Properties

Label 1014.2.g.d.239.7
Level $1014$
Weight $2$
Character 1014.239
Analytic conductor $8.097$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(239,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.9349208943630483456.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 239.7
Root \(0.500000 + 2.74530i\) of defining polynomial
Character \(\chi\) \(=\) 1014.239
Dual form 1014.2.g.d.437.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +(0.796225 - 1.53819i) q^{3} +1.00000i q^{4} +(2.76293 + 2.76293i) q^{5} +(1.65068 - 0.524648i) q^{6} +(1.79623 + 1.79623i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-1.73205 - 2.44949i) q^{9} +3.90738i q^{10} +(0.412157 - 0.412157i) q^{11} +(1.53819 + 0.796225i) q^{12} +2.54025i q^{14} +(6.44983 - 2.05000i) q^{15} -1.00000 q^{16} -1.09400 q^{17} +(0.507306 - 2.95680i) q^{18} +(0.971553 - 0.971553i) q^{19} +(-2.76293 + 2.76293i) q^{20} +(4.19313 - 1.33273i) q^{21} +0.582877 q^{22} +1.75292 q^{23} +(0.524648 + 1.65068i) q^{24} +10.2676i q^{25} +(-5.14688 + 0.713876i) q^{27} +(-1.79623 + 1.79623i) q^{28} -5.92330i q^{29} +(6.01029 + 3.11115i) q^{30} +(-6.49983 + 6.49983i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(-0.305805 - 0.962144i) q^{33} +(-0.773575 - 0.773575i) q^{34} +9.92570i q^{35} +(2.44949 - 1.73205i) q^{36} +(-2.18840 - 2.18840i) q^{37} +1.37398 q^{38} -3.90738 q^{40} +(-3.74650 - 3.74650i) q^{41} +(3.90738 + 2.02261i) q^{42} +3.76778i q^{43} +(0.412157 + 0.412157i) q^{44} +(1.98224 - 11.5533i) q^{45} +(1.23950 + 1.23950i) q^{46} +(5.51114 - 5.51114i) q^{47} +(-0.796225 + 1.53819i) q^{48} -0.547150i q^{49} +(-7.26029 + 7.26029i) q^{50} +(-0.871071 + 1.68278i) q^{51} -3.04435i q^{53} +(-4.14418 - 3.13461i) q^{54} +2.27752 q^{55} -2.54025 q^{56} +(-0.720857 - 2.26801i) q^{57} +(4.18840 - 4.18840i) q^{58} +(5.99556 - 5.99556i) q^{59} +(2.05000 + 6.44983i) q^{60} +9.34533 q^{61} -9.19215 q^{62} +(1.28868 - 7.51099i) q^{63} -1.00000i q^{64} +(0.464102 - 0.896575i) q^{66} +(-4.66788 + 4.66788i) q^{67} -1.09400i q^{68} +(1.39572 - 2.69632i) q^{69} +(-7.01853 + 7.01853i) q^{70} +(-0.601383 - 0.601383i) q^{71} +(2.95680 + 0.507306i) q^{72} +(5.18078 + 5.18078i) q^{73} -3.09487i q^{74} +(15.7935 + 8.17533i) q^{75} +(0.971553 + 0.971553i) q^{76} +1.48065 q^{77} -13.1089 q^{79} +(-2.76293 - 2.76293i) q^{80} +(-3.00000 + 8.48528i) q^{81} -5.29835i q^{82} +(5.15394 + 5.15394i) q^{83} +(1.33273 + 4.19313i) q^{84} +(-3.02265 - 3.02265i) q^{85} +(-2.66422 + 2.66422i) q^{86} +(-9.11115 - 4.71628i) q^{87} +0.582877i q^{88} +(6.85191 - 6.85191i) q^{89} +(9.57108 - 6.76778i) q^{90} +1.75292i q^{92} +(4.82264 + 15.1733i) q^{93} +7.79393 q^{94} +5.36867 q^{95} +(-1.65068 + 0.524648i) q^{96} +(-0.433704 + 0.433704i) q^{97} +(0.386893 - 0.386893i) q^{98} +(-1.72345 - 0.295697i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{7} + 24 q^{15} - 16 q^{16} - 32 q^{19} + 24 q^{21} - 16 q^{28} - 16 q^{31} - 24 q^{33} - 24 q^{34} + 8 q^{37} + 48 q^{45} + 48 q^{55} + 24 q^{57} + 24 q^{58} + 24 q^{60} + 48 q^{61} - 48 q^{66}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0.796225 1.53819i 0.459701 0.888074i
\(4\) 1.00000i 0.500000i
\(5\) 2.76293 + 2.76293i 1.23562 + 1.23562i 0.961773 + 0.273849i \(0.0882968\pi\)
0.273849 + 0.961773i \(0.411703\pi\)
\(6\) 1.65068 0.524648i 0.673887 0.214186i
\(7\) 1.79623 + 1.79623i 0.678909 + 0.678909i 0.959753 0.280844i \(-0.0906144\pi\)
−0.280844 + 0.959753i \(0.590614\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) −1.73205 2.44949i −0.577350 0.816497i
\(10\) 3.90738i 1.23562i
\(11\) 0.412157 0.412157i 0.124270 0.124270i −0.642237 0.766506i \(-0.721993\pi\)
0.766506 + 0.642237i \(0.221993\pi\)
\(12\) 1.53819 + 0.796225i 0.444037 + 0.229850i
\(13\) 0 0
\(14\) 2.54025i 0.678909i
\(15\) 6.44983 2.05000i 1.66534 0.529307i
\(16\) −1.00000 −0.250000
\(17\) −1.09400 −0.265334 −0.132667 0.991161i \(-0.542354\pi\)
−0.132667 + 0.991161i \(0.542354\pi\)
\(18\) 0.507306 2.95680i 0.119573 0.696923i
\(19\) 0.971553 0.971553i 0.222890 0.222890i −0.586825 0.809714i \(-0.699622\pi\)
0.809714 + 0.586825i \(0.199622\pi\)
\(20\) −2.76293 + 2.76293i −0.617811 + 0.617811i
\(21\) 4.19313 1.33273i 0.915017 0.290826i
\(22\) 0.582877 0.124270
\(23\) 1.75292 0.365509 0.182755 0.983159i \(-0.441499\pi\)
0.182755 + 0.983159i \(0.441499\pi\)
\(24\) 0.524648 + 1.65068i 0.107093 + 0.336944i
\(25\) 10.2676i 2.05352i
\(26\) 0 0
\(27\) −5.14688 + 0.713876i −0.990518 + 0.137386i
\(28\) −1.79623 + 1.79623i −0.339455 + 0.339455i
\(29\) 5.92330i 1.09993i −0.835188 0.549965i \(-0.814641\pi\)
0.835188 0.549965i \(-0.185359\pi\)
\(30\) 6.01029 + 3.11115i 1.09732 + 0.568016i
\(31\) −6.49983 + 6.49983i −1.16740 + 1.16740i −0.184588 + 0.982816i \(0.559095\pi\)
−0.982816 + 0.184588i \(0.940905\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) −0.305805 0.962144i −0.0532339 0.167488i
\(34\) −0.773575 0.773575i −0.132667 0.132667i
\(35\) 9.92570i 1.67775i
\(36\) 2.44949 1.73205i 0.408248 0.288675i
\(37\) −2.18840 2.18840i −0.359772 0.359772i 0.503957 0.863729i \(-0.331877\pi\)
−0.863729 + 0.503957i \(0.831877\pi\)
\(38\) 1.37398 0.222890
\(39\) 0 0
\(40\) −3.90738 −0.617811
\(41\) −3.74650 3.74650i −0.585105 0.585105i 0.351197 0.936302i \(-0.385775\pi\)
−0.936302 + 0.351197i \(0.885775\pi\)
\(42\) 3.90738 + 2.02261i 0.602922 + 0.312095i
\(43\) 3.76778i 0.574581i 0.957844 + 0.287290i \(0.0927545\pi\)
−0.957844 + 0.287290i \(0.907246\pi\)
\(44\) 0.412157 + 0.412157i 0.0621349 + 0.0621349i
\(45\) 1.98224 11.5533i 0.295494 1.72227i
\(46\) 1.23950 + 1.23950i 0.182755 + 0.182755i
\(47\) 5.51114 5.51114i 0.803883 0.803883i −0.179817 0.983700i \(-0.557551\pi\)
0.983700 + 0.179817i \(0.0575506\pi\)
\(48\) −0.796225 + 1.53819i −0.114925 + 0.222018i
\(49\) 0.547150i 0.0781643i
\(50\) −7.26029 + 7.26029i −1.02676 + 1.02676i
\(51\) −0.871071 + 1.68278i −0.121974 + 0.235636i
\(52\) 0 0
\(53\) 3.04435i 0.418173i −0.977897 0.209087i \(-0.932951\pi\)
0.977897 0.209087i \(-0.0670490\pi\)
\(54\) −4.14418 3.13461i −0.563952 0.426566i
\(55\) 2.27752 0.307101
\(56\) −2.54025 −0.339455
\(57\) −0.720857 2.26801i −0.0954799 0.300405i
\(58\) 4.18840 4.18840i 0.549965 0.549965i
\(59\) 5.99556 5.99556i 0.780556 0.780556i −0.199369 0.979925i \(-0.563889\pi\)
0.979925 + 0.199369i \(0.0638892\pi\)
\(60\) 2.05000 + 6.44983i 0.264653 + 0.832670i
\(61\) 9.34533 1.19655 0.598273 0.801292i \(-0.295854\pi\)
0.598273 + 0.801292i \(0.295854\pi\)
\(62\) −9.19215 −1.16740
\(63\) 1.28868 7.51099i 0.162359 0.946296i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) 0.464102 0.896575i 0.0571270 0.110361i
\(67\) −4.66788 + 4.66788i −0.570272 + 0.570272i −0.932204 0.361932i \(-0.882117\pi\)
0.361932 + 0.932204i \(0.382117\pi\)
\(68\) 1.09400i 0.132667i
\(69\) 1.39572 2.69632i 0.168025 0.324599i
\(70\) −7.01853 + 7.01853i −0.838875 + 0.838875i
