0.0743562i
\(345\) −4.54699 14.3060i −0.244802 0.770212i
\(346\) −12.3711 12.3711i −0.665072 0.665072i
\(347\) 14.9422i 0.802137i −0.916048 0.401069i \(-0.868639\pi\)
0.916048 0.401069i \(-0.131361\pi\)
\(348\) −3.09816 1.60373i −0.166079 0.0859688i
\(349\) 22.0872 + 22.0872i 1.18230 + 1.18230i 0.979147 + 0.203155i \(0.0651196\pi\)
0.203155 + 0.979147i \(0.434880\pi\)
\(350\) −11.3740 −0.607964
\(351\) 0 0
\(352\) 4.20241 0.223989
\(353\) 7.31540 + 7.31540i 0.389360 + 0.389360i 0.874459 0.485099i \(-0.161217\pi\)
−0.485099 + 0.874459i \(0.661217\pi\)
\(354\) 15.8255 + 8.19190i 0.841117 + 0.435394i
\(355\) 31.5354i 1.67373i
\(356\) 6.96131 + 6.96131i 0.368949 + 0.368949i
\(357\) 6.50488 + 20.4661i 0.344275 + 1.08318i
\(358\) 6.51605 + 6.51605i 0.344384 + 0.344384i
\(359\) 9.08944 9.08944i 0.479722 0.479722i −0.425321 0.905043i \(-0.639839\pi\)
0.905043 + 0.425321i \(0.139839\pi\)
\(360\) 4.95035 + 7.00085i 0.260906 + 0.368977i
\(361\) 13.9575i 0.734606i
\(362\) 9.76586 9.76586i 0.513282 0.513282i
\(363\) 5.30306 10.2447i 0.278339 0.537709i
\(364\) 0 0
\(365\) 40.7516i 2.13304i
\(366\) 0.143862 + 0.452628i 0.00751980 + 0.0236593i
\(367\) 1.64695 0.0859700 0.0429850 0.999076i \(-0.486313\pi\)
0.0429850 + 0.999076i \(0.486313\pi\)
\(368\) −3.03237 −0.158073
\(369\) 4.02837 23.4791i 0.209709 1.22227i
\(370\) 9.78673 9.78673i 0.508788 0.508788i
\(371\) −18.3304 + 18.3304i −0.951669 + 0.951669i
\(372\) −0.903931 2.84400i −0.0468666 0.147455i
\(373\) −19.9516 −1.03305 −0.516526 0.856271i \(-0.672775\pi\)
−0.516526 + 0.856271i \(0.672775\pi\)
\(374\) −14.5155 −0.750577
\(375\) −8.63996 + 2.74610i −0.446165 + 0.141808i
\(376\) 1.35395i 0.0698248i
\(377\) 0 0
\(378\) −18.4749 + 2.56249i −0.950248 + 0.131800i
\(379\) −8.70575 + 8.70575i −0.447184 + 0.447184i −0.894417 0.447233i \(-0.852409\pi\)
0.447233 + 0.894417i \(0.352409\pi\)
\(380\) 6.41797i 0.329235i
\(381\) 16.4765 31.8301i 0.844115 1.63071i
\(382\) −16.0534 + 16.0534i −0.821366 + 0.821366i
\(383\) 20.0436 + 20.0436i 1.02418 + 1.02418i 0.999700 + 0.0244774i \(0.00779217\pi\)
0.0244774 + 0.999700i \(0.492208\pi\)
\(384\) 1.65068 0.524648i 0.0842359 0.0267733i
\(385\) 30.4858 + 30.4858i 1.55370 + 1.55370i
\(386\) 20.0457i 1.02030i
\(387\) −4.77735 + 3.37810i −0.242846 + 0.171718i
\(388\) 5.67277 + 5.67277i 0.287991 + 0.287991i
\(389\) 15.9504 0.808717 0.404359 0.914601i \(-0.367495\pi\)
0.404359 + 0.914601i \(0.367495\pi\)
\(390\) 0 0
\(391\) 10.4740 0.529695
\(392\) −4.16119 4.16119i −0.210172 0.210172i
\(393\) −3.72868 + 7.20326i −0.188087 + 0.363357i
\(394\) 18.6373i 0.938935i
\(395\) −3.19416 3.19416i −0.160716 0.160716i
\(396\) 2.13191 12.4257i 0.107132 0.624413i
\(397\) −8.97449 8.97449i −0.450417 0.450417i 0.445076 0.895493i \(-0.353177\pi\)
−0.895493 + 0.445076i \(0.853177\pi\)
\(398\) −3.18933 + 3.18933i −0.159866 + 0.159866i
\(399\) −12.3986 6.41797i −0.620705 0.321300i
\(400\) 3.16864i 0.158432i
\(401\) −11.6106 + 11.6106i −0.579804 + 0.579804i −0.934849 0.355045i \(-0.884465\pi\)
0.355045 + 0.934849i \(0.384465\pi\)
\(402\) 6.53097 + 3.38068i 0.325735 + 0.168613i
\(403\) 0 0
\(404\) 2.10685i 0.104820i
\(405\) 23.2114 11.0856i 1.15338 0.550847i
\(406\) −7.22992 −0.358815
\(407\) −20.3506 −1.00874
\(408\) −5.70158 + 1.81217i −0.282270 + 0.0897160i
\(409\) 24.0968 24.0968i 1.19151 1.19151i 0.214868 0.976643i \(-0.431068\pi\)
0.976643 0.214868i \(-0.0689322\pi\)
\(410\) −16.0480 + 16.0480i −0.792552 + 0.792552i
\(411\) 9.04570 2.87506i 0.446192 0.141816i
\(412\) 14.2629 0.702683
\(413\) 36.9307 1.81724
\(414\) −1.53834 + 8.96609i −0.0756052 + 0.440659i
\(415\) 10.4661i 0.513761i
\(416\) 0 0
\(417\) 22.6010 + 11.6991i 1.10677 + 0.572909i
\(418\) 6.67277 6.67277i 0.326376 0.326376i
\(419\) 32.9024i 1.60739i 0.595044 + 0.803693i \(0.297134\pi\)
−0.595044 + 0.803693i \(0.702866\pi\)
\(420\) 15.7806 + 8.16864i 0.770014 + 0.398589i
\(421\) −17.0945 + 17.0945i −0.833137 + 0.833137i −0.987945 0.154808i \(-0.950524\pi\)
0.154808 + 0.987945i \(0.450524\pi\)
\(422\) −6.06473 6.06473i −0.295227 0.295227i
\(423\) 4.00336 + 0.686869i 0.194650 + 0.0333967i
\(424\) −5.10662 5.10662i −0.248000 0.248000i
\(425\) 10.9447i 0.530898i
\(426\) −8.78537 + 16.9720i −0.425652 + 0.822297i
