Properties

Label 1014.2.g.d
Level $1014$
Weight $2$
Character orbit 1014.g
Analytic conductor $8.097$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(239,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.9349208943630483456.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{11} q^{2} + (\beta_{15} - \beta_{6} + \cdots - \beta_{2}) q^{3} + \beta_{12} q^{4} + ( - \beta_{15} + \beta_{8} + \cdots + \beta_{3}) q^{5} + (\beta_{14} + \beta_{9} + \beta_{4}) q^{6} + (\beta_{12} - \beta_{5} + 1) q^{7}+ \cdots + (\beta_{15} + \beta_{14} + \cdots - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{7} + 24 q^{15} - 16 q^{16} - 32 q^{19} + 24 q^{21} - 16 q^{28} - 16 q^{31} - 24 q^{33} - 24 q^{34} + 8 q^{37} + 48 q^{45} + 48 q^{55} + 24 q^{57} + 24 q^{58} + 24 q^{60} + 48 q^{61} - 48 q^{66}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + \cdots + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 50 \nu^{14} + 350 \nu^{13} - 2019 \nu^{12} + 7564 \nu^{11} - 23298 \nu^{10} + 55495 \nu^{9} + \cdots - 2945 ) / 65 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 62 \nu^{14} - 434 \nu^{13} + 2541 \nu^{12} - 9604 \nu^{11} + 30137 \nu^{10} - 72992 \nu^{9} + \cdots + 5945 ) / 65 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 107 \nu^{14} - 749 \nu^{13} + 4349 \nu^{12} - 16357 \nu^{11} + 50788 \nu^{10} - 121852 \nu^{9} + \cdots + 7055 ) / 65 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 13659 \nu^{15} + 79956 \nu^{14} - 449175 \nu^{13} + 1476715 \nu^{12} - 4234710 \nu^{11} + \cdots - 486085 ) / 17095 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 18512 \nu^{15} - 119115 \nu^{14} + 677662 \nu^{13} - 2393217 \nu^{12} + 7123788 \nu^{11} + \cdots + 928550 ) / 17095 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 1424 \nu^{15} + 10943 \nu^{14} - 64590 \nu^{13} + 256277 \nu^{12} - 819076 \nu^{11} + 2060111 \nu^{10} + \cdots + 34380 ) / 1315 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 23174 \nu^{15} - 156710 \nu^{14} + 904864 \nu^{13} - 3329339 \nu^{12} + 10218126 \nu^{11} + \cdots + 361440 ) / 17095 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 22230 \nu^{15} - 159361 \nu^{14} + 923582 \nu^{13} - 3511572 \nu^{12} + 10902106 \nu^{11} + \cdots - 39775 ) / 17095 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 13659 \nu^{15} - 138079 \nu^{14} + 856036 \nu^{13} - 3832406 \nu^{12} + 13079663 \nu^{11} + \cdots - 2779060 ) / 17095 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 23174 \nu^{15} + 190900 \nu^{14} - 1144194 \nu^{13} + 4717453 \nu^{12} - 15435520 \nu^{11} + \cdots + 1929290 ) / 17095 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 54184 \nu^{15} - 399016 \nu^{14} + 2335837 \nu^{13} - 9056462 \nu^{12} + 28575749 \nu^{11} + \cdots - 1312670 ) / 17095 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 10652 \nu^{15} + 79890 \nu^{14} - 470562 \nu^{13} + 1846988 \nu^{12} - 5882478 \nu^{11} + \cdots + 370592 ) / 3419 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 54184 \nu^{15} + 413744 \nu^{14} - 2438933 \nu^{13} + 9652683 \nu^{12} - 30812827 \nu^{11} + \cdots + 1951760 ) / 17095 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 79057 \nu^{15} + 615414 \nu^{14} - 3643251 \nu^{13} + 14577609 \nu^{12} - 46844682 \nu^{11} + \cdots + 3651715 ) / 17095 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 80814 \nu^{15} + 625830 \nu^{14} - 3701865 \nu^{13} + 14775376 \nu^{12} - 47425509 \nu^{11} + \cdots + 4036755 ) / 17095 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{15} + \beta_{13} + \beta_{12} - \beta_{11} + \beta_{6} + \beta_{5} + \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{15} + 2\beta_{13} + \beta_{12} - \beta_{10} - \beta_{7} + 2\beta_{2} - 2\beta _1 - 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 7 \beta_{15} + 2 \beta_{14} - 2 \beta_{13} - 7 \beta_{12} + 8 \beta_{11} - \beta_{9} - 3 \beta_{8} + \cdots - 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 16 \beta_{15} + 4 \beta_{14} - 14 \beta_{13} - 15 \beta_{12} + 8 \beta_{11} + 9 \beta_{10} - 6 \beta_{8} + \cdots + 18 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 29 \beta_{15} - 12 \beta_{14} - 6 \beta_{13} + 41 \beta_{12} - 49 \beta_{11} + 5 \beta_{10} + \cdots + 36 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 128 \beta_{15} - 46 \beta_{14} + 75 \beta_{13} + 161 \beta_{12} - 110 \beta_{11} - 75 \beta_{10} + \cdots - 100 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 91 \beta_{15} + 38 \beta_{14} + 111 \beta_{13} - 162 \beta_{12} + 239 \beta_{11} - 105 \beta_{10} + \cdots - 307 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 1000 \beta_{15} + 376 \beta_{14} - 372 \beta_{13} - 1435 \beta_{12} + 1056 \beta_{11} + 543 \beta_{10} + \cdots + 534 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 237 \beta_{15} + 102 \beta_{14} - 1073 \beta_{13} - 188 \beta_{12} - 694 \beta_{11} + 1413 \beta_{10} + \cdots + 2725 ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 7294 \beta_{15} - 2652 \beta_{14} + 1583 \beta_{13} + 11026 \beta_{12} - 8640 \beta_{11} + \cdots - 1864 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 8716 \beta_{15} - 3307 \beta_{14} + 8988 \beta_{13} + 12594 \beta_{12} - 3455 \beta_{11} + \cdots - 22758 ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 23764 \beta_{15} + 8306 \beta_{14} - 1666 \beta_{13} - 36597 \beta_{12} + 31234 \beta_{11} + 4650 \beta_{10} + \cdots - 3138 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 113314 \beta_{15} + 40749 \beta_{14} - 69278 \beta_{13} - 171456 \beta_{12} + 89103 \beta_{11} + \cdots + 171575 ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 256592 \beta_{15} - 86986 \beta_{14} - 39130 \beta_{13} + 397697 \beta_{12} - 391872 \beta_{11} + \cdots + 213314 ) / 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 1130763 \beta_{15} - 394827 \beta_{14} + 487515 \beta_{13} + 1731786 \beta_{12} - 1079800 \beta_{11} + \cdots - 1132093 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(-\beta_{12}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
239.1
0.500000 1.00333i
0.500000 + 1.33108i
0.500000 1.74530i
0.500000 + 0.589118i