\(71\) −0.601383 0.601383i −0.0713711 0.0713711i 0.670520 0.741891i \(-0.266071\pi\)
−0.741891 + 0.670520i \(0.766071\pi\)
\(72\) 2.95680 + 0.507306i 0.348462 + 0.0597866i
\(73\) 5.18078 + 5.18078i 0.606365 + 0.606365i 0.941994 0.335629i \(-0.108949\pi\)
−0.335629 + 0.941994i \(0.608949\pi\)
\(74\) 3.09487i 0.359772i
\(75\) 15.7935 + 8.17533i 1.82368 + 0.944006i
\(76\) 0.971553 + 0.971553i 0.111445 + 0.111445i
\(77\) 1.48065 0.168736
\(78\) 0 0
\(79\) −13.1089 −1.47486 −0.737431 0.675422i \(-0.763961\pi\)
−0.737431 + 0.675422i \(0.763961\pi\)
\(80\) −2.76293 2.76293i −0.308905 0.308905i
\(81\) −3.00000 + 8.48528i −0.333333 + 0.942809i
\(82\) 5.29835i 0.585105i
\(83\) 5.15394 + 5.15394i 0.565719 + 0.565719i 0.930926 0.365208i \(-0.119002\pi\)
−0.365208 + 0.930926i \(0.619002\pi\)
\(84\) 1.33273 + 4.19313i 0.145413 + 0.457508i
\(85\) −3.02265 3.02265i −0.327852 0.327852i
\(86\) −2.66422 + 2.66422i −0.287290 + 0.287290i
\(87\) −9.11115 4.71628i −0.976818 0.505638i
\(88\) 0.582877i 0.0621349i
\(89\) 6.85191 6.85191i 0.726301 0.726301i −0.243580 0.969881i \(-0.578322\pi\)
0.969881 + 0.243580i \(0.0783219\pi\)
\(90\) 9.57108 6.76778i 1.00888 0.713386i
\(91\) 0 0
\(92\) 1.75292i 0.182755i
\(93\) 4.82264 + 15.1733i 0.500084 + 1.57340i
\(94\) 7.79393 0.803883
\(95\) 5.36867 0.550814
\(96\) −1.65068 + 0.524648i −0.168472 + 0.0535466i
\(97\) −0.433704 + 0.433704i −0.0440360 + 0.0440360i −0.728782 0.684746i \(-0.759913\pi\)
0.684746 + 0.728782i \(0.259913\pi\)
\(98\) 0.386893 0.386893i 0.0390821 0.0390821i
\(99\) −1.72345 0.295697i −0.173213 0.0297187i
\(100\) −10.2676 −1.02676
\(101\) −5.83579 −0.580682 −0.290341 0.956923i \(-0.593769\pi\)
−0.290341 + 0.956923i \(0.593769\pi\)
\(102\) −1.80584 + 0.573965i −0.178805 + 0.0568310i
\(103\) 2.07313i 0.204272i 0.994770 + 0.102136i \(0.0325677\pi\)
−0.994770 + 0.102136i \(0.967432\pi\)
\(104\) 0 0
\(105\) 15.2676 + 7.90310i 1.48997 + 0.771263i
\(106\) 2.15268 2.15268i 0.209087 0.209087i
\(107\) 3.45856i 0.334351i −0.985927 0.167176i \(-0.946535\pi\)
0.985927 0.167176i \(-0.0534647\pi\)
\(108\) −0.713876 5.14688i −0.0686928 0.495259i
\(109\) 10.9901 10.9901i 1.05266 1.05266i 0.0541251 0.998534i \(-0.482763\pi\)
0.998534 0.0541251i \(-0.0172370\pi\)
\(110\) 1.61045 + 1.61045i 0.153551 + 0.153551i
\(111\) −5.10864 + 1.62372i −0.484891 + 0.154116i
\(112\) −1.79623 1.79623i −0.169727 0.169727i
\(113\) 10.8971i 1.02512i −0.858653 0.512558i \(-0.828698\pi\)
0.858653 0.512558i \(-0.171302\pi\)
\(114\) 1.09400 2.11345i 0.102463 0.197942i
\(115\) 4.84320 + 4.84320i 0.451631 + 0.451631i
\(116\) 5.92330 0.549965
\(117\) 0 0
\(118\) 8.47900 0.780556
\(119\) −1.96507 1.96507i −0.180138 0.180138i
\(120\) −3.11115 + 6.01029i −0.284008 + 0.548662i
\(121\) 10.6603i 0.969114i
\(122\) 6.60814 + 6.60814i 0.598273 + 0.598273i
\(123\) −8.74588 + 2.77977i −0.788589 + 0.250643i
\(124\) −6.49983 6.49983i −0.583702 0.583702i
\(125\) −14.5541 + 14.5541i −1.30175 + 1.30175i
\(126\) 6.22231 4.39984i 0.554327 0.391968i
\(127\) 9.31325i 0.826417i −0.910636 0.413209i \(-0.864408\pi\)
0.910636 0.413209i \(-0.135592\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 5.79555 + 3.00000i 0.510270 + 0.264135i
\(130\) 0 0
\(131\) 0.917828i 0.0801910i −0.999196 0.0400955i \(-0.987234\pi\)
0.999196 0.0400955i \(-0.0127662\pi\)
\(132\) 0.962144 0.305805i 0.0837439 0.0266169i
\(133\) 3.49026 0.302644
\(134\) −6.60137 −0.570272
\(135\) −16.1929 12.2481i −1.39366 1.05415i
\(136\) 0.773575 0.773575i 0.0663335 0.0663335i
\(137\) 6.09427 6.09427i 0.520669 0.520669i −0.397104 0.917773i \(-0.629985\pi\)
0.917773 + 0.397104i \(0.129985\pi\)
\(138\) 2.89351 0.919666i 0.246312 0.0782871i
\(139\) 3.31325 0.281026 0.140513 0.990079i \(-0.455125\pi\)
0.140513 + 0.990079i \(0.455125\pi\)
\(140\) −9.92570 −0.838875
\(141\) −4.08907 12.8653i −0.344362 1.08345i
\(142\) 0.850484i 0.0713711i
\(143\) 0 0
\(144\) 1.73205 + 2.44949i 0.144338 + 0.204124i
\(145\) 16.3657 16.3657i 1.35910 1.35910i
\(146\) 7.32673i 0.606365i
\(147\) −0.841620 0.435655i −0.0694156 0.0359322i
\(148\) 2.18840 2.18840i 0.179886 0.179886i
\(149\) −5.55437 5.55437i −0.455032 0.455032i 0.441989 0.897021i \(-0.354273\pi\)
−0.897021 + 0.441989i \(0.854273\pi\)
\(150\) 5.38688 + 16.9485i 0.439837 + 1.38384i
\(151\) −10.2600 10.2600i −0.834946 0.834946i 0.153243 0.988189i \(-0.451028\pi\)
−0.988189 + 0.153243i \(0.951028\pi\)
\(152\) 1.37398i 0.111445i
\(153\) 1.89486 + 2.67974i 0.153191 + 0.216644i
\(154\) 1.04698 + 1.04698i 0.0843680 + 0.0843680i
\(155\) −35.9172 −2.88494
\(156\) 0 0
\(157\) −6.71547 −0.535953 −0.267976 0.963425i \(-0.586355\pi\)
−0.267976 + 0.963425i \(0.586355\pi\)
\(158\) −9.26936 9.26936i −0.737431 0.737431i
\(159\) −4.68278 2.42398i −0.371369 0.192235i
\(160\) 3.90738i 0.308905i
\(161\) 3.14864 + 3.14864i 0.248148 + 0.248148i
\(162\) −8.12132 + 3.87868i −0.638071 + 0.304738i
\(163\) 1.11345 + 1.11345i 0.0872118 + 0.0872118i 0.749367 0.662155i \(-0.230358\pi\)
−0.662155 + 0.749367i \(0.730358\pi\)
\(164\) 3.74650 3.74650i 0.292552 0.292552i
\(165\) 1.81342 3.50326i 0.141175 0.272728i
\(166\) 7.28877i 0.565719i
\(167\) −17.2850 + 17.2850i −1.33755 + 1.33755i −0.439123 + 0.898427i \(0.644711\pi\)
−0.898427 + 0.439123i \(0.855289\pi\)
\(168\) −2.02261 + 3.90738i −0.156048 + 0.301461i
\(169\) 0 0
\(170\) 4.27467i 0.327852i
\(171\) −4.06259 0.697030i −0.310674 0.0533032i
\(172\) −3.76778 −0.287290
\(173\) −20.7673 −1.57891 −0.789456 0.613807i \(-0.789637\pi\)
−0.789456 + 0.613807i \(0.789637\pi\)
\(174\) −3.10764 9.77747i −0.235590 0.741228i
\(175\) −18.4429 + 18.4429i −1.39415 + 1.39415i
\(176\) −0.412157 + 0.412157i −0.0310675 + 0.0310675i
\(177\) −4.44849 13.9961i −0.334369 1.05201i
\(178\) 9.69006 0.726301
\(179\) −14.0004 −1.04644 −0.523218 0.852199i \(-0.675269\pi\)
−0.523218 + 0.852199i \(0.675269\pi\)
\(180\) 11.5533 + 1.98224i 0.861134 + 0.147747i
\(181\) 25.5405i 1.89841i −0.314653 0.949207i \(-0.601888\pi\)
0.314653 0.949207i \(-0.398112\pi\)
\(182\) 0 0
\(183\) 7.44098 14.3749i 0.550053 1.06262i
\(184\) −1.23950 + 1.23950i −0.0913773 + 0.0913773i
\(185\) 12.0928i 0.889083i
\(186\) −7.31902 + 14.1393i −0.536656 + 1.03674i
\(187\) −0.450899 + 0.450899i −0.0329730 + 0.0329730i
\(188\) 5.51114 + 5.51114i 0.401941 + 0.401941i
\(189\) −10.5272 7.96267i −0.765744 0.579199i
\(190\) 3.79623 + 3.79623i 0.275407 + 0.275407i
\(191\) 23.6463i 1.71099i 0.517814 + 0.855493i \(0.326746\pi\)
−0.517814 + 0.855493i \(0.673254\pi\)
\(192\) −1.53819 0.796225i −0.111009 0.0574626i
\(193\) 7.49437 + 7.49437i 0.539457 + 0.539457i 0.923369 0.383913i \(-0.125424\pi\)
−0.383913 + 0.923369i \(0.625424\pi\)
\(194\) −0.613350 −0.0440360
\(195\) 0 0
\(196\) 0.547150 0.0390821
\(197\) 2.45207 + 2.45207i 0.174703 + 0.174703i 0.789042 0.614339i \(-0.210577\pi\)
−0.614339 + 0.789042i \(0.710577\pi\)
\(198\) −1.00957 1.42775i −0.0717472 0.101466i