\(427\) 0.695990 + 0.695990i 0.0336813 + 0.0336813i
\(428\) 13.8455 0.669248
\(429\) 0 0
\(430\) 5.57425 0.268814
\(431\) 1.24152 + 1.24152i 0.0598018 + 0.0598018i 0.736375 0.676573i \(-0.236536\pi\)
−0.676573 + 0.736375i \(0.736536\pi\)
\(432\) −0.713876 5.14688i −0.0343464 0.247629i
\(433\) 10.2438i 0.492286i 0.969234 + 0.246143i \(0.0791633\pi\)
−0.969234 + 0.246143i \(0.920837\pi\)
\(434\) −4.37312 4.37312i −0.209916 0.209916i
\(435\) 9.50238 3.02021i 0.455604 0.144808i
\(436\) −5.84220 5.84220i −0.279791 0.279791i
\(437\) −4.81492 + 4.81492i −0.230329 + 0.230329i
\(438\) 11.3529 21.9321i 0.542461 1.04795i
\(439\) 5.40224i 0.257835i −0.991655 0.128917i \(-0.958850\pi\)
0.991655 0.128917i \(-0.0411502\pi\)
\(440\) −8.49295 + 8.49295i −0.404885 + 0.404885i
\(441\) −14.4148 + 10.1928i −0.686418 + 0.485371i
\(442\) 0 0
\(443\) 13.5731i 0.644876i 0.946591 + 0.322438i \(0.104502\pi\)
−0.946591 + 0.322438i \(0.895498\pi\)
\(444\) −7.99357 + 2.54065i −0.379358 + 0.120574i
\(445\) −28.1372 −1.33383
\(446\) 21.0756 0.997958
\(447\) −5.42208 17.0593i −0.256455 0.806877i
\(448\) 2.53819 2.53819i 0.119918 0.119918i
\(449\) 1.43493 1.43493i 0.0677187 0.0677187i −0.672436 0.740155i \(-0.734752\pi\)
0.740155 + 0.672436i \(0.234752\pi\)
\(450\) −9.36902 1.60747i −0.441660 0.0757769i
\(451\) 33.3702 1.57134
\(452\) 18.0041 0.846841
\(453\) 4.81484 + 15.1488i 0.226221 + 0.711751i
\(454\) 5.02672i 0.235916i
\(455\) 0 0
\(456\) 1.78796 3.45408i 0.0837291 0.161752i
\(457\) −21.1802 + 21.1802i −0.990770 + 0.990770i −0.999958 0.00918755i \(-0.997075\pi\)
0.00918755 + 0.999958i \(0.497075\pi\)
\(458\) 14.0358i 0.655852i
\(459\) 2.46578 + 17.7777i 0.115093 + 0.829794i
\(460\) 6.12832 6.12832i 0.285735 0.285735i
\(461\) −11.3922 11.3922i −0.530589 0.530589i 0.390159 0.920748i \(-0.372420\pi\)
−0.920748 + 0.390159i \(0.872420\pi\)
\(462\) −7.91417 24.9001i −0.368200 1.15846i
\(463\) 4.07041 + 4.07041i 0.189168 + 0.189168i 0.795336 0.606168i \(-0.207294\pi\)
−0.606168 + 0.795336i \(0.707294\pi\)
\(464\) 2.01416i 0.0935052i
\(465\) 7.57446 + 3.92083i 0.351257 + 0.181824i
\(466\) 13.2896 + 13.2896i 0.615630 + 0.615630i
\(467\) −36.8536 −1.70538 −0.852690 0.522417i \(-0.825030\pi\)
−0.852690 + 0.522417i \(0.825030\pi\)
\(468\) 0 0
\(469\) 15.2408 0.703753
\(470\) −2.73630 2.73630i −0.126216 0.126216i
\(471\) −21.7548 11.2611i −1.00241 0.518885i
\(472\) 10.2884i 0.473563i
\(473\) −5.79555 5.79555i −0.266480 0.266480i
\(474\) 0.829210 + 2.60891i 0.0380869 + 0.119831i
\(475\) −5.03130 5.03130i −0.230852 0.230852i
\(476\) −8.76711 + 8.76711i −0.401840 + 0.401840i
\(477\) −17.6899 + 12.5086i −0.809963 + 0.572731i
\(478\) 9.64695i 0.441241i
\(479\) −10.6370 + 10.6370i −0.486018 + 0.486018i −0.907047 0.421029i \(-0.861669\pi\)
0.421029 + 0.907047i \(0.361669\pi\)
\(480\) −2.27568 + 4.39627i −0.103870 + 0.200661i
\(481\) 0 0
\(482\) 8.47706i 0.386119i
\(483\) 5.71069 + 17.9673i 0.259845 + 0.817542i
\(484\) 6.66025 0.302739
\(485\) −22.9290 −1.04115
\(486\) −15.5804 0.500258i −0.706743 0.0226921i
\(487\) −11.8303 + 11.8303i −0.536081 + 0.536081i −0.922376 0.386294i \(-0.873755\pi\)
0.386294 + 0.922376i \(0.373755\pi\)
\(488\) −0.193894 + 0.193894i −0.00877716 + 0.00877716i
\(489\) 0.584640 + 1.83943i 0.0264383 + 0.0831820i
\(490\) 16.8193 0.759817
\(491\) −25.2666 −1.14026 −0.570132 0.821553i \(-0.693108\pi\)
−0.570132 + 0.821553i \(0.693108\pi\)
\(492\) 13.1076 4.16608i 0.590936 0.187821i
\(493\) 6.95708i 0.313331i
\(494\) 0 0
\(495\) 20.8034 + 29.4204i 0.935043 + 1.32235i
\(496\) 1.21829 1.21829i 0.0547030 0.0547030i
\(497\) 39.6062i 1.77658i
\(498\) −2.91572 + 5.63274i −0.130657 + 0.252409i
\(499\) −1.37946 + 1.37946i −0.0617533 + 0.0617533i −0.737309 0.675556i \(-0.763904\pi\)
0.675556 + 0.737309i \(0.263904\pi\)
\(500\) −3.70112 3.70112i −0.165519 0.165519i
\(501\) 9.21920 2.93020i 0.411883 0.130912i
\(502\) 4.97786 + 4.97786i 0.222173 + 0.222173i
\(503\) 11.2904i 0.503414i 0.967803 + 0.251707i \(0.0809919\pi\)
−0.967803 + 0.251707i \(0.919008\pi\)
\(504\) −6.21727 8.79254i −0.276939 0.391651i
\(505\) 4.25788 + 4.25788i 0.189473 + 0.189473i
\(506\) −12.7433 −0.566507
\(507\) 0 0
\(508\) 20.6932 0.918114
\(509\) −26.5900 26.5900i −1.17858 1.17858i −0.980106 0.198473i \(-0.936402\pi\)