0.500000 + 2.00333i
0.500000 0.331082i
0.500000 + 2.74530i
0.500000 + 0.410882i
0.500000 + 1.00333i
0.500000 1.33108i
0.500000 + 1.74530i
0.500000 0.589118i
0.500000 2.00333i
0.500000 + 0.331082i
0.500000 2.74530i
0.500000 0.410882i
−0.707107 0.707107i −1.53819 + 0.796225i 1.00000i 0.428520 + 0.428520i 1.65068 + 0.524648i −0.538189 0.538189i 0.707107 0.707107i 1.73205 2.44949i 0.606018i
239.2 −0.707107 0.707107i −0.796225 1.53819i 1.00000i 0.313444 + 0.313444i −0.524648 + 1.65068i 0.203775 + 0.203775i 0.707107 0.707107i −1.73205 + 2.44949i 0.443277i
239.3 −0.707107 0.707107i 0.796225 + 1.53819i 1.00000i −2.76293 2.76293i 0.524648 1.65068i 1.79623 + 1.79623i 0.707107 0.707107i −1.73205 + 2.44949i 3.90738i
239.4 −0.707107 0.707107i 1.53819 0.796225i 1.00000i 2.02097 + 2.02097i −1.65068 0.524648i 2.53819 + 2.53819i 0.707107 0.707107i 1.73205 2.44949i 2.85808i
239.5 0.707107 + 0.707107i −1.53819 0.796225i 1.00000i −0.428520 0.428520i −0.524648 1.65068i −0.538189 0.538189i −0.707107 + 0.707107i 1.73205 + 2.44949i 0.606018i
239.6 0.707107 + 0.707107i −0.796225 + 1.53819i 1.00000i −0.313444 0.313444i −1.65068 + 0.524648i 0.203775 + 0.203775i −0.707107 + 0.707107i −1.73205 2.44949i 0.443277i
239.7 0.707107 + 0.707107i 0.796225 1.53819i 1.00000i 2.76293 + 2.76293i 1.65068 0.524648i 1.79623 + 1.79623i −0.707107 + 0.707107i −1.73205 2.44949i 3.90738i
239.8 0.707107 + 0.707107i 1.53819 + 0.796225i 1.00000i −2.02097 2.02097i 0.524648 + 1.65068i 2.53819 + 2.53819i −0.707107 + 0.707107i 1.73205 + 2.44949i 2.85808i
437.1 −0.707107 + 0.707107i −1.53819 0.796225i 1.00000i 0.428520 0.428520i 1.65068 0.524648i −0.538189 + 0.538189i 0.707107 + 0.707107i 1.73205 + 2.44949i 0.606018i
437.2 −0.707107 + 0.707107i −0.796225 + 1.53819i 1.00000i 0.313444 0.313444i −0.524648 1.65068i 0.203775 0.203775i 0.707107 + 0.707107i −1.73205 2.44949i 0.443277i
437.3 −0.707107 + 0.707107i 0.796225 1.53819i 1.00000i −2.76293 + 2.76293i 0.524648 + 1.65068i 1.79623 1.79623i 0.707107 + 0.707107i −1.73205 2.44949i 3.90738i
437.4 −0.707107 + 0.707107i 1.53819 + 0.796225i 1.00000i 2.02097 2.02097i −1.65068 + 0.524648i 2.53819 2.53819i 0.707107 + 0.707107i 1.73205 + 2.44949i 2.85808i
437.5 0.707107 0.707107i −1.53819 + 0.796225i 1.00000i −0.428520 + 0.428520i −0.524648 + 1.65068i −0.538189 + 0.538189i −0.707107 0.707107i 1.73205 2.44949i 0.606018i
437.6 0.707107 0.707107i −0.796225 1.53819i 1.00000i −0.313444 + 0.313444i −1.65068 0.524648i 0.203775 0.203775i −0.707107 0.707107i −1.73205 + 2.44949i 0.443277i
437.7 0.707107 0.707107i 0.796225 + 1.53819i 1.00000i 2.76293 2.76293i 1.65068 + 0.524648i 1.79623 1.79623i −0.707107 0.707107i −1.73205 + 2.44949i 3.90738i
437.8 0.707107 0.707107i 1.53819 0.796225i 1.00000i −2.02097 + 2.02097i 0.524648 1.65068i 2.53819 2.53819i −0.707107 0.707107i 1.73205 2.44949i 2.85808i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 239.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.d odd 4 1 inner
39.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.2.g.d 16
3.b odd 2 1 inner 1014.2.g.d 16