\(199\) 3.08804i 0.218905i −0.993992 0.109453i \(-0.965090\pi\)
0.993992 0.109453i \(-0.0349098\pi\)
\(200\) −7.26029 7.26029i −0.513380 0.513380i
\(201\) 3.46340 + 10.8968i 0.244289 + 0.768598i
\(202\) −4.12652 4.12652i −0.290341 0.290341i
\(203\) 10.6396 10.6396i 0.746752 0.746752i
\(204\) −1.68278 0.871071i −0.117818 0.0609871i
\(205\) 20.7026i 1.44594i
\(206\) −1.46593 + 1.46593i −0.102136 + 0.102136i
\(207\) −3.03615 4.29376i −0.211027 0.298437i
\(208\) 0 0
\(209\) 0.800864i 0.0553969i
\(210\) 5.20750 + 16.3842i 0.359351 + 1.13061i
\(211\) −4.95801 −0.341323 −0.170662 0.985330i \(-0.554591\pi\)
−0.170662 + 0.985330i \(0.554591\pi\)
\(212\) 3.04435 0.209087
\(213\) −1.40388 + 0.446205i −0.0961921 + 0.0305734i
\(214\) 2.44557 2.44557i 0.167176 0.167176i
\(215\) −10.4101 + 10.4101i −0.709964 + 0.709964i
\(216\) 3.13461 4.14418i 0.213283 0.281976i
\(217\) −23.3503 −1.58512
\(218\) 15.5423 1.05266
\(219\) 12.0941 3.84395i 0.817243 0.259750i
\(220\) 2.27752i 0.153551i
\(221\) 0 0
\(222\) −4.76050 2.46422i −0.319504 0.165387i
\(223\) −13.4803 + 13.4803i −0.902710 + 0.902710i −0.995670 0.0929595i \(-0.970367\pi\)
0.0929595 + 0.995670i \(0.470367\pi\)
\(224\) 2.54025i 0.169727i
\(225\) 25.1504 17.7840i 1.67669 1.18560i
\(226\) 7.70543 7.70543i 0.512558 0.512558i
\(227\) 3.79025 + 3.79025i 0.251568 + 0.251568i 0.821613 0.570045i \(-0.193074\pi\)
−0.570045 + 0.821613i \(0.693074\pi\)
\(228\) 2.26801 0.720857i 0.150202 0.0477399i
\(229\) −2.78436 2.78436i −0.183996 0.183996i 0.609099 0.793094i \(-0.291531\pi\)
−0.793094 + 0.609099i \(0.791531\pi\)
\(230\) 6.84932i 0.451631i
\(231\) 1.17893 2.27752i 0.0775681 0.149850i
\(232\) 4.18840 + 4.18840i 0.274982 + 0.274982i
\(233\) −3.83663 −0.251346 −0.125673 0.992072i \(-0.540109\pi\)
−0.125673 + 0.992072i \(0.540109\pi\)
\(234\) 0 0
\(235\) 30.4538 1.98659
\(236\) 5.99556 + 5.99556i 0.390278 + 0.390278i
\(237\) −10.4376 + 20.1639i −0.677995 + 1.30979i
\(238\) 2.77903i 0.180138i
\(239\) 0.751524 + 0.751524i 0.0486121 + 0.0486121i 0.730995 0.682383i \(-0.239056\pi\)
−0.682383 + 0.730995i \(0.739056\pi\)
\(240\) −6.44983 + 2.05000i −0.416335 + 0.132327i
\(241\) 19.7732 + 19.7732i 1.27371 + 1.27371i 0.944129 + 0.329577i \(0.106906\pi\)
0.329577 + 0.944129i \(0.393094\pi\)
\(242\) −7.53794 + 7.53794i −0.484557 + 0.484557i
\(243\) 10.6633 + 11.3708i 0.684050 + 0.729435i
\(244\) 9.34533i 0.598273i
\(245\) 1.51174 1.51174i 0.0965815 0.0965815i
\(246\) −8.14986 4.21868i −0.519616 0.268973i
\(247\) 0 0
\(248\) 9.19215i 0.583702i
\(249\) 12.0314 3.82404i 0.762461 0.242339i
\(250\) −20.5825 −1.30175
\(251\) −15.1264 −0.954770 −0.477385 0.878694i \(-0.658415\pi\)
−0.477385 + 0.878694i \(0.658415\pi\)
\(252\) 7.51099 + 1.28868i 0.473148 + 0.0811793i
\(253\) 0.722478 0.722478i 0.0454218 0.0454218i
\(254\) 6.58546 6.58546i 0.413209 0.413209i
\(255\) −7.05612 + 2.24270i −0.441871 + 0.140443i
\(256\) 1.00000 0.0625000
\(257\) −0.357201 −0.0222816 −0.0111408 0.999938i \(-0.503546\pi\)
−0.0111408 + 0.999938i \(0.503546\pi\)
\(258\) 1.97676 + 6.21940i 0.123067 + 0.387203i
\(259\) 7.86174i 0.488505i
\(260\) 0 0
\(261\) −14.5091 + 10.2595i −0.898088 + 0.635044i
\(262\) 0.649002 0.649002i 0.0400955 0.0400955i
\(263\) 2.14777i 0.132437i 0.997805 + 0.0662186i \(0.0210935\pi\)
−0.997805 + 0.0662186i \(0.978907\pi\)
\(264\) 0.896575 + 0.464102i 0.0551804 + 0.0285635i
\(265\) 8.41133 8.41133i 0.516704 0.516704i
\(266\) 2.46798 + 2.46798i 0.151322 + 0.151322i
\(267\) −5.08387 15.9952i −0.311128 0.978890i
\(268\) −4.66788 4.66788i −0.285136 0.285136i
\(269\) 24.5235i 1.49522i −0.664135 0.747612i \(-0.731200\pi\)
0.664135 0.747612i \(-0.268800\pi\)
\(270\) −2.78938 20.1108i −0.169756 1.22391i
\(271\) −15.5041 15.5041i −0.941805 0.941805i 0.0565921 0.998397i \(-0.481977\pi\)
−0.998397 + 0.0565921i \(0.981977\pi\)
\(272\) 1.09400 0.0663335
\(273\) 0 0
\(274\) 8.61860 0.520669
\(275\) 4.23186 + 4.23186i 0.255191 + 0.255191i
\(276\) 2.69632 + 1.39572i 0.162300 + 0.0840125i
\(277\) 18.6503i 1.12059i −0.828293 0.560295i \(-0.810688\pi\)
0.828293 0.560295i \(-0.189312\pi\)
\(278\) 2.34282 + 2.34282i 0.140513 + 0.140513i
\(279\) 27.1793 + 4.66323i 1.62718 + 0.279180i
\(280\) −7.01853 7.01853i −0.419438 0.419438i
\(281\) −11.2782 + 11.2782i −0.672801 + 0.672801i −0.958361 0.285560i \(-0.907820\pi\)
0.285560 + 0.958361i \(0.407820\pi\)
\(282\) 6.20573 11.9885i 0.369546 0.713907i
\(283\) 4.71513i 0.280285i −0.990131 0.140143i \(-0.955244\pi\)
0.990131 0.140143i \(-0.0447561\pi\)
\(284\) 0.601383 0.601383i 0.0356855 0.0356855i
\(285\) 4.27467 8.25803i 0.253210 0.489164i
\(286\) 0 0
\(287\) 13.4591i 0.794466i
\(288\) −0.507306 + 2.95680i −0.0298933 + 0.174231i
\(289\) −15.8032 −0.929598
\(290\) 23.1446 1.35910
\(291\) 0.321793 + 1.01244i 0.0188638 + 0.0593505i
\(292\) −5.18078 + 5.18078i −0.303182 + 0.303182i
\(293\) −15.1005 + 15.1005i −0.882179 + 0.882179i −0.993756 0.111576i \(-0.964410\pi\)
0.111576 + 0.993756i \(0.464410\pi\)
\(294\) −0.287061 0.903170i −0.0167417 0.0526739i
\(295\) 33.1307 1.92894
\(296\) 3.09487 0.179886
\(297\) −1.82709 + 2.41555i −0.106019 + 0.140164i
\(298\) 7.85507i 0.455032i
\(299\) 0 0
\(300\) −8.17533 + 15.7935i −0.472003 + 0.911839i
\(301\) −6.76778 + 6.76778i −0.390088 + 0.390088i
\(302\) 14.5098i 0.834946i
\(303\) −4.64660 + 8.97654i −0.266940 + 0.515689i
\(304\) −0.971553 + 0.971553i −0.0557224 + 0.0557224i
\(305\) 25.8205 + 25.8205i 1.47848 + 1.47848i
\(306\) −0.554993 + 3.23474i −0.0317268 + 0.184917i
\(307\) 16.2259 + 16.2259i 0.926063 + 0.926063i 0.997449 0.0713857i \(-0.0227421\pi\)
−0.0713857 + 0.997449i \(0.522742\pi\)
\(308\) 1.48065i 0.0843680i
\(309\) 3.18887 + 1.65068i 0.181409 + 0.0939040i
\(310\) −25.3973 25.3973i −1.44247 1.44247i
\(311\) 32.8464 1.86255 0.931275 0.364317i \(-0.118697\pi\)
0.931275 + 0.364317i \(0.118697\pi\)
\(312\) 0 0
\(313\) 11.0629 0.625311 0.312655 0.949867i \(-0.398782\pi\)
0.312655 + 0.949867i \(0.398782\pi\)
\(314\) −4.74855 4.74855i −0.267976 0.267976i
\(315\) 24.3129 17.1918i 1.36988 0.968649i
\(316\) 13.1089i 0.737431i
\(317\) 17.5500 + 17.5500i 0.985704 + 0.985704i 0.999899 0.0141948i \(-0.00451851\pi\)
−0.0141948 + 0.999899i \(0.504519\pi\)
\(318\) −1.59721 5.02524i −0.0895670 0.281802i
\(319\) −2.44133 2.44133i −0.136688 0.136688i
\(320\) 2.76293 2.76293i 0.154453 0.154453i
\(321\) −5.31992 2.75379i −0.296929 0.153702i
\(322\) 4.45285i 0.248148i
\(323\) −1.06288 + 1.06288i −0.0591402 + 0.0591402i
\(324\) −8.48528 3.00000i −0.471405 0.166667i
\(325\) 0 0
\(326\) 1.57465i 0.0872118i
\(327\) −8.15424 25.6554i −0.450931 1.41875i
\(328\) 5.29835 0.292552
\(329\) 19.7985 1.09153
\(330\) 3.75946 1.19490i 0.206952 0.0657769i
\(331\) 3.26963 3.26963i 0.179715 0.179715i −0.611517 0.791232i \(-0.709440\pi\)
0.791232 + 0.611517i \(0.209440\pi\)
\(332\) −5.15394 + 5.15394i −0.282859 + 0.282859i
\(333\) −1.57005 + 9.15090i −0.0860380 + 0.501466i