−0.198473 0.980106i \(-0.563598\pi\)
\(510\) 7.86037 15.1851i 0.348063 0.672406i
\(511\) 51.1810i 2.26411i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) −9.30596 7.03892i −0.410868 0.310776i
\(514\) 1.15399 + 1.15399i 0.0509003 + 0.0509003i
\(515\) −28.8249 + 28.8249i −1.27018 + 1.27018i
\(516\) −3.00000 1.55291i −0.132068 0.0683632i
\(517\) 5.68987i 0.250240i
\(518\) −12.2914 + 12.2914i −0.540054 + 0.540054i
\(519\) −26.9111 13.9302i −1.18127 0.611468i
\(520\) 0 0
\(521\) 18.2111i 0.797843i −0.916985 0.398922i \(-0.869385\pi\)
0.916985 0.398922i \(-0.130615\pi\)
\(522\) −5.95547 1.02180i −0.260664 0.0447228i
\(523\) 33.8098 1.47840 0.739199 0.673487i \(-0.235204\pi\)
0.739199 + 0.673487i \(0.235204\pi\)
\(524\) −4.68295 −0.204576
\(525\) −18.7748 + 5.96732i −0.819398 + 0.260435i
\(526\) 7.47265 7.47265i 0.325823 0.325823i
\(527\) −4.20809 + 4.20809i −0.183307 + 0.183307i
\(528\) 6.93684 2.20478i 0.301887 0.0959509i
\(529\) −13.8048 −0.600207
\(530\) 20.6407 0.896574
\(531\) 30.4207 + 5.21937i 1.32015 + 0.226502i
\(532\) 8.06049i 0.349467i
\(533\) 0 0
\(534\) 15.1431 + 7.83866i 0.655307 + 0.339212i
\(535\) −27.9814 + 27.9814i −1.20974 + 1.20974i
\(536\) 4.24588i 0.183394i
\(537\) 14.1745 + 7.33728i 0.611676 + 0.316627i
\(538\) −6.09426 + 6.09426i −0.262742 + 0.262742i
\(539\) −17.4870 17.4870i −0.753219 0.753219i
\(540\) 11.8444 + 8.95897i 0.509702 + 0.385533i
\(541\) 4.97355 + 4.97355i 0.213829 + 0.213829i 0.805892 0.592063i \(-0.201686\pi\)
−0.592063 + 0.805892i \(0.701686\pi\)
\(542\) 19.8320i 0.851858i
\(543\) 10.9967 21.2439i 0.471912 0.911665i
\(544\) −2.44240 2.44240i −0.104717 0.104717i
\(545\) 23.6138 1.01150
\(546\) 0 0
\(547\) −2.15870 −0.0922995 −0.0461497 0.998935i \(-0.514695\pi\)
−0.0461497 + 0.998935i \(0.514695\pi\)
\(548\) 3.87494 + 3.87494i 0.165529 + 0.165529i
\(549\) 0.474941 + 0.671668i 0.0202700 + 0.0286661i
\(550\) 13.3159i 0.567793i
\(551\) −3.19818 3.19818i −0.136247 0.136247i
\(552\) −5.00547 + 1.59092i −0.213047 + 0.0677142i
\(553\) 4.01163 + 4.01163i 0.170592 + 0.170592i
\(554\) −10.9619 + 10.9619i −0.465726 + 0.465726i
\(555\) 11.0202 21.2893i 0.467780 0.903682i
\(556\) 14.6932i 0.623132i
\(557\) −1.59427 + 1.59427i −0.0675516 + 0.0675516i −0.740075 0.672524i \(-0.765210\pi\)
0.672524 + 0.740075i \(0.265210\pi\)
\(558\) −2.98420 4.22030i −0.126331 0.178659i
\(559\) 0 0
\(560\) 10.2592i 0.433531i
\(561\) −23.9604 + 7.61550i −1.01161 + 0.321527i
\(562\) 16.8931 0.712591
\(563\) 36.2979 1.52978 0.764888 0.644164i \(-0.222794\pi\)
0.764888 + 0.644164i \(0.222794\pi\)
\(564\) 0.710348 + 2.23494i 0.0299111 + 0.0941081i
\(565\) −36.3857 + 36.3857i −1.53076 + 1.53076i
\(566\) 1.11703 1.11703i 0.0469523 0.0469523i
\(567\) −29.1518 + 13.9227i −1.22426 + 0.584698i
\(568\) −11.0338 −0.462967
\(569\) −39.0751 −1.63811 −0.819057 0.573712i \(-0.805503\pi\)
−0.819057 + 0.573712i \(0.805503\pi\)
\(570\) 3.36717 + 10.5940i 0.141035 + 0.443734i
\(571\) 31.9061i 1.33523i −0.744508 0.667614i \(-0.767316\pi\)
0.744508 0.667614i \(-0.232684\pi\)
\(572\) 0 0
\(573\) −18.0767 + 34.9215i −0.755165 + 1.45887i
\(574\) 20.1550 20.1550i 0.841255 0.841255i
\(575\) 9.60848i 0.400701i
\(576\) 2.44949 1.73205i 0.102062 0.0721688i
\(577\) −9.31011 + 9.31011i −0.387585 + 0.387585i −0.873825 0.486240i \(-0.838368\pi\)
0.486240 + 0.873825i \(0.338368\pi\)
\(578\) −3.58456 3.58456i −0.149098 0.149098i
\(579\) 10.5169 + 33.0890i 0.437069 + 1.37513i
\(580\) 4.07056 + 4.07056i 0.169021 + 0.169021i
\(581\) 13.1447i 0.545332i
\(582\) 12.3401 + 6.38772i 0.511515 + 0.264780i
\(583\) −21.4601 21.4601i −0.888788 0.888788i
\(584\) 14.2584 0.590016
\(585\) 0 0
\(586\) 3.90516 0.161321
\(587\) −20.7092 20.7092i −0.854758 0.854758i 0.135957 0.990715i \(-0.456589\pi\)
−0.990715 + 0.135957i \(0.956589\pi\)
\(588\) −9.05195 4.68563i −0.373296 0.193232i
\(589\) 3.86892i 0.159416i
\(590\) −20.7926 20.7926i −0.856017 0.856017i
\(591\) 9.77803 + 30.7643i 0.402214 + 1.26547i
\(592\) −3.42423 3.42423i −0.140735 0.140735i
\(593\) 12.7368 12.7368i 0.523037 0.523037i −0.395450 0.918487i \(-0.629411\pi\)
0.918487 + 0.395450i \(0.129411\pi\)
\(594\) −3.00000 21.6293i −0.123091 0.887461i
\(595\) 35.4361i 1.45274i