13.b even 2 1 1014.2.g.c 16
13.d odd 4 1 1014.2.g.c 16
13.d odd 4 1 inner 1014.2.g.d 16
13.e even 6 1 78.2.k.a 16
13.f odd 12 1 78.2.k.a 16
39.d odd 2 1 1014.2.g.c 16
39.f even 4 1 1014.2.g.c 16
39.f even 4 1 inner 1014.2.g.d 16
39.h odd 6 1 78.2.k.a 16
39.k even 12 1 78.2.k.a 16
52.i odd 6 1 624.2.cn.d 16
52.l even 12 1 624.2.cn.d 16
156.r even 6 1 624.2.cn.d 16
156.v odd 12 1 624.2.cn.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.k.a 16 13.e even 6 1
78.2.k.a 16 13.f odd 12 1
78.2.k.a 16 39.h odd 6 1
78.2.k.a 16 39.k even 12 1
624.2.cn.d 16 52.i odd 6 1
624.2.cn.d 16 52.l even 12 1
624.2.cn.d 16 156.r even 6 1
624.2.cn.d 16 156.v odd 12 1
1014.2.g.c 16 13.b even 2 1
1014.2.g.c 16 13.d odd 4 1
1014.2.g.c 16 39.d odd 2 1
1014.2.g.c 16 39.f even 4 1
1014.2.g.d 16 1.a even 1 1 trivial
1014.2.g.d 16 3.b odd 2 1 inner
1014.2.g.d 16 13.d odd 4 1 inner
1014.2.g.d 16 39.f even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1014, [\chi])\):

\( T_{5}^{16} + 300T_{5}^{12} + 15606T_{5}^{8} + 2700T_{5}^{4} + 81 \) Copy content Toggle raw display
\( T_{7}^{8} - 8T_{7}^{7} + 32T_{7}^{6} - 56T_{7}^{5} + 40T_{7}^{4} + 32T_{7}^{3} + 32T_{7}^{2} - 16T_{7} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{8} + 6 T^{4} + 81)^{2} \) Copy content Toggle raw display
$5$ \( T^{16} + 300 T^{12} + \cdots + 81 \) Copy content Toggle raw display
$7$ \( (T^{8} - 8 T^{7} + 32 T^{6} + \cdots + 4)^{2} \) Copy content Toggle raw display
$11$ \( (T^{8} + 312 T^{4} + 36)^{2} \) Copy content Toggle raw display
$13$ \( T^{16} \) Copy content Toggle raw display
$17$ \( (T^{8} - 72 T^{6} + \cdots + 12321)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} + 16 T^{7} + \cdots + 5476)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} - 60 T^{6} + \cdots + 4356)^{2} \) Copy content Toggle raw display
$29$ \( (T^{8} + 132 T^{6} + \cdots + 184041)^{2} \) Copy content Toggle raw display
$31$ \( (T^{8} + 8 T^{7} + \cdots + 7744)^{2} \) Copy content Toggle raw display
$37$ \( (T^{8} - 4 T^{7} + \cdots + 375769)^{2} \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 65697655057281 \) Copy content Toggle raw display
$43$ \( (T^{4} + 18 T^{2} + 54)^{4} \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 41006250000 \) Copy content Toggle raw display
$53$ \( (T^{8} + 156 T^{6} + \cdots + 522729)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 43489065701376 \) Copy content Toggle raw display
$61$ \( (T^{4} - 12 T^{3} + \cdots - 219)^{4} \) Copy content Toggle raw display
$67$ \( (T^{8} + 16 T^{7} + \cdots + 676)^{2} \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 5143987297296 \) Copy content Toggle raw display
$73$ \( (T^{8} + 28 T^{7} + \cdots + 16834609)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 24 T^{3} + \cdots + 312)^{4} \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 36804120336 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 59\!\cdots\!56 \) Copy content Toggle raw display
$97$ \( (T^{8} + 8 T^{7} + \cdots + 43264)^{2} \) Copy content Toggle raw display
show more
show less