\(334\) −24.4446 −1.33755
\(335\) −25.7941 −1.40928
\(336\) −4.19313 + 1.33273i −0.228754 + 0.0727066i
\(337\) 7.78436i 0.424041i −0.977265 0.212021i \(-0.931996\pi\)
0.977265 0.212021i \(-0.0680044\pi\)
\(338\) 0 0
\(339\) −16.7618 8.67656i −0.910378 0.471246i
\(340\) 3.02265 3.02265i 0.163926 0.163926i
\(341\) 5.35789i 0.290146i
\(342\) −2.37981 3.36556i −0.128685 0.181989i
\(343\) 13.5564 13.5564i 0.731976 0.731976i
\(344\) −2.66422 2.66422i −0.143645 0.143645i
\(345\) 11.3060 3.59348i 0.608697 0.193467i
\(346\) −14.6847 14.6847i −0.789456 0.789456i
\(347\) 10.8435i 0.582111i 0.956706 + 0.291056i \(0.0940065\pi\)
−0.956706 + 0.291056i \(0.905994\pi\)
\(348\) 4.71628 9.11115i 0.252819 0.488409i
\(349\) 10.8700 + 10.8700i 0.581856 + 0.581856i 0.935413 0.353557i \(-0.115028\pi\)
−0.353557 + 0.935413i \(0.615028\pi\)
\(350\) −26.0822 −1.39415
\(351\) 0 0
\(352\) −0.582877 −0.0310675
\(353\) −1.32046 1.32046i −0.0702808 0.0702808i 0.671093 0.741373i \(-0.265825\pi\)
−0.741373 + 0.671093i \(0.765825\pi\)
\(354\) 6.75120 13.0423i 0.358822 0.693191i
\(355\) 3.32316i 0.176375i
\(356\) 6.85191 + 6.85191i 0.363150 + 0.363150i
\(357\) −4.58729 + 1.45801i −0.242785 + 0.0771661i
\(358\) −9.89976 9.89976i −0.523218 0.523218i
\(359\) 12.1336 12.1336i 0.640387 0.640387i −0.310264 0.950650i \(-0.600417\pi\)
0.950650 + 0.310264i \(0.100417\pi\)
\(360\) 6.76778 + 9.57108i 0.356693 + 0.504440i
\(361\) 17.1122i 0.900641i
\(362\) 18.0599 18.0599i 0.949207 0.949207i
\(363\) 16.3975 + 8.48796i 0.860645 + 0.445503i
\(364\) 0 0
\(365\) 28.6283i 1.49847i
\(366\) 15.4261 4.90300i 0.806337 0.256284i
\(367\) −9.06282 −0.473075 −0.236538 0.971622i \(-0.576013\pi\)
−0.236538 + 0.971622i \(0.576013\pi\)
\(368\) −1.75292 −0.0913773
\(369\) −2.68788 + 15.6661i −0.139926 + 0.815546i
\(370\) 8.55093 8.55093i 0.444541 0.444541i
\(371\) 5.46833 5.46833i 0.283902 0.283902i
\(372\) −15.1733 + 4.82264i −0.786699 + 0.250042i
\(373\) −7.57587 −0.392264 −0.196132 0.980578i \(-0.562838\pi\)
−0.196132 + 0.980578i \(0.562838\pi\)
\(374\) −0.637668 −0.0329730
\(375\) 10.7986 + 33.9752i 0.557636 + 1.75447i
\(376\) 7.79393i 0.401941i
\(377\) 0 0
\(378\) −1.81342 13.0743i −0.0932723 0.672472i
\(379\) −8.53980 + 8.53980i −0.438660 + 0.438660i −0.891561 0.452901i \(-0.850389\pi\)
0.452901 + 0.891561i \(0.350389\pi\)
\(380\) 5.36867i 0.275407i
\(381\) −14.3255 7.41544i −0.733920 0.379905i
\(382\) −16.7205 + 16.7205i −0.855493 + 0.855493i
\(383\) −26.0444 26.0444i −1.33081 1.33081i −0.904649 0.426157i \(-0.859867\pi\)
−0.426157 0.904649i \(-0.640133\pi\)
\(384\) −0.524648 1.65068i −0.0267733 0.0842359i
\(385\) 4.09094 + 4.09094i 0.208494 + 0.208494i
\(386\) 10.5986i 0.539457i
\(387\) 9.22913 6.52598i 0.469143 0.331734i
\(388\) −0.433704 0.433704i −0.0220180 0.0220180i
\(389\) 14.1012 0.714961 0.357481 0.933921i \(-0.383636\pi\)
0.357481 + 0.933921i \(0.383636\pi\)
\(390\) 0 0
\(391\) −1.91770 −0.0969820
\(392\) 0.386893 + 0.386893i 0.0195411 + 0.0195411i
\(393\) −1.41179 0.730798i −0.0712155 0.0368639i
\(394\) 3.46775i 0.174703i
\(395\) −36.2189 36.2189i −1.82237 1.82237i
\(396\) 0.295697 1.72345i 0.0148593 0.0866066i
\(397\) 5.55214 + 5.55214i 0.278654 + 0.278654i 0.832571 0.553918i \(-0.186868\pi\)
−0.553918 + 0.832571i \(0.686868\pi\)
\(398\) 2.18357 2.18357i 0.109453 0.109453i
\(399\) 2.77903 5.36867i 0.139126 0.268770i
\(400\) 10.2676i 0.513380i
\(401\) 15.4546 15.4546i 0.771764 0.771764i −0.206650 0.978415i \(-0.566256\pi\)
0.978415 + 0.206650i \(0.0662563\pi\)
\(402\) −5.25618 + 10.1542i −0.262154 + 0.506444i
\(403\) 0 0
\(404\) 5.83579i 0.290341i
\(405\) −31.7331 + 15.1555i −1.57683 + 0.753081i
\(406\) 15.0466 0.746752
\(407\) −1.80393 −0.0894175
\(408\) −0.573965 1.80584i −0.0284155 0.0894026i
\(409\) 1.58498 1.58498i 0.0783720 0.0783720i −0.666834 0.745206i \(-0.732351\pi\)
0.745206 + 0.666834i \(0.232351\pi\)
\(410\) 14.6390 14.6390i 0.722968 0.722968i
\(411\) −4.52173 14.2266i −0.223041 0.701744i
\(412\) −2.07313 −0.102136
\(413\) 21.5388 1.05985
\(414\) 0.889267 5.18303i 0.0437051 0.254732i
\(415\) 28.4800i 1.39803i
\(416\) 0 0
\(417\) 2.63809 5.09640i 0.129188 0.249572i
\(418\) 0.566296 0.566296i 0.0276985 0.0276985i
\(419\) 33.3854i 1.63098i 0.578770 + 0.815491i \(0.303533\pi\)
−0.578770 + 0.815491i \(0.696467\pi\)
\(420\) −7.90310 + 15.2676i −0.385632 + 0.744983i
\(421\) −2.25285 + 2.25285i −0.109797 + 0.109797i −0.759871 0.650074i \(-0.774738\pi\)
0.650074 + 0.759871i \(0.274738\pi\)
\(422\) −3.50584 3.50584i −0.170662 0.170662i
\(423\) −23.0451 3.95391i −1.12049 0.192246i
\(424\) 2.15268 + 2.15268i 0.104543 + 0.104543i
\(425\) 11.2328i 0.544869i
\(426\) −1.30821 0.677177i −0.0633828 0.0328093i
\(427\) 16.7863 + 16.7863i 0.812346 + 0.812346i
\(428\) 3.45856 0.167176
\(429\) 0 0
\(430\) −14.7221 −0.709964
\(431\) −15.3329 15.3329i −0.738562 0.738562i 0.233738 0.972300i \(-0.424904\pi\)
−0.972300 + 0.233738i \(0.924904\pi\)
\(432\) 5.14688 0.713876i 0.247629 0.0343464i
\(433\) 30.0520i 1.44421i 0.691786 + 0.722103i \(0.256824\pi\)
−0.691786 + 0.722103i \(0.743176\pi\)
\(434\) −16.5112 16.5112i −0.792561 0.792561i
\(435\) −12.1427 38.2043i −0.582200 1.83176i
\(436\) 10.9901 + 10.9901i 0.526330 + 0.526330i
\(437\) 1.70306 1.70306i 0.0814682 0.0814682i
\(438\) 11.2699 + 5.83373i 0.538497 + 0.278746i
\(439\) 20.8459i 0.994920i 0.867487 + 0.497460i \(0.165734\pi\)
−0.867487 + 0.497460i \(0.834266\pi\)
\(440\) −1.61045 + 1.61045i −0.0767753 + 0.0767753i
\(441\) −1.34024 + 0.947691i −0.0638209 + 0.0451282i
\(442\) 0 0
\(443\) 13.0363i 0.619374i −0.950839 0.309687i \(-0.899776\pi\)
0.950839 0.309687i \(-0.100224\pi\)
\(444\) −1.62372 5.10864i −0.0770582 0.242445i
\(445\) 37.8627 1.79487
\(446\) −19.0641 −0.902710
\(447\) −12.9662 + 4.12114i −0.613281 + 0.194923i
\(448\) 1.79623 1.79623i 0.0848637 0.0848637i
\(449\) 13.4636 13.4636i 0.635385 0.635385i −0.314028 0.949414i \(-0.601679\pi\)
0.949414 + 0.314028i \(0.101679\pi\)
\(450\) 30.3592 + 5.20882i 1.43115 + 0.245546i
\(451\) −3.08829 −0.145422
\(452\) 10.8971 0.512558
\(453\) −23.9511 + 7.61254i −1.12532 + 0.357668i
\(454\) 5.36023i 0.251568i
\(455\) 0 0
\(456\) 2.11345 + 1.09400i 0.0989712 + 0.0512313i
\(457\) 15.0333 15.0333i 0.703228 0.703228i −0.261874 0.965102i \(-0.584341\pi\)
0.965102 + 0.261874i \(0.0843406\pi\)
\(458\) 3.93768i 0.183996i
\(459\) 5.63069 0.780980i 0.262818 0.0364530i
\(460\) −4.84320 + 4.84320i −0.225816 + 0.225816i
\(461\) 1.07969 + 1.07969i 0.0502864 + 0.0502864i 0.731803 0.681516i \(-0.238679\pi\)
−0.681516 + 0.731803i \(0.738679\pi\)
\(462\) 2.44408 0.776820i 0.113709 0.0361410i
\(463\) 21.3272 + 21.3272i 0.991159 + 0.991159i 0.999961 0.00880240i \(-0.00280193\pi\)
−0.00880240 + 0.999961i \(0.502802\pi\)
\(464\) 5.92330i 0.274982i
\(465\) −28.5982 + 55.2474i −1.32621 + 2.56204i
\(466\) −2.71290 2.71290i −0.125673 0.125673i
\(467\) −11.2935 −0.522601 −0.261300 0.965258i \(-0.584151\pi\)