\(596\) 7.30774 7.30774i 0.299337 0.299337i
\(597\) −3.59128 + 6.93783i −0.146981 + 0.283946i
\(598\) 0 0
\(599\) 15.6579i 0.639764i 0.947457 + 0.319882i \(0.103643\pi\)
−0.947457 + 0.319882i \(0.896357\pi\)
\(600\) −1.66242 5.23041i −0.0678680 0.213531i
\(601\) 7.99663 0.326189 0.163095 0.986610i \(-0.447852\pi\)
0.163095 + 0.986610i \(0.447852\pi\)
\(602\) −7.00085 −0.285333
\(603\) 12.5542 + 2.15396i 0.511247 + 0.0877160i
\(604\) −6.48932 + 6.48932i −0.264047 + 0.264047i
\(605\) −13.4602 + 13.4602i −0.547234 + 0.547234i
\(606\) −1.10535 3.47773i −0.0449019 0.141273i
\(607\) 4.49161 0.182309 0.0911545 0.995837i \(-0.470944\pi\)
0.0911545 + 0.995837i \(0.470944\pi\)
\(608\) 2.24555 0.0910691
\(609\) −11.9343 + 3.79316i −0.483602 + 0.153707i
\(610\) 0.783707i 0.0317314i
\(611\) 0 0
\(612\) −8.46073 + 5.98264i −0.342005 + 0.241834i
\(613\) 22.3358 22.3358i 0.902133 0.902133i −0.0934876 0.995620i \(-0.529802\pi\)
0.995620 + 0.0934876i \(0.0298016\pi\)
\(614\) 30.8290i 1.24416i
\(615\) −18.0705 + 34.9096i −0.728674 + 1.40769i
\(616\) 10.6665 10.6665i 0.429766 0.429766i
\(617\) −3.83238 3.83238i −0.154286 0.154286i 0.625743 0.780029i \(-0.284796\pi\)
−0.780029 + 0.625743i \(0.784796\pi\)
\(618\) 23.5435 7.48300i 0.947058 0.301010i
\(619\) −7.22455 7.22455i −0.290379 0.290379i 0.546851 0.837230i \(-0.315826\pi\)
−0.837230 + 0.546851i \(0.815826\pi\)
\(620\) 4.92427i 0.197764i
\(621\) 2.16473 + 15.6072i 0.0868678 + 0.626297i
\(622\) −14.7994 14.7994i −0.593403 0.593403i
\(623\) 35.3382 1.41580
\(624\) 0 0
\(625\) 30.8029 1.23212
\(626\) −23.1001 23.1001i −0.923267 0.923267i
\(627\) 7.51376 14.5155i 0.300071 0.579692i
\(628\) 14.1431i 0.564372i
\(629\) 11.8276 + 11.8276i 0.471596 + 0.471596i
\(630\) 30.3344 + 5.20456i 1.20855 + 0.207355i
\(631\) −14.8492 14.8492i −0.591139 0.591139i 0.346800 0.937939i \(-0.387268\pi\)
−0.937939 + 0.346800i \(0.887268\pi\)
\(632\) −1.11759 + 1.11759i −0.0444553 + 0.0444553i
\(633\) −13.1928 6.82909i −0.524366 0.271432i
\(634\) 7.36926i 0.292671i
\(635\) −41.8204 + 41.8204i −1.65959 + 1.65959i
\(636\) −11.1086 5.75023i −0.440484 0.228011i
\(637\) 0 0
\(638\) 8.46434i 0.335106i
\(639\) −5.59750 + 32.6246i −0.221434 + 1.29061i
\(640\) −2.85808 −0.112976
\(641\) 42.6873 1.68605 0.843024 0.537876i \(-0.180773\pi\)
0.843024 + 0.537876i \(0.180773\pi\)
\(642\) 22.8545 7.26401i 0.901995 0.286688i
\(643\) 2.22166 2.22166i 0.0876138 0.0876138i −0.661942 0.749555i \(-0.730267\pi\)
0.749555 + 0.661942i \(0.230267\pi\)
\(644\) −7.69672 + 7.69672i −0.303293 + 0.303293i
\(645\) 9.20130 2.92452i 0.362301 0.115153i
\(646\) −7.75631 −0.305168
\(647\) −36.4701 −1.43379 −0.716895 0.697181i \(-0.754437\pi\)
−0.716895 + 0.697181i \(0.754437\pi\)
\(648\) −3.87868 8.12132i −0.152369 0.319036i
\(649\) 43.2361i 1.69717i
\(650\) 0 0
\(651\) −9.51297 4.92427i −0.372843 0.192998i
\(652\) −0.787963 + 0.787963i −0.0308590 + 0.0308590i
\(653\) 45.4283i 1.77775i 0.458152 + 0.888874i \(0.348512\pi\)
−0.458152 + 0.888874i \(0.651488\pi\)
\(654\) −12.7087 6.57851i −0.496949 0.257240i
\(655\) 9.46410 9.46410i 0.369793 0.369793i
\(656\) 5.61494 + 5.61494i 0.219226 + 0.219226i
\(657\) 7.23336 42.1591i 0.282200 1.64478i
\(658\) 3.43659 + 3.43659i 0.133972 + 0.133972i
\(659\) 13.2626i 0.516639i −0.966060 0.258319i \(-0.916831\pi\)
0.966060 0.258319i \(-0.0831687\pi\)
\(660\) −9.56333 + 18.4749i −0.372252 + 0.719136i
\(661\) −6.57777 6.57777i −0.255846 0.255846i 0.567516 0.823362i \(-0.307904\pi\)
−0.823362 + 0.567516i \(0.807904\pi\)
\(662\) −18.2372 −0.708809
\(663\) 0 0
\(664\) −3.66193 −0.142110
\(665\) 16.2900 + 16.2900i 0.631700 + 0.631700i
\(666\) −11.8619 + 8.38761i −0.459638 + 0.325013i
\(667\) 6.10768i 0.236490i
\(668\) 3.94925 + 3.94925i 0.152801 + 0.152801i
\(669\) 34.7891 11.0573i 1.34502 0.427498i
\(670\) −8.58080 8.58080i −0.331505 0.331505i
\(671\) −0.814821 + 0.814821i −0.0314558 + 0.0314558i
\(672\) 2.85808 5.52139i 0.110253 0.212992i
\(673\) 26.4742i 1.02050i −0.860025 0.510252i \(-0.829552\pi\)
0.860025 0.510252i \(-0.170448\pi\)
\(674\) −3.48238 + 3.48238i −0.134136 + 0.134136i
\(675\) −16.3086 + 2.26202i −0.627719 + 0.0870650i
\(676\) 0 0
\(677\) 41.0789i 1.57879i −0.613885 0.789396i \(-0.710394\pi\)