−0.261300 + 0.965258i \(0.584151\pi\)
\(468\) 0 0
\(469\) −16.7691 −0.774326
\(470\) 21.5341 + 21.5341i 0.993295 + 0.993295i
\(471\) −5.34703 + 10.3297i −0.246378 + 0.475966i
\(472\) 8.47900i 0.390278i
\(473\) 1.55291 + 1.55291i 0.0714031 + 0.0714031i
\(474\) −21.6385 + 6.87753i −0.993891 + 0.315896i
\(475\) 9.97552 + 9.97552i 0.457708 + 0.457708i
\(476\) 1.96507 1.96507i 0.0900689 0.0900689i
\(477\) −7.45709 + 5.27296i −0.341437 + 0.241432i
\(478\) 1.06282i 0.0486121i
\(479\) −20.5591 + 20.5591i −0.939371 + 0.939371i −0.998264 0.0588932i \(-0.981243\pi\)
0.0588932 + 0.998264i \(0.481243\pi\)
\(480\) −6.01029 3.11115i −0.274331 0.142004i
\(481\) 0 0
\(482\) 27.9636i 1.27371i
\(483\) 7.35023 2.33618i 0.334447 0.106300i
\(484\) −10.6603 −0.484557
\(485\) −2.39659 −0.108824
\(486\) −0.500258 + 15.5804i −0.0226921 + 0.706743i
\(487\) 1.79164 1.79164i 0.0811869 0.0811869i −0.665347 0.746534i \(-0.731716\pi\)
0.746534 + 0.665347i \(0.231716\pi\)
\(488\) −6.60814 + 6.60814i −0.299137 + 0.299137i
\(489\) 2.59924 0.826137i 0.117542 0.0373592i
\(490\) 2.13792 0.0965815
\(491\) 36.9151 1.66596 0.832978 0.553307i \(-0.186634\pi\)
0.832978 + 0.553307i \(0.186634\pi\)
\(492\) −2.77977 8.74588i −0.125321 0.394295i
\(493\) 6.48009i 0.291849i
\(494\) 0 0
\(495\) −3.94478 5.57877i −0.177305 0.250747i
\(496\) 6.49983 6.49983i 0.291851 0.291851i
\(497\) 2.16044i 0.0969090i
\(498\) 11.2115 + 5.80351i 0.502400 + 0.260061i
\(499\) −22.3461 + 22.3461i −1.00035 + 1.00035i −0.000347536 1.00000i \(0.500111\pi\)
−1.00000 0.000347536i \(0.999889\pi\)
\(500\) −14.5541 14.5541i −0.650877 0.650877i
\(501\) 12.8248 + 40.3502i 0.572970 + 1.80272i
\(502\) −10.6960 10.6960i −0.477385 0.477385i
\(503\) 23.3454i 1.04092i −0.853886 0.520460i \(-0.825760\pi\)
0.853886 0.520460i \(-0.174240\pi\)
\(504\) 4.39984 + 6.22231i 0.195984 + 0.277164i
\(505\) −16.1239 16.1239i −0.717504 0.717504i
\(506\) 1.02174 0.0454218
\(507\) 0 0
\(508\) 9.31325 0.413209
\(509\) 13.1852 + 13.1852i 0.584424 + 0.584424i 0.936116 0.351692i \(-0.114394\pi\)
−0.351692 + 0.936116i \(0.614394\pi\)
\(510\) −6.57525 3.40360i −0.291157 0.150714i
\(511\) 18.6117i 0.823333i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) −4.30690 + 5.69404i −0.190154 + 0.251398i
\(514\) −0.252579 0.252579i −0.0111408 0.0111408i
\(515\) −5.72793 + 5.72793i −0.252403 + 0.252403i
\(516\) −3.00000 + 5.79555i −0.132068 + 0.255135i
\(517\) 4.54291i 0.199797i
\(518\) 5.55909 5.55909i 0.244252 0.244252i
\(519\) −16.5355 + 31.9441i −0.725827 + 1.40219i
\(520\) 0 0
\(521\) 20.1922i 0.884637i 0.896858 + 0.442318i \(0.145844\pi\)
−0.896858 + 0.442318i \(0.854156\pi\)
\(522\) −17.5140 3.00492i −0.766566 0.131522i
\(523\) 28.2236 1.23413 0.617066 0.786912i \(-0.288321\pi\)
0.617066 + 0.786912i \(0.288321\pi\)
\(524\) 0.917828 0.0400955
\(525\) 13.6840 + 43.0534i 0.597218 + 1.87901i
\(526\) −1.51870 + 1.51870i −0.0662186 + 0.0662186i
\(527\) 7.11081 7.11081i 0.309752 0.309752i
\(528\) 0.305805 + 0.962144i 0.0133085 + 0.0418719i
\(529\) −19.9273 −0.866403
\(530\) 11.8954 0.516704
\(531\) −25.0707 4.30145i −1.08797 0.186667i
\(532\) 3.49026i 0.151322i
\(533\) 0 0
\(534\) 7.71547 14.9051i 0.333881 0.645009i
\(535\) 9.55577 9.55577i 0.413132 0.413132i
\(536\) 6.60137i 0.285136i
\(537\) −11.1474 + 21.5352i −0.481048 + 0.929313i
\(538\) 17.3407 17.3407i 0.747612 0.747612i
\(539\) −0.225511 0.225511i −0.00971346 0.00971346i
\(540\) 12.2481 16.1929i 0.527074 0.696831i
\(541\) 13.2334 + 13.2334i 0.568947 + 0.568947i 0.931833 0.362887i \(-0.118209\pi\)
−0.362887 + 0.931833i \(0.618209\pi\)
\(542\) 21.9261i 0.941805i
\(543\) −39.2862 20.3360i −1.68593 0.872702i
\(544\) 0.773575 + 0.773575i 0.0331668 + 0.0331668i
\(545\) 60.7298 2.60138
\(546\) 0 0
\(547\) −14.7212 −0.629433 −0.314717 0.949186i \(-0.601909\pi\)
−0.314717 + 0.949186i \(0.601909\pi\)
\(548\) 6.09427 + 6.09427i 0.260334 + 0.260334i
\(549\) −16.1866 22.8913i −0.690826 0.976976i
\(550\) 5.98476i 0.255191i
\(551\) −5.75480 5.75480i −0.245163 0.245163i
\(552\) 0.919666 + 2.89351i 0.0391436 + 0.123156i
\(553\) −23.5465 23.5465i −1.00130 1.00130i
\(554\) 13.1878 13.1878i 0.560295 0.560295i
\(555\) −18.6011 9.62862i −0.789571 0.408712i
\(556\) 3.31325i 0.140513i
\(557\) −8.71827 + 8.71827i −0.369405 + 0.369405i −0.867260 0.497855i \(-0.834121\pi\)
0.497855 + 0.867260i \(0.334121\pi\)
\(558\) 15.9213 + 22.5161i 0.674001 + 0.953181i
\(559\) 0 0
\(560\) 9.92570i 0.419438i
\(561\) 0.334551 + 1.05259i 0.0141248 + 0.0444402i
\(562\) −15.9498 −0.672801
\(563\) 19.7326 0.831628 0.415814 0.909450i \(-0.363497\pi\)
0.415814 + 0.909450i \(0.363497\pi\)
\(564\) 12.8653 4.08907i 0.541726 0.172181i
\(565\) 30.1080 30.1080i 1.26665 1.26665i
\(566\) 3.33410 3.33410i 0.140143 0.140143i
\(567\) −20.6302 + 9.85280i −0.866385 + 0.413779i
\(568\) 0.850484 0.0356855
\(569\) −34.9006 −1.46311 −0.731555 0.681782i \(-0.761205\pi\)
−0.731555 + 0.681782i \(0.761205\pi\)
\(570\) 8.86196 2.81666i 0.371187 0.117977i
\(571\) 2.37582i 0.0994248i −0.998764 0.0497124i \(-0.984170\pi\)
0.998764 0.0497124i \(-0.0158305\pi\)
\(572\) 0 0
\(573\) 36.3725 + 18.8278i 1.51948 + 0.786542i
\(574\) 9.51702 9.51702i 0.397233 0.397233i
\(575\) 17.9983i 0.750581i
\(576\) −2.44949 + 1.73205i −0.102062 + 0.0721688i
\(577\) −3.78848 + 3.78848i −0.157716 + 0.157716i −0.781554 0.623838i \(-0.785573\pi\)
0.623838 + 0.781554i \(0.285573\pi\)
\(578\) −11.1745 11.1745i −0.464799 0.464799i
\(579\) 17.4950 5.56055i 0.727066 0.231089i
\(580\) 16.3657 + 16.3657i 0.679548 + 0.679548i
\(581\) 18.5153i 0.768143i
\(582\) −0.488365 + 0.943448i −0.0202434 + 0.0391072i
\(583\) −1.25475 1.25475i −0.0519663 0.0519663i
\(584\) −7.32673 −0.303182
\(585\) 0 0
\(586\) −21.3553 −0.882179
\(587\) −7.18566 7.18566i −0.296584 0.296584i 0.543090 0.839674i \(-0.317254\pi\)
−0.839674 + 0.543090i \(0.817254\pi\)
\(588\) 0.435655 0.841620i 0.0179661 0.0347078i
\(589\) 12.6299i 0.520404i
\(590\) 23.4269 + 23.4269i 0.964471 + 0.964471i
\(591\) 5.72415 1.81935i 0.235460 0.0748380i
\(592\) 2.18840 + 2.18840i 0.0899429 + 0.0899429i
\(593\) −9.76893 + 9.76893i −0.401162 + 0.401162i −0.878642 0.477481i \(-0.841550\pi\)
0.477481 + 0.878642i \(0.341550\pi\)
\(594\) −3.00000 + 0.416102i −0.123091 + 0.0170729i
\(595\) 10.8587i 0.445164i
\(596\) 5.55437 5.55437i 0.227516 0.227516i
\(597\) −4.74998 2.45877i −0.194404 0.100631i
\(598\) 0 0
\(599\) 35.2538i 1.44043i 0.693750 + 0.720216i \(0.255957\pi\)
−0.693750 + 0.720216i \(0.744043\pi\)
\(600\) −16.9485 + 5.38688i −0.691921 + 0.219918i
\(601\) 9.14384 0.372985 0.186493 0.982456i \(-0.440288\pi\)
0.186493 + 0.982456i \(0.440288\pi\)
\(602\) −9.57108 −0.390088
\(603\) 19.5189 + 3.34892i 0.794872 + 0.136378i
\(604\) 10.2600 10.2600i 0.417473 0.417473i
\(605\) −29.4536 + 29.4536i −1.19746 + 1.19746i
\(606\) −9.63301 + 3.06173i −0.391314 + 0.124374i