0.613885 0.789396i \(-0.289606\pi\)
\(678\) 29.7190 9.44581i 1.14135 0.362764i
\(679\) 28.7971 1.10513
\(680\) 9.87205 0.378576
\(681\) 2.63726 + 8.29751i 0.101060 + 0.317961i
\(682\) 5.11977 5.11977i 0.196046 0.196046i
\(683\) −4.21174 + 4.21174i −0.161158 + 0.161158i −0.783079 0.621922i \(-0.786352\pi\)
0.621922 + 0.783079i \(0.286352\pi\)
\(684\) 1.13918 6.63963i 0.0435577 0.253873i
\(685\) −15.6623 −0.598424
\(686\) 4.00303 0.152836
\(687\) 7.36387 + 23.1687i 0.280949 + 0.883940i
\(688\) 1.95035i 0.0743562i
\(689\) 0 0
\(690\) 6.90069 13.3311i 0.262705 0.507507i
\(691\) 20.2360 20.2360i 0.769814 0.769814i −0.208260 0.978074i \(-0.566780\pi\)
0.978074 + 0.208260i \(0.0667799\pi\)
\(692\) 17.4953i 0.665072i
\(693\) −26.1275 36.9499i −0.992502 1.40361i
\(694\) 10.5657 10.5657i 0.401069 0.401069i
\(695\) −29.6946 29.6946i −1.12638 1.12638i
\(696\) −1.05673 3.32474i −0.0400551 0.126024i
\(697\) −19.3944 19.3944i −0.734617 0.734617i
\(698\) 31.2360i 1.18230i
\(699\) 28.9093 + 14.9646i 1.09345 + 0.566011i
\(700\) −8.04261 8.04261i −0.303982 0.303982i
\(701\) −0.672924 −0.0254160 −0.0127080 0.999919i \(-0.504045\pi\)
−0.0127080 + 0.999919i \(0.504045\pi\)
\(702\) 0 0
\(703\) −10.8743 −0.410131
\(704\) 2.97155 + 2.97155i 0.111995 + 0.111995i
\(705\) −5.95235 3.08116i −0.224178 0.116043i
\(706\) 10.3455i 0.389360i
\(707\) −5.34758 5.34758i −0.201116 0.201116i
\(708\) 5.39779 + 16.9829i 0.202861 + 0.638256i
\(709\) 21.6346 + 21.6346i 0.812504 + 0.812504i 0.985009 0.172505i \(-0.0551860\pi\)
−0.172505 + 0.985009i \(0.555186\pi\)
\(710\) 22.2989 22.2989i 0.836864 0.836864i
\(711\) 2.73752 + 3.87144i 0.102665 + 0.145190i
\(712\) 9.84478i 0.368949i
\(713\) −3.69432 + 3.69432i −0.138353 + 0.138353i
\(714\) −9.87205 + 19.0713i −0.369452 + 0.713727i
\(715\) 0 0
\(716\) 9.21508i 0.344384i
\(717\) −5.06125 15.9240i −0.189016 0.594694i
\(718\) 12.8544 0.479722
\(719\) −23.1131 −0.861974 −0.430987 0.902358i \(-0.641834\pi\)
−0.430987 + 0.902358i \(0.641834\pi\)
\(720\) −1.44992 + 8.45077i −0.0540354 + 0.314942i
\(721\) 36.2019 36.2019i 1.34823 1.34823i
\(722\) −9.86945 + 9.86945i −0.367303 + 0.367303i
\(723\) 4.44747 + 13.9929i 0.165403 + 0.520402i
\(724\) 13.8110 0.513282
\(725\) −6.38216 −0.237027
\(726\) 10.9939 3.49429i 0.408024 0.129685i
\(727\) 11.5379i 0.427917i 0.976843 + 0.213959i \(0.0686357\pi\)
−0.976843 + 0.213959i \(0.931364\pi\)
\(728\) 0 0
\(729\) −25.9808 + 7.34847i −0.962250 + 0.272166i
\(730\) −28.8157 + 28.8157i −1.06652 + 1.06652i
\(731\) 6.73665i 0.249164i
\(732\) −0.218331 + 0.421783i −0.00806974 + 0.0155895i
\(733\) 0.910162 0.910162i 0.0336176 0.0336176i −0.690098 0.723716i \(-0.742433\pi\)
0.723716 + 0.690098i \(0.242433\pi\)
\(734\) 1.16457 + 1.16457i 0.0429850 + 0.0429850i
\(735\) 27.7632 8.82419i 1.02406 0.325485i
\(736\) −2.14421 2.14421i −0.0790365 0.0790365i
\(737\) 17.8429i 0.657253i
\(738\) 19.4507 13.7537i 0.715991 0.506282i
\(739\) 8.82889 + 8.82889i 0.324776 + 0.324776i 0.850596 0.525820i \(-0.176241\pi\)
−0.525820 + 0.850596i \(0.676241\pi\)
\(740\) 13.8405 0.508788
\(741\) 0 0
\(742\) −25.9232 −0.951669
\(743\) 32.3947 + 32.3947i 1.18844 + 1.18844i 0.977497 + 0.210948i \(0.0676549\pi\)
0.210948 + 0.977497i \(0.432345\pi\)
\(744\) 1.37184 2.65019i 0.0502941 0.0971607i
\(745\) 29.5374i 1.08217i
\(746\) −14.1079 14.1079i −0.516526 0.516526i
\(747\) −1.85772 + 10.8276i −0.0679704 + 0.396160i
\(748\) −10.2640 10.2640i −0.375288 0.375288i
\(749\) 35.1425 35.1425i 1.28408 1.28408i
\(750\) −8.05116 4.16759i −0.293987 0.152179i
\(751\) 16.0234i 0.584701i 0.956311 + 0.292350i \(0.0944373\pi\)
−0.956311 + 0.292350i \(0.905563\pi\)
\(752\) −0.957390 + 0.957390i −0.0349124 + 0.0349124i
\(753\) 10.8285 + 5.60523i 0.394611 + 0.204266i
\(754\) 0 0
\(755\) 26.2295i 0.954588i
\(756\) −14.8757 11.2518i −0.541024 0.409224i
\(757\) −31.2554 −1.13600 −0.567998 0.823030i \(-0.692282\pi\)
−0.567998 + 0.823030i \(0.692282\pi\)
\(758\) −12.3118 −0.447184
\(759\) −21.0350 + 6.68572i −0.763523 + 0.242676i
\(760\) −4.53819 + 4.53819i −0.164617 + 0.164617i
\(761\) −12.1654 + 12.1654i −0.440994 + 0.440994i −0.892346 0.451352i \(-0.850942\pi\)
0.451352 + 0.892346i \(0.350942\pi\)
\(762\) 34.1579 10.8567i 1.23741 0.393295i
\(763\) −29.6572 −1.07366