\(607\) −19.9279 −0.808847 −0.404423 0.914572i \(-0.632528\pi\)
−0.404423 + 0.914572i \(0.632528\pi\)
\(608\) −1.37398 −0.0557224
\(609\) −7.89418 24.8372i −0.319888 1.00645i
\(610\) 36.5157i 1.47848i
\(611\) 0 0
\(612\) −2.67974 + 1.89486i −0.108322 + 0.0765953i
\(613\) 10.6247 10.6247i 0.429127 0.429127i −0.459204 0.888331i \(-0.651865\pi\)
0.888331 + 0.459204i \(0.151865\pi\)
\(614\) 22.9469i 0.926063i
\(615\) −31.8446 16.4840i −1.28410 0.664698i
\(616\) −1.04698 + 1.04698i −0.0421840 + 0.0421840i
\(617\) −7.20247 7.20247i −0.289961 0.289961i 0.547104 0.837065i \(-0.315730\pi\)
−0.837065 + 0.547104i \(0.815730\pi\)
\(618\) 1.08766 + 3.42208i 0.0437523 + 0.137656i
\(619\) −18.1131 18.1131i −0.728027 0.728027i 0.242199 0.970226i \(-0.422131\pi\)
−0.970226 + 0.242199i \(0.922131\pi\)
\(620\) 35.9172i 1.44247i
\(621\) −9.02207 + 1.25137i −0.362043 + 0.0502157i
\(622\) 23.2259 + 23.2259i 0.931275 + 0.931275i
\(623\) 24.6151 0.986185
\(624\) 0 0
\(625\) −29.0857 −1.16343
\(626\) 7.82263 + 7.82263i 0.312655 + 0.312655i
\(627\) −1.23188 0.637668i −0.0491965 0.0254660i
\(628\) 6.71547i 0.267976i
\(629\) 2.39412 + 2.39412i 0.0954596 + 0.0954596i
\(630\) 29.3483 + 5.03537i 1.16926 + 0.200614i
\(631\) 14.2008 + 14.2008i 0.565325 + 0.565325i 0.930815 0.365490i \(-0.119099\pi\)
−0.365490 + 0.930815i \(0.619099\pi\)
\(632\) 9.26936 9.26936i 0.368716 0.368716i
\(633\) −3.94769 + 7.62635i −0.156907 + 0.303120i
\(634\) 24.8194i 0.985704i
\(635\) 25.7319 25.7319i 1.02114 1.02114i
\(636\) 2.42398 4.68278i 0.0961173 0.185684i
\(637\) 0 0
\(638\) 3.45256i 0.136688i
\(639\) −0.431456 + 2.51471i −0.0170681 + 0.0994803i
\(640\) 3.90738 0.154453
\(641\) 44.6833 1.76489 0.882443 0.470420i \(-0.155898\pi\)
0.882443 + 0.470420i \(0.155898\pi\)
\(642\) −1.81452 5.70897i −0.0716136 0.225315i
\(643\) 6.35599 6.35599i 0.250656 0.250656i −0.570584 0.821239i \(-0.693283\pi\)
0.821239 + 0.570584i \(0.193283\pi\)
\(644\) −3.14864 + 3.14864i −0.124074 + 0.124074i
\(645\) 7.72393 + 24.3015i 0.304130 + 0.956872i
\(646\) −1.50314 −0.0591402
\(647\) 37.9737 1.49290 0.746451 0.665441i \(-0.231756\pi\)
0.746451 + 0.665441i \(0.231756\pi\)
\(648\) −3.87868 8.12132i −0.152369 0.319036i
\(649\) 4.94222i 0.193999i
\(650\) 0 0
\(651\) −18.5921 + 35.9172i −0.728682 + 1.40771i
\(652\) −1.11345 + 1.11345i −0.0436059 + 0.0436059i
\(653\) 18.4886i 0.723513i −0.932273 0.361757i \(-0.882177\pi\)
0.932273 0.361757i \(-0.117823\pi\)
\(654\) 12.3752 23.9070i 0.483908 0.934839i
\(655\) 2.53590 2.53590i 0.0990857 0.0990857i
\(656\) 3.74650 + 3.74650i 0.146276 + 0.146276i
\(657\) 3.71690 21.6637i 0.145010 0.845180i
\(658\) 13.9997 + 13.9997i 0.545763 + 0.545763i
\(659\) 0.743853i 0.0289764i 0.999895 + 0.0144882i \(0.00461190\pi\)
−0.999895 + 0.0144882i \(0.995388\pi\)
\(660\) 3.50326 + 1.81342i 0.136364 + 0.0705873i
\(661\) 19.8275 + 19.8275i 0.771200 + 0.771200i 0.978316 0.207116i \(-0.0664078\pi\)
−0.207116 + 0.978316i \(0.566408\pi\)
\(662\) 4.62395 0.179715
\(663\) 0 0
\(664\) −7.28877 −0.282859
\(665\) 9.64335 + 9.64335i 0.373953 + 0.373953i
\(666\) −7.58086 + 5.36048i −0.293752 + 0.207714i
\(667\) 10.3831i 0.402034i
\(668\) −17.2850 17.2850i −0.668775 0.668775i
\(669\) 10.0019 + 31.4687i 0.386697 + 1.21665i
\(670\) −18.2392 18.2392i −0.704640 0.704640i
\(671\) 3.85174 3.85174i 0.148695 0.148695i
\(672\) −3.90738 2.02261i −0.150730 0.0780238i
\(673\) 27.6374i 1.06534i −0.846322 0.532672i \(-0.821188\pi\)
0.846322 0.532672i \(-0.178812\pi\)
\(674\) 5.50437 5.50437i 0.212021 0.212021i
\(675\) −7.32980 52.8461i −0.282124 2.03405i
\(676\) 0 0
\(677\) 34.0927i 1.31029i −0.755504 0.655145i \(-0.772608\pi\)
0.755504 0.655145i \(-0.227392\pi\)
\(678\) −5.71715 17.9877i −0.219566 0.690812i
\(679\) −1.55806 −0.0597928
\(680\) 4.27467 0.163926
\(681\) 8.84802 2.81223i 0.339057 0.107765i
\(682\) −3.78860 + 3.78860i −0.145073 + 0.145073i
\(683\) −16.4785 + 16.4785i −0.630531 + 0.630531i −0.948201 0.317670i \(-0.897100\pi\)
0.317670 + 0.948201i \(0.397100\pi\)
\(684\) 0.697030 4.06259i 0.0266516 0.155337i
\(685\) 33.6762 1.28670
\(686\) 19.1716 0.731976
\(687\) −6.49985 + 2.06589i −0.247985 + 0.0788188i
\(688\) 3.76778i 0.143645i
\(689\) 0 0
\(690\) 10.5356 + 5.45361i 0.401082 + 0.207615i
\(691\) −7.22628 + 7.22628i −0.274901 + 0.274901i −0.831069 0.556169i \(-0.812271\pi\)
0.556169 + 0.831069i \(0.312271\pi\)
\(692\) 20.7673i 0.789456i
\(693\) −2.56456 3.62684i −0.0974197 0.137772i
\(694\) −7.66753 + 7.66753i −0.291056 + 0.291056i
\(695\) 9.15429 + 9.15429i 0.347242 + 0.347242i
\(696\) 9.77747 3.10764i 0.370614 0.117795i
\(697\) 4.09867 + 4.09867i 0.155248 + 0.155248i
\(698\) 15.3725i 0.581856i
\(699\) −3.05482 + 5.90146i −0.115544 + 0.223214i
\(700\) −18.4429 18.4429i −0.697077 0.697077i
\(701\) −31.9420 −1.20643 −0.603217 0.797577i \(-0.706115\pi\)
−0.603217 + 0.797577i \(0.706115\pi\)
\(702\) 0 0
\(703\) −4.25230 −0.160379
\(704\) −0.412157 0.412157i −0.0155337 0.0155337i
\(705\) 24.2481 46.8438i 0.913237 1.76424i
\(706\) 1.86741i 0.0702808i
\(707\) −10.4824 10.4824i −0.394231 0.394231i
\(708\) 13.9961 4.44849i 0.526007 0.167184i
\(709\) −5.25088 5.25088i −0.197201 0.197201i 0.601598 0.798799i \(-0.294531\pi\)
−0.798799 + 0.601598i \(0.794531\pi\)
\(710\) 2.34983 2.34983i 0.0881876 0.0881876i
\(711\) 22.7052 + 32.1100i 0.851512 + 1.20422i
\(712\) 9.69006i 0.363150i
\(713\) −11.3937 + 11.3937i −0.426697 + 0.426697i
\(714\) −4.27467 2.21273i −0.159976 0.0828095i
\(715\) 0 0
\(716\) 14.0004i 0.523218i
\(717\) 1.75437 0.557604i 0.0655181 0.0208241i
\(718\) 17.1595 0.640387
\(719\) 28.9186 1.07848 0.539240 0.842152i \(-0.318711\pi\)
0.539240 + 0.842152i \(0.318711\pi\)
\(720\) −1.98224 + 11.5533i −0.0738736 + 0.430567i
\(721\) −3.72381 + 3.72381i −0.138682 + 0.138682i
\(722\) −12.1001 + 12.1001i −0.450320 + 0.450320i
\(723\) 46.1589 14.6710i 1.71667 0.545621i
\(724\) 25.5405 0.949207
\(725\) 60.8181 2.25873
\(726\) 5.59288 + 17.5967i 0.207571 + 0.653074i
\(727\) 13.5518i 0.502608i −0.967908 0.251304i \(-0.919141\pi\)
0.967908 0.251304i \(-0.0808594\pi\)
\(728\) 0 0
\(729\) 25.9808 7.34847i 0.962250 0.272166i
\(730\) −20.2433 + 20.2433i −0.749237 + 0.749237i
\(731\) 4.12195i 0.152456i
\(732\) 14.3749 + 7.44098i 0.531311 + 0.275027i
\(733\) 13.9665 13.9665i 0.515864 0.515864i −0.400453 0.916317i \(-0.631147\pi\)
0.916317 + 0.400453i \(0.131147\pi\)
\(734\) −6.40838 6.40838i −0.236538 0.236538i
\(735\) −1.12166 3.52903i −0.0413729 0.130170i
\(736\) −1.23950 1.23950i −0.0456887 0.0456887i
\(737\) 3.84779i 0.141735i
\(738\) −12.9782 + 9.17701i −0.477736 + 0.337810i
\(739\) −1.39265 1.39265i −0.0512293 0.0512293i 0.681028 0.732257i \(-0.261533\pi\)
−0.732257 + 0.681028i \(0.761533\pi\)
\(740\) 12.0928 0.444541
\(741\) 0 0
\(742\) 7.73339 0.283902
\(743\) −4.23148 4.23148i −0.155238 0.155238i 0.625215 0.780453i \(-0.285011\pi\)
−0.780453 + 0.625215i \(0.785011\pi\)
\(744\) −14.1393 7.31902i −0.518370 0.268328i
\(745\) 30.6927i 1.12449i
\(746\) −5.35695 5.35695i −0.196132 0.196132i
\(747\) 3.69764 21.5514i 0.135290 0.788525i
\(748\) −0.450899 0.450899i −0.0164865 0.0164865i
\(749\) 6.21235 6.21235i 0.226994 0.226994i
\(750\) −16.3883 + 31.6598i −0.598417 + 1.15605i
\(751\) 17.5041i 0.638733i 0.947631 + 0.319366i \(0.103470\pi\)
−0.947631 + 0.319366i \(0.896530\pi\)
\(752\) −5.51114 + 5.51114i −0.200971 + 0.200971i
\(753\) −12.0440 + 23.2673i −0.438909 + 0.847906i
\(754\) 0 0
\(755\) 56.6953i 2.06335i
\(756\) 7.96267 10.5272i 0.289600 0.382872i
\(757\) 8.00336 0.290887 0.145443 0.989367i \(-0.453539\pi\)
0.145443 + 0.989367i \(0.453539\pi\)
\(758\) −12.0771 −0.438660
\(759\) −0.536052 1.68656i −0.0194575 0.0612183i
\(760\) −3.79623 + 3.79623i −0.137704 + 0.137704i
\(761\) 13.8584 13.8584i 0.502368 0.502368i −0.409805 0.912173i \(-0.634403\pi\)
0.912173 + 0.409805i \(0.134403\pi\)
\(762\) −4.88617 15.3732i −0.177007 0.556912i
\(763\) 39.4813 1.42932
\(764\) −23.6463 −0.855493
\(765\) −2.16857 + 12.6393i −0.0784047 + 0.456976i
\(766\) 36.8323i 1.33081i
\(767\) 0 0
\(768\) 0.796225 1.53819i 0.0287313 0.0555046i
\(769\) −30.3616 + 30.3616i −1.09487 + 1.09487i −0.0998650 + 0.995001i \(0.531841\pi\)
−0.995001 + 0.0998650i \(0.968159\pi\)
\(770\) 5.78547i 0.208494i
\(771\) −0.284412 + 0.549443i −0.0102429 + 0.0197877i
\(772\) −7.49437 + 7.49437i −0.269728 + 0.269728i
\(773\) 6.55172 + 6.55172i 0.235649 + 0.235649i 0.815046 0.579397i \(-0.196712\pi\)
−0.579397 + 0.815046i \(0.696712\pi\)
\(774\) 11.1406 + 1.91142i 0.400439 + 0.0687044i
\(775\) −66.7377 66.7377i −2.39729 2.39729i
\(776\) 0.613350i 0.0220180i
\(777\) −12.0928 6.25971i −0.433828 0.224566i
\(778\) 9.97109 + 9.97109i 0.357481 + 0.357481i
\(779\) −7.27984 −0.260827
\(780\) 0 0
\(781\) −0.495728 −0.0177385
\(782\) −1.35602 1.35602i −0.0484910 0.0484910i
\(783\) 4.22850 + 30.4865i 0.151114 + 1.08950i
\(784\) 0.547150i 0.0195411i
\(785\) −18.5544 18.5544i −0.662235 0.662235i
\(786\) −0.481536 1.51504i −0.0171758 0.0540397i
\(787\) 30.1223 + 30.1223i 1.07375 + 1.07375i 0.997055 + 0.0766903i \(0.0244353\pi\)
0.0766903 + 0.997055i \(0.475565\pi\)
\(788\) −2.45207 + 2.45207i −0.0873514 + 0.0873514i
\(789\) 3.30368 + 1.71011i 0.117614 + 0.0608815i
\(790\) 51.2213i 1.82237i
\(791\) 19.5737 19.5737i 0.695960 0.695960i
\(792\) 1.42775 1.00957i 0.0507330 0.0358736i
\(793\) 0 0
\(794\) 7.85191i 0.278654i
\(795\) −6.24090 19.6355i −0.221342 0.696400i
\(796\) 3.08804 0.109453
\(797\) 21.0322 0.744998 0.372499 0.928033i \(-0.378501\pi\)
0.372499 + 0.928033i \(0.378501\pi\)
\(798\) 5.76130 1.83115i 0.203948 0.0648222i
\(799\) −6.02919 + 6.02919i −0.213297 + 0.213297i
\(800\) 7.26029 7.26029i 0.256690 0.256690i
\(801\) −28.6515 4.91582i −1.01235 0.173692i
\(802\) 21.8561 0.771764
\(803\) 4.27059 0.150706
\(804\) −10.8968 + 3.46340i −0.384299 + 0.122145i
\(805\) 17.3990i 0.613233i
\(806\) 0 0
\(807\) −37.7218 19.5262i −1.32787 0.687356i
\(808\) 4.12652 4.12652i 0.145171 0.145171i
\(809\) 27.1206i 0.953508i 0.879037 + 0.476754i \(0.158187\pi\)
−0.879037 + 0.476754i \(0.841813\pi\)
\(810\) −33.1552 11.7221i −1.16496 0.411874i
\(811\) −39.1597 + 39.1597i −1.37508 + 1.37508i −0.522359 + 0.852726i \(0.674948\pi\)
−0.852726 + 0.522359i \(0.825052\pi\)
\(812\) 10.6396 + 10.6396i 0.373376 + 0.373376i
\(813\) −36.1929 + 11.5035i −1.26934 + 0.403444i
\(814\) −1.27557 1.27557i −0.0447088 0.0447088i
\(815\) 6.15276i 0.215522i
\(816\) 0.871071 1.68278i 0.0304936 0.0589091i
\(817\) 3.66060 + 3.66060i 0.128068 + 0.128068i
\(818\) 2.24149 0.0783720
\(819\) 0 0
\(820\) 20.7026 0.722968
\(821\) −6.07641 6.07641i −0.212068 0.212068i 0.593077 0.805145i \(-0.297913\pi\)
−0.805145 + 0.593077i \(0.797913\pi\)
\(822\) 6.86235 13.2570i 0.239352 0.462392i
\(823\) 8.51217i 0.296715i −0.988934 0.148358i \(-0.952601\pi\)
0.988934 0.148358i \(-0.0473987\pi\)
\(824\) −1.46593 1.46593i −0.0510680 0.0510680i
\(825\) 9.87892 3.13989i 0.343940 0.109317i
\(826\) 15.2302 + 15.2302i 0.529926 + 0.529926i
\(827\) −18.9976 + 18.9976i −0.660613 + 0.660613i −0.955524 0.294912i \(-0.904710\pi\)
0.294912 + 0.955524i \(0.404710\pi\)
\(828\) 4.29376 3.03615i 0.149219 0.105513i
\(829\) 16.5329i 0.574211i −0.957899 0.287106i \(-0.907307\pi\)
0.957899 0.287106i \(-0.0926931\pi\)
\(830\) −20.1384 + 20.1384i −0.699014 + 0.699014i
\(831\) −28.6877 14.8499i −0.995167 0.515136i
\(832\) 0 0
\(833\) 0.598582i 0.0207396i
\(834\) 5.46912 1.73829i 0.189380 0.0601920i
\(835\) −95.5144 −3.30541
\(836\) 0.800864 0.0276985
\(837\) 28.8138 38.0939i 0.995950 1.31672i
\(838\) −23.6070 + 23.6070i −0.815491 + 0.815491i
\(839\) 29.3294 29.3294i 1.01256 1.01256i 0.0126419 0.999920i \(-0.495976\pi\)
0.999920 0.0126419i \(-0.00402414\pi\)
\(840\) −16.3842 + 5.20750i −0.565307 + 0.179676i
\(841\) −6.08547 −0.209844
\(842\) −3.18601 −0.109797
\(843\) 8.36801 + 26.3280i 0.288210 + 0.906784i
\(844\) 4.95801i 0.170662i
\(845\) 0 0
\(846\) −13.4995 19.0912i −0.464122 0.656368i
\(847\) −19.1482 + 19.1482i −0.657941 + 0.657941i
\(848\) 3.04435i 0.104543i
\(849\) −7.25276 3.75430i −0.248914 0.128847i
\(850\) 7.94276 7.94276i 0.272435 0.272435i
\(851\) −3.83610 3.83610i −0.131500 0.131500i
\(852\) −0.446205 1.40388i −0.0152867 0.0480961i
\(853\) 13.7858 + 13.7858i 0.472018 + 0.472018i 0.902567 0.430549i \(-0.141680\pi\)
−0.430549 + 0.902567i \(0.641680\pi\)
\(854\) 23.7394i 0.812346i
\(855\) −9.29881 13.1505i −0.318013 0.449738i
\(856\) 2.44557 + 2.44557i 0.0835879 + 0.0835879i
\(857\) −41.5499 −1.41932 −0.709659 0.704545i \(-0.751151\pi\)
−0.709659 + 0.704545i \(0.751151\pi\)
\(858\) 0 0
\(859\) 44.2270 1.50900 0.754502 0.656298i \(-0.227878\pi\)
0.754502 + 0.656298i \(0.227878\pi\)
\(860\) −10.4101 10.4101i −0.354982 0.354982i
\(861\) −20.7026 10.7165i −0.705544 0.365217i
\(862\) 21.6840i 0.738562i
\(863\) −14.7459 14.7459i −0.501956 0.501956i 0.410089 0.912045i \(-0.365498\pi\)
−0.912045 + 0.410089i \(0.865498\pi\)
\(864\) 4.14418 + 3.13461i 0.140988 + 0.106642i
\(865\) −57.3788 57.3788i −1.95094 1.95094i
\(866\) −21.2499 + 21.2499i −0.722103 + 0.722103i
\(867\) −12.5829 + 24.3083i −0.427337 + 0.825552i
\(868\) 23.3503i 0.792561i
\(869\) −5.40290 + 5.40290i −0.183281 + 0.183281i
\(870\) 18.4283 35.6007i 0.624778 1.20698i
\(871\) 0 0
\(872\) 15.5423i 0.526330i
\(873\) 1.81355 + 0.311156i 0.0613794 + 0.0105310i
\(874\) 2.40848 0.0814682
\(875\) −52.2847 −1.76755
\(876\) 3.84395 + 12.0941i 0.129875 + 0.408622i
\(877\) −31.9277 + 31.9277i −1.07812 + 1.07812i −0.0814427 + 0.996678i \(0.525953\pi\)
−0.996678 + 0.0814427i \(0.974047\pi\)
\(878\) −14.7403 + 14.7403i −0.497460 + 0.497460i
\(879\) 11.2040 + 35.2508i 0.377902 + 1.18898i
\(880\) −2.27752 −0.0767753
\(881\) −31.1330 −1.04890 −0.524448 0.851442i \(-0.675728\pi\)
−0.524448 + 0.851442i \(0.675728\pi\)
\(882\) −1.61781 0.277572i −0.0544745 0.00934635i