\(764\) −22.7030 −0.821366
\(765\) 5.00815 29.1896i 0.181070 1.05535i
\(766\) 28.3459i 1.02418i
\(767\) 0 0
\(768\) 1.53819 + 0.796225i 0.0555046 + 0.0287313i
\(769\) 0.164384 0.164384i 0.00592784 0.00592784i −0.704137 0.710064i \(-0.748666\pi\)
0.710064 + 0.704137i \(0.248666\pi\)
\(770\) 43.1134i 1.55370i
\(771\) 2.51030 + 1.29943i 0.0904064 + 0.0467978i
\(772\) −14.1745 + 14.1745i −0.510150 + 0.510150i
\(773\) 31.2927 + 31.2927i 1.12552 + 1.12552i 0.990897 + 0.134621i \(0.0429818\pi\)
0.134621 + 0.990897i \(0.457018\pi\)
\(774\) −5.76677 0.989422i −0.207282 0.0355640i
\(775\) −3.86034 3.86034i −0.138667 0.138667i
\(776\) 8.02251i 0.287991i
\(777\) −13.8405 + 26.7378i −0.496526 + 0.959215i
\(778\) 11.2786 + 11.2786i 0.404359 + 0.404359i
\(779\) 17.8313 0.638872
\(780\) 0 0
\(781\) −46.3684 −1.65919
\(782\) 7.40626 + 7.40626i 0.264847 + 0.264847i
\(783\) −10.3667 + 1.43786i −0.370474 + 0.0513850i
\(784\) 5.88481i 0.210172i
\(785\) 28.5828 + 28.5828i 1.02017 + 1.02017i
\(786\) −7.73005 + 2.45690i −0.275722 + 0.0876347i
\(787\) 14.9399 + 14.9399i 0.532551 + 0.532551i 0.921331 0.388780i \(-0.127103\pi\)
−0.388780 + 0.921331i \(0.627103\pi\)
\(788\) −13.1786 + 13.1786i −0.469467 + 0.469467i
\(789\) 8.41445 16.2555i 0.299562 0.578710i
\(790\) 4.51722i 0.160716i
\(791\) 45.6978 45.6978i 1.62483 1.62483i
\(792\) 10.2938 7.27879i 0.365773 0.258640i
\(793\) 0 0
\(794\) 12.6918i 0.450417i
\(795\) 34.0711 10.8291i 1.20838 0.384068i
\(796\) −4.51039 −0.159866
\(797\) 24.0741 0.852747 0.426373 0.904547i \(-0.359791\pi\)
0.426373 + 0.904547i \(0.359791\pi\)
\(798\) −4.22892 13.3053i −0.149702 0.471002i
\(799\) 3.30690 3.30690i 0.116990 0.116990i
\(800\) 2.24057 2.24057i 0.0792160 0.0792160i
\(801\) 29.1090 + 4.99431i 1.02852 + 0.176465i
\(802\) −16.4198 −0.579804
\(803\) 59.9195 2.11451
\(804\) 2.22759 + 7.00859i 0.0785611 + 0.247174i
\(805\) 31.1097i 1.09647i
\(806\) 0 0
\(807\) −6.86234 + 13.2570i −0.241566 + 0.466669i
\(808\) 1.48977 1.48977i 0.0524098 0.0524098i
\(809\) 25.7155i 0.904109i −0.891990 0.452055i \(-0.850691\pi\)
0.891990 0.452055i \(-0.149309\pi\)
\(810\) 24.2516 + 8.57425i 0.852116 + 0.301268i
\(811\) −5.99463 + 5.99463i −0.210500 + 0.210500i −0.804480 0.593980i \(-0.797556\pi\)
0.593980 + 0.804480i \(0.297556\pi\)
\(812\) −5.11233 5.11233i −0.179408 0.179408i
\(813\) −10.4048 32.7363i −0.364913 1.14811i
\(814\) −14.3900 14.3900i −0.504370 0.504370i
\(815\) 3.18490i 0.111562i
\(816\) −5.31303 2.75023i −0.185993 0.0962772i
\(817\) −3.09684 3.09684i −0.108345 0.108345i
\(818\) 34.0781 1.19151
\(819\) 0 0
\(820\) −22.6952 −0.792552
\(821\) −37.5734 37.5734i −1.31132 1.31132i −0.920442 0.390879i \(-0.872171\pi\)
−0.390879 0.920442i \(-0.627829\pi\)
\(822\) 8.42925 + 4.36330i 0.294004 + 0.152188i
\(823\) 11.4619i 0.399538i 0.979843 + 0.199769i \(0.0640192\pi\)
−0.979843 + 0.199769i \(0.935981\pi\)
\(824\) 10.0854 + 10.0854i 0.351341 + 0.351341i
\(825\) −6.98617 21.9803i −0.243227 0.765257i
\(826\) 26.1139 + 26.1139i 0.908620 + 0.908620i
\(827\) 4.57665 4.57665i 0.159146 0.159146i −0.623042 0.782188i \(-0.714104\pi\)
0.782188 + 0.623042i \(0.214104\pi\)
\(828\) −7.42775 + 5.25221i −0.258132 + 0.182527i
\(829\) 49.9553i 1.73502i 0.497422 + 0.867509i \(0.334280\pi\)
−0.497422 + 0.867509i \(0.665720\pi\)
\(830\) 7.40065 7.40065i 0.256880 0.256880i
\(831\) −12.3434 + 23.8457i −0.428189 + 0.827198i
\(832\) 0 0
\(833\) 20.3266i 0.704275i
\(834\) 7.70877 + 24.2538i 0.266933 + 0.839842i
\(835\) −15.9627 −0.552410
\(836\) 9.43672 0.326376
\(837\) −7.14013 5.40071i −0.246799 0.186676i
\(838\) −23.2655 + 23.2655i −0.803693 + 0.803693i
\(839\) 8.20115 8.20115i 0.283135 0.283135i −0.551223 0.834358i \(-0.685839\pi\)
0.834358 + 0.551223i \(0.185839\pi\)
\(840\) 5.38247 + 16.9347i 0.185713 + 0.584302i
\(841\) 24.9431 0.860108
\(842\) −24.1753 −0.833137
\(843\) 27.8850 8.86291i 0.960412 0.305255i
\(844\) 8.57683i 0.295227i
\(845\) 0 0
\(846\) 2.34512 + 3.31649i 0.0806267 + 0.114023i
\(847\) 16.9050 16.9050i 0.580862 0.580862i
\(848\) 7.22186i 0.248000i
\(849\) 1.25781 2.42991i 0.0431680 0.0833942i
\(850\) −7.73910 + 7.73910i −0.265449 + 0.265449i
\(851\) 10.3835 + 10.3835i 0.355942 + 0.355942i
\(852\) −18.2132 + 5.78884i −0.623975 + 0.198322i
\(853\) 1.56247 + 1.56247i 0.0534978 + 0.0534978i 0.733350 0.679852i \(-0.237956\pi\)
−0.679852 + 0.733350i \(0.737956\pi\)
\(854\) 0.984278i 0.0336813i
\(855\) 11.1162 + 15.7207i 0.380168 + 0.537638i
\(856\) 9.79025 + 9.79025i 0.334624 + 0.334624i
\(857\) −21.5804 −0.737174 −0.368587 0.929593i \(-0.620158\pi\)
−0.368587 + 0.929593i \(0.620158\pi\)
\(858\) 0 0
\(859\) 10.5544 0.360110 0.180055 0.983657i \(-0.442372\pi\)
0.180055 + 0.983657i \(0.442372\pi\)
\(860\) 3.94159 + 3.94159i 0.134407 + 0.134407i
\(861\) 22.6952 43.8438i 0.773452 1.49419i
\(862\) 1.75577i 0.0598018i
\(863\) 21.4177 + 21.4177i 0.729066 + 0.729066i 0.970434 0.241368i \(-0.0775960\pi\)
−0.241368 + 0.970434i \(0.577596\pi\)
\(864\) 3.13461 4.14418i 0.106642 0.140988i
\(865\) 35.3575 + 35.3575i 1.20219 + 1.20219i
\(866\) −7.24346 + 7.24346i −0.246143 + 0.246143i
\(867\) −7.79759 4.03633i −0.264820 0.137081i
\(868\) 6.18452i 0.209916i
\(869\) −4.69656 + 4.69656i −0.159320 + 0.159320i
\(870\) 8.85481 + 4.58359i 0.300206 + 0.155398i
\(871\) 0 0
\(872\) 8.26212i 0.279791i
\(873\) 23.7209 + 4.06987i 0.802831 + 0.137744i
\(874\) −6.80933 −0.230329
\(875\) −18.7883 −0.635161
\(876\) 23.5360 7.48062i 0.795208 0.252747i
\(877\) −27.6234 + 27.6234i −0.932775 + 0.932775i −0.997879 0.0651031i \(-0.979262\pi\)
0.0651031 + 0.997879i \(0.479262\pi\)
\(878\) 3.81996 3.81996i 0.128917 0.128917i
\(879\) 6.44617 2.04883i 0.217424 0.0691054i
\(880\) −12.0108 −0.404885
\(881\) 6.79415 0.228901 0.114450 0.993429i \(-0.463489\pi\)
0.114450 + 0.993429i \(0.463489\pi\)
\(882\) −17.4002 2.98540i −0.585894 0.100524i
\(883\) 40.6560i 1.36818i −0.729397 0.684091i \(-0.760199\pi\)
0.729397 0.684091i \(-0.239801\pi\)
\(884\) 0 0
\(885\) −45.2307 23.4131i −1.52041 0.787023i
\(886\) −9.59761 + 9.59761i −0.322438 + 0.322438i
\(887\) 10.4419i 0.350606i −0.984515 0.175303i \(-0.943909\pi\)
0.984515 0.175303i \(-0.0560905\pi\)
\(888\) −7.44882 3.85579i −0.249966 0.129392i
\(889\) 52.5233 52.5233i 1.76158 1.76158i
\(890\) −19.8960 19.8960i −0.666916 0.666916i
\(891\) −16.2998 34.1291i −0.546064 1.14337i
\(892\) 14.9027 + 14.9027i 0.498979 + 0.498979i
\(893\) 3.04037i 0.101742i
\(894\) 8.22875 15.8967i 0.275211 0.531666i
\(895\) −18.6234 18.6234i −0.622512 0.622512i
\(896\) 3.58954 0.119918
\(897\) 0 0
\(898\) 2.02930 0.0677187
\(899\) −2.45384 2.45384i −0.0818403 0.0818403i
\(900\) −5.48825 7.76155i −0.182942 0.258718i
\(901\) 24.9449i 0.831034i
\(902\) 23.5963 + 23.5963i 0.785670 + 0.785670i
\(903\) −11.5562 + 3.67298i −0.384565 + 0.122229i
\(904\) 12.7308 + 12.7308i 0.423421 + 0.423421i
\(905\) −27.9116 + 27.9116i −0.927814 + 0.927814i
\(906\) −7.30719 + 14.1164i −0.242765 + 0.468986i
\(907\) 39.2319i 1.30268i −0.758788 0.651338i \(-0.774208\pi\)
0.758788 0.651338i \(-0.225792\pi\)
\(908\) −3.55443 + 3.55443i −0.117958 + 0.117958i
\(909\) −3.64917 5.16071i −0.121035 0.171170i
\(910\) 0 0
\(911\) 32.0923i 1.06326i −0.846975 0.531632i \(-0.821579\pi\)
0.846975 0.531632i \(-0.178421\pi\)
\(912\) 3.70668 1.17812i 0.122741 0.0390115i
\(913\) −15.3889 −0.509299
\(914\) −29.9534 −0.990770
\(915\) −0.411170 1.29365i −0.0135929 0.0427667i
\(916\) −9.92484 + 9.92484i −0.327926 + 0.327926i
\(917\) −11.8862 + 11.8862i −0.392517 + 0.392517i
\(918\) −10.8272 + 14.3143i −0.357350 + 0.472443i
\(919\) 33.2842 1.09794 0.548972 0.835841i \(-0.315020\pi\)
0.548972 + 0.835841i \(0.315020\pi\)
\(920\) 8.66676 0.285735
\(921\) −16.1744 50.8889i −0.532964 1.67685i
\(922\) 16.1111i 0.530589i
\(923\) 0 0
\(924\) 12.0108 23.2032i 0.395128 0.763328i
\(925\) −10.8501 + 10.8501i −0.356751 + 0.356751i
\(926\) 5.75643i 0.189168i
\(927\) 34.9368 24.7041i 1.14748 0.811388i
\(928\) 1.42423 1.42423i 0.0467526 0.0467526i
\(929\) −15.5309 15.5309i −0.509552 0.509552i 0.404837 0.914389i \(-0.367328\pi\)
−0.914389 + 0.404837i \(0.867328\pi\)
\(930\) 2.58351 + 8.12840i 0.0847166 + 0.266541i
\(931\) −9.34415 9.34415i −0.306242 0.306242i
\(932\) 18.7944i 0.615630i
\(933\) −32.1936 16.6646i −1.05397 0.545575i
\(934\) −26.0594 26.0594i −0.852690 0.852690i
\(935\) 41.4864 1.35675
\(936\) 0 0
\(937\) 55.9423 1.82755 0.913777 0.406216i \(-0.133152\pi\)
0.913777 + 0.406216i \(0.133152\pi\)
\(938\) 10.7768 + 10.7768i 0.351877 + 0.351877i