\(883\) 45.7983i 1.54123i 0.637298 + 0.770617i \(0.280052\pi\)
−0.637298 + 0.770617i \(0.719948\pi\)
\(884\) 0 0
\(885\) 26.3795 50.9612i 0.886737 1.71304i
\(886\) 9.21806 9.21806i 0.309687 0.309687i
\(887\) 29.5730i 0.992965i −0.868047 0.496482i \(-0.834625\pi\)
0.868047 0.496482i \(-0.165375\pi\)
\(888\) 2.46422 4.76050i 0.0826936 0.159752i
\(889\) 16.7287 16.7287i 0.561062 0.561062i
\(890\) 26.7730 + 26.7730i 0.897433 + 0.897433i
\(891\) 2.26079 + 4.73373i 0.0757395 + 0.158586i
\(892\) −13.4803 13.4803i −0.451355 0.451355i
\(893\) 10.7087i 0.358354i
\(894\) −12.0826 6.25440i −0.404102 0.209179i
\(895\) −38.6821 38.6821i −1.29300 1.29300i
\(896\) 2.54025 0.0848637
\(897\) 0 0
\(898\) 19.0404 0.635385
\(899\) 38.5004 + 38.5004i 1.28406 + 1.28406i
\(900\) 17.7840 + 25.1504i 0.592801 + 0.838347i
\(901\) 3.33051i 0.110956i
\(902\) −2.18375 2.18375i −0.0727109 0.0727109i
\(903\) 5.02145 + 15.7988i 0.167103 + 0.525751i
\(904\) 7.70543 + 7.70543i 0.256279 + 0.256279i
\(905\) 70.5668 70.5668i 2.34572 2.34572i
\(906\) −22.3188 11.5531i −0.741493 0.383825i
\(907\) 58.1044i 1.92933i 0.263487 + 0.964663i \(0.415127\pi\)
−0.263487 + 0.964663i \(0.584873\pi\)
\(908\) −3.79025 + 3.79025i −0.125784 + 0.125784i
\(909\) 10.1079 + 14.2947i 0.335257 + 0.474125i
\(910\) 0 0
\(911\) 52.8673i 1.75157i 0.482701 + 0.875785i \(0.339656\pi\)
−0.482701 + 0.875785i \(0.660344\pi\)
\(912\) 0.720857 + 2.26801i 0.0238700 + 0.0751012i
\(913\) 4.24846 0.140604
\(914\) 21.2603 0.703228
\(915\) 60.2758 19.1579i 1.99266 0.633340i
\(916\) 2.78436 2.78436i 0.0919978 0.0919978i
\(917\) 1.64863 1.64863i 0.0544424 0.0544424i
\(918\) 4.53373 + 3.42926i 0.149636 + 0.113182i
\(919\) −6.15017 −0.202875 −0.101438 0.994842i \(-0.532344\pi\)
−0.101438 + 0.994842i \(0.532344\pi\)
\(920\) −6.84932 −0.225816
\(921\) 37.8781 12.0391i 1.24812 0.396700i
\(922\) 1.52692i 0.0502864i
\(923\) 0 0
\(924\) 2.27752 + 1.17893i 0.0749250 + 0.0387840i
\(925\) 22.4697 22.4697i 0.738799 0.738799i
\(926\) 30.1612i 0.991159i
\(927\) 5.07812 3.59077i 0.166787 0.117936i
\(928\) −4.18840 + 4.18840i −0.137491 + 0.137491i
\(929\) 25.3106 + 25.3106i 0.830414 + 0.830414i 0.987573 0.157160i \(-0.0502337\pi\)
−0.157160 + 0.987573i \(0.550234\pi\)
\(930\) −59.2878 + 18.8439i −1.94412 + 0.617915i
\(931\) −0.531585 0.531585i −0.0174220 0.0174220i
\(932\) 3.83663i 0.125673i
\(933\) 26.1532 50.5240i 0.856216 1.65408i
\(934\) −7.98571 7.98571i −0.261300 0.261300i
\(935\) −2.49161 −0.0814844
\(936\) 0 0
\(937\) −13.8585 −0.452737 −0.226369 0.974042i \(-0.572685\pi\)
−0.226369 + 0.974042i \(0.572685\pi\)
\(938\) −11.8576 11.8576i −0.387163 0.387163i
\(939\) 8.80854 17.0168i 0.287456 0.555322i
\(940\) 30.4538i 0.993295i
\(941\) 10.8257 + 10.8257i 0.352908 + 0.352908i 0.861190 0.508283i \(-0.169719\pi\)
−0.508283 + 0.861190i \(0.669719\pi\)
\(942\) −11.0851 + 3.52326i −0.361172 + 0.114794i
\(943\) −6.56731 6.56731i −0.213861 0.213861i
\(944\) −5.99556 + 5.99556i −0.195139 + 0.195139i
\(945\) −7.08572 51.0864i −0.230499 1.66184i
\(946\) 2.19615i 0.0714031i
\(947\) 15.0501 15.0501i 0.489061 0.489061i −0.418949 0.908010i \(-0.637601\pi\)
0.908010 + 0.418949i \(0.137601\pi\)
\(948\) −20.1639 10.4376i −0.654893 0.338998i
\(949\) 0 0
\(950\) 14.1075i 0.457708i
\(951\) 40.9689 13.0214i 1.32851 0.422249i
\(952\) 2.77903 0.0900689
\(953\) −20.6433 −0.668703 −0.334351 0.942448i \(-0.608517\pi\)
−0.334351 + 0.942448i \(0.608517\pi\)
\(954\) −9.00151 1.54441i −0.291435 0.0500023i
\(955\) −65.3332 + 65.3332i −2.11413 + 2.11413i
\(956\) −0.751524 + 0.751524i −0.0243060 + 0.0243060i
\(957\) −5.69907 + 1.81138i −0.184225 + 0.0585535i
\(958\) −29.0750 −0.939371
\(959\) 21.8934 0.706974
\(960\) −2.05000 6.44983i −0.0661634 0.208167i
\(961\) 53.4956i 1.72566i
\(962\) 0 0
\(963\) −8.47170 + 5.99040i −0.272997 + 0.193038i
\(964\) −19.7732 + 19.7732i −0.636853 + 0.636853i
\(965\) 41.4129i 1.33313i
\(966\) 6.84932 + 3.54547i 0.220373 + 0.114074i
\(967\) 3.56933 3.56933i 0.114782 0.114782i −0.647383 0.762165i \(-0.724137\pi\)
0.762165 + 0.647383i \(0.224137\pi\)
\(968\) −7.53794 7.53794i −0.242279 0.242279i
\(969\) 0.788618 + 2.48120i 0.0253341 + 0.0797076i
\(970\) −1.69465 1.69465i −0.0544118 0.0544118i
\(971\) 37.0559i 1.18918i −0.804029 0.594590i \(-0.797314\pi\)
0.804029 0.594590i \(-0.202686\pi\)
\(972\) −11.3708 + 10.6633i −0.364717 + 0.342025i
\(973\) 5.95134 + 5.95134i 0.190791 + 0.190791i
\(974\) 2.53376 0.0811869
\(975\) 0 0
\(976\) −9.34533 −0.299137
\(977\) 34.5163 + 34.5163i 1.10427 + 1.10427i 0.993889 + 0.110385i \(0.0352083\pi\)
0.110385 + 0.993889i \(0.464792\pi\)
\(978\) 2.42211 + 1.25378i 0.0774505 + 0.0400914i
\(979\) 5.64812i 0.180515i
\(980\) 1.51174 + 1.51174i 0.0482907 + 0.0482907i
\(981\) −45.9555 7.88471i −1.46725 0.251740i
\(982\) 26.1029 + 26.1029i 0.832978 + 0.832978i
\(983\) −33.9032 + 33.9032i −1.08134 + 1.08134i −0.0849587 + 0.996384i \(0.527076\pi\)
−0.996384 + 0.0849587i \(0.972924\pi\)
\(984\) 4.21868 8.14986i 0.134487 0.259808i
\(985\) 13.5498i 0.431733i
\(986\) −4.58212 + 4.58212i −0.145924 + 0.145924i
\(987\) 15.7641 30.4538i 0.501776 0.969357i
\(988\) 0 0
\(989\) 6.60462i 0.210015i
\(990\) 1.15540 6.73417i 0.0367210 0.214026i
\(991\) −48.7016 −1.54706 −0.773529 0.633761i \(-0.781510\pi\)
−0.773529 + 0.633761i \(0.781510\pi\)
\(992\) 9.19215 0.291851
\(993\) −2.42595 7.63267i −0.0769850 0.242215i
\(994\) 1.52766 1.52766i 0.0484545 0.0484545i
\(995\) 8.53204 8.53204i 0.270484 0.270484i
\(996\) 3.82404 + 12.0314i 0.121169 + 0.381231i
\(997\) −5.53393 −0.175261 −0.0876306 0.996153i \(-0.527930\pi\)
−0.0876306 + 0.996153i \(0.527930\pi\)
\(998\) −31.6021 −1.00035
\(999\) 12.8257 + 9.70121i 0.405787 + 0.306933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.2.g.d.239.7 16
3.2 odd 2 inner 1014.2.g.d.239.3 16
13.5 odd 4 1014.2.g.c.437.7 16
13.6 odd 12 78.2.k.a.11.1 16
13.8 odd 4 inner 1014.2.g.d.437.3 16
13.10 even 6 78.2.k.a.71.4 yes 16
13.12 even 2 1014.2.g.c.239.3 16
39.5 even 4 1014.2.g.c.437.3 16
39.8 even 4 inner 1014.2.g.d.437.7 16
39.23 odd 6 78.2.k.a.71.1 yes 16
39.32 even 12 78.2.k.a.11.4 yes 16
39.38 odd 2 1014.2.g.c.239.7 16
52.19 even 12 624.2.cn.d.401.4 16
52.23 odd 6 624.2.cn.d.305.2 16
156.23 even 6 624.2.cn.d.305.4 16
156.71 odd 12 624.2.cn.d.401.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.k.a.11.1 16 13.6 odd 12
78.2.k.a.11.4 yes 16 39.32 even 12
78.2.k.a.71.1 yes 16 39.23 odd 6
78.2.k.a.71.4 yes 16 13.10 even 6
624.2.cn.d.305.2 16 52.23 odd 6
624.2.cn.d.305.4 16 156.23 even 6
624.2.cn.d.401.2 16 156.71 odd 12
624.2.cn.d.401.4 16 52.19 even 12
1014.2.g.c.239.3 16 13.12 even 2
1014.2.g.c.239.7 16 39.38 odd 2
1014.2.g.c.437.3 16 39.5 even 4
1014.2.g.c.437.7 16 13.5 odd 4
1014.2.g.d.239.3 16 3.2 odd 2 inner
1014.2.g.d.239.7 16 1.1 even 1 trivial
1014.2.g.d.437.3 16 13.8 odd 4 inner
1014.2.g.d.437.7 16 39.8 even 4 inner