\(939\) −50.2503 26.0115i −1.63986 0.848853i
\(940\) 3.86971i 0.126216i
\(941\) −17.1600 17.1600i −0.559401 0.559401i 0.369736 0.929137i \(-0.379448\pi\)
−0.929137 + 0.369736i \(0.879448\pi\)
\(942\) −7.42016 23.3458i −0.241762 0.760647i
\(943\) −17.0265 17.0265i −0.554461 0.554461i
\(944\) −7.27501 + 7.27501i −0.236781 + 0.236781i
\(945\) 52.8029 7.32380i 1.71768 0.238243i
\(946\) 8.19615i 0.266480i
\(947\) 33.7186 33.7186i 1.09571 1.09571i 0.100799 0.994907i \(-0.467860\pi\)
0.994907 0.100799i \(-0.0321400\pi\)
\(948\) −1.25844 + 2.43112i −0.0408722 + 0.0789591i
\(949\) 0 0
\(950\) 7.11534i 0.230852i
\(951\) −3.86626 12.1643i −0.125372 0.394454i
\(952\) −12.3986 −0.401840
\(953\) −43.0555 −1.39471 −0.697353 0.716728i \(-0.745639\pi\)
−0.697353 + 0.716728i \(0.745639\pi\)
\(954\) −21.3536 3.66369i −0.691347 0.118616i
\(955\) 45.8821 45.8821i 1.48471 1.48471i
\(956\) 6.82142 6.82142i 0.220621 0.220621i
\(957\) −4.44080 13.9719i −0.143551 0.451648i
\(958\) −15.0430 −0.486018
\(959\) 19.6706 0.635198
\(960\) −4.71778 + 1.49949i −0.152266 + 0.0483957i
\(961\) 28.0315i 0.904242i
\(962\) 0 0
\(963\) 33.9144 23.9811i 1.09288 0.772781i
\(964\) −5.99419 + 5.99419i −0.193060 + 0.193060i
\(965\) 57.2923i 1.84430i
\(966\) −8.66676 + 16.7429i −0.278848 + 0.538694i
\(967\) 4.96226 4.96226i 0.159576 0.159576i −0.622803 0.782379i \(-0.714006\pi\)
0.782379 + 0.622803i \(0.214006\pi\)
\(968\) 4.70951 + 4.70951i 0.151369 + 0.151369i
\(969\) −12.8032 + 4.06933i −0.411298 + 0.130726i
\(970\) −16.2132 16.2132i −0.520576 0.520576i
\(971\) 31.7872i 1.02010i 0.860145 + 0.510050i \(0.170373\pi\)
−0.860145 + 0.510050i \(0.829627\pi\)
\(972\) −10.6633 11.3708i −0.342025 0.364717i
\(973\) 37.2942 + 37.2942i 1.19560 + 1.19560i
\(974\) −16.7305 −0.536081
\(975\) 0 0
\(976\) −0.274207 −0.00877716
\(977\) −4.92840 4.92840i −0.157673 0.157673i 0.623861 0.781535i \(-0.285563\pi\)
−0.781535 + 0.623861i \(0.785563\pi\)
\(978\) −0.887272 + 1.71408i −0.0283718 + 0.0548102i
\(979\) 41.3718i 1.32225i
\(980\) 11.8930 + 11.8930i 0.379909 + 0.379909i
\(981\) −24.4294 4.19142i −0.779970 0.133822i
\(982\) −17.8662 17.8662i −0.570132 0.570132i
\(983\) −10.5636 + 10.5636i −0.336926 + 0.336926i −0.855209 0.518283i \(-0.826571\pi\)
0.518283 + 0.855209i \(0.326571\pi\)
\(984\) 12.2143 + 6.32260i 0.389379 + 0.201557i
\(985\) 53.2670i 1.69723i
\(986\) −4.91940 + 4.91940i −0.156666 + 0.156666i
\(987\) 7.47571 + 3.86971i 0.237954 + 0.123174i
\(988\) 0 0
\(989\) 5.91416i 0.188059i
\(990\) −6.09317 + 35.5136i −0.193654 + 1.12870i
\(991\) 26.3855 0.838162 0.419081 0.907949i \(-0.362352\pi\)
0.419081 + 0.907949i \(0.362352\pi\)
\(992\) 1.72293 0.0547030
\(993\) −30.1038 + 9.56810i −0.955315 + 0.303635i
\(994\) −28.0058 + 28.0058i −0.888290 + 0.888290i
\(995\) 9.11536 9.11536i 0.288976 0.288976i
\(996\) −6.04468 + 1.92122i −0.191533 + 0.0608763i
\(997\) 29.2650 0.926832 0.463416 0.886141i \(-0.346623\pi\)
0.463416 + 0.886141i \(0.346623\pi\)
\(998\) −1.95086 −0.0617533
\(999\) −15.1796 + 20.0686i −0.480262 + 0.634941i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.2.g.d.239.8 16
3.2 odd 2 inner 1014.2.g.d.239.4 16
13.2 odd 12 78.2.k.a.59.3 yes 16
13.4 even 6 78.2.k.a.41.1 16
13.5 odd 4 1014.2.g.c.437.8 16
13.8 odd 4 inner 1014.2.g.d.437.4 16
13.12 even 2 1014.2.g.c.239.4 16
39.2 even 12 78.2.k.a.59.1 yes 16
39.5 even 4 1014.2.g.c.437.4 16
39.8 even 4 inner 1014.2.g.d.437.8 16
39.17 odd 6 78.2.k.a.41.3 yes 16
39.38 odd 2 1014.2.g.c.239.8 16
52.15 even 12 624.2.cn.d.449.4 16
52.43 odd 6 624.2.cn.d.353.3 16
156.95 even 6 624.2.cn.d.353.4 16
156.119 odd 12 624.2.cn.d.449.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.k.a.41.1 16 13.4 even 6
78.2.k.a.41.3 yes 16 39.17 odd 6
78.2.k.a.59.1 yes 16 39.2 even 12
78.2.k.a.59.3 yes 16 13.2 odd 12
624.2.cn.d.353.3 16 52.43 odd 6
624.2.cn.d.353.4 16 156.95 even 6
624.2.cn.d.449.3 16 156.119 odd 12
624.2.cn.d.449.4 16 52.15 even 12
1014.2.g.c.239.4 16 13.12 even 2
1014.2.g.c.239.8 16 39.38 odd 2
1014.2.g.c.437.4 16 39.5 even 4
1014.2.g.c.437.8 16 13.5 odd 4
1014.2.g.d.239.4 16 3.2 odd 2 inner
1014.2.g.d.239.8 16 1.1 even 1 trivial
1014.2.g.d.437.4 16 13.8 odd 4 inner
1014.2.g.d.437.8 16 39.8 even 4 inner