Properties

Label 1014.2.g.c.437.7
Level $1014$
Weight $2$
Character 1014.437
Analytic conductor $8.097$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(239,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.9349208943630483456.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 437.7
Root \(0.500000 - 2.74530i\) of defining polynomial
Character \(\chi\) \(=\) 1014.437
Dual form 1014.2.g.c.239.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(0.796225 - 1.53819i) q^{3} -1.00000i q^{4} +(2.76293 - 2.76293i) q^{5} +(-0.524648 - 1.65068i) q^{6} +(-1.79623 + 1.79623i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-1.73205 - 2.44949i) q^{9} -3.90738i q^{10} +(0.412157 + 0.412157i) q^{11} +(-1.53819 - 0.796225i) q^{12} +2.54025i q^{14} +(-2.05000 - 6.44983i) q^{15} -1.00000 q^{16} +1.09400 q^{17} +(-2.95680 - 0.507306i) q^{18} +(-0.971553 - 0.971553i) q^{19} +(-2.76293 - 2.76293i) q^{20} +(1.33273 + 4.19313i) q^{21} +0.582877 q^{22} -1.75292 q^{23} +(-1.65068 + 0.524648i) q^{24} -10.2676i q^{25} +(-5.14688 + 0.713876i) q^{27} +(1.79623 + 1.79623i) q^{28} -5.92330i q^{29} +(-6.01029 - 3.11115i) q^{30} +(6.49983 + 6.49983i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(0.962144 - 0.305805i) q^{33} +(0.773575 - 0.773575i) q^{34} +9.92570i q^{35} +(-2.44949 + 1.73205i) q^{36} +(2.18840 - 2.18840i) q^{37} -1.37398 q^{38} -3.90738 q^{40} +(-3.74650 + 3.74650i) q^{41} +(3.90738 + 2.02261i) q^{42} -3.76778i q^{43} +(0.412157 - 0.412157i) q^{44} +(-11.5533 - 1.98224i) q^{45} +(-1.23950 + 1.23950i) q^{46} +(5.51114 + 5.51114i) q^{47} +(-0.796225 + 1.53819i) q^{48} +0.547150i q^{49} +(-7.26029 - 7.26029i) q^{50} +(0.871071 - 1.68278i) q^{51} -3.04435i q^{53} +(-3.13461 + 4.14418i) q^{54} +2.27752 q^{55} +2.54025 q^{56} +(-2.26801 + 0.720857i) q^{57} +(-4.18840 - 4.18840i) q^{58} +(5.99556 + 5.99556i) q^{59} +(-6.44983 + 2.05000i) q^{60} +9.34533 q^{61} +9.19215 q^{62} +(7.51099 + 1.28868i) q^{63} +1.00000i q^{64} +(0.464102 - 0.896575i) q^{66} +(4.66788 + 4.66788i) q^{67} -1.09400i q^{68} +(-1.39572 + 2.69632i) q^{69} +(7.01853 + 7.01853i) q^{70} +(-0.601383 + 0.601383i) q^{71} +(-0.507306 + 2.95680i) q^{72} +(-5.18078 + 5.18078i) q^{73} -3.09487i q^{74} +(-15.7935 - 8.17533i) q^{75} +(-0.971553 + 0.971553i) q^{76} -1.48065 q^{77} -13.1089 q^{79} +(-2.76293 + 2.76293i) q^{80} +(-3.00000 + 8.48528i) q^{81} +5.29835i q^{82} +(5.15394 - 5.15394i) q^{83} +(4.19313 - 1.33273i) q^{84} +(3.02265 - 3.02265i) q^{85} +(-2.66422 - 2.66422i) q^{86} +(-9.11115 - 4.71628i) q^{87} -0.582877i q^{88} +(6.85191 + 6.85191i) q^{89} +(-9.57108 + 6.76778i) q^{90} +1.75292i q^{92} +(15.1733 - 4.82264i) q^{93} +7.79393 q^{94} -5.36867 q^{95} +(0.524648 + 1.65068i) q^{96} +(0.433704 + 0.433704i) q^{97} +(0.386893 + 0.386893i) q^{98} +(0.295697 - 1.72345i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{7} - 24 q^{15} - 16 q^{16} + 32 q^{19} - 24 q^{21} + 16 q^{28} + 16 q^{31} + 24 q^{33} + 24 q^{34} - 8 q^{37} - 48 q^{45} + 48 q^{55} - 24 q^{57} - 24 q^{58} - 24 q^{60} + 48 q^{61} - 48 q^{66}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0.796225 1.53819i 0.459701 0.888074i
\(4\) 1.00000i 0.500000i
\(5\) 2.76293 2.76293i 1.23562 1.23562i 0.273849 0.961773i \(-0.411703\pi\)
0.961773 0.273849i \(-0.0882968\pi\)
\(6\) −0.524648 1.65068i −0.214186 0.673887i
\(7\) −1.79623 + 1.79623i −0.678909 + 0.678909i −0.959753 0.280844i \(-0.909386\pi\)
0.280844 + 0.959753i \(0.409386\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) −1.73205 2.44949i −0.577350 0.816497i
\(10\) 3.90738i 1.23562i
\(11\) 0.412157 + 0.412157i 0.124270 + 0.124270i 0.766506 0.642237i \(-0.221993\pi\)
−0.642237 + 0.766506i \(0.721993\pi\)
\(12\) −1.53819 0.796225i −0.444037 0.229850i
\(13\) 0 0
\(14\) 2.54025i 0.678909i
\(15\) −2.05000 6.44983i −0.529307 1.66534i
\(16\) −1.00000 −0.250000
\(17\) 1.09400 0.265334 0.132667 0.991161i \(-0.457646\pi\)
0.132667 + 0.991161i \(0.457646\pi\)
\(18\) −2.95680 0.507306i −0.696923 0.119573i
\(19\) −0.971553 0.971553i −0.222890 0.222890i 0.586825 0.809714i \(-0.300378\pi\)
−0.809714 + 0.586825i \(0.800378\pi\)
\(20\) −2.76293 2.76293i −0.617811 0.617811i
\(21\) 1.33273 + 4.19313i 0.290826 + 0.915017i
\(22\) 0.582877 0.124270
\(23\) −1.75292 −0.365509 −0.182755 0.983159i \(-0.558501\pi\)
−0.182755 + 0.983159i \(0.558501\pi\)
\(24\) −1.65068 + 0.524648i −0.336944 + 0.107093i
\(25\) 10.2676i 2.05352i
\(26\) 0 0
\(27\) −5.14688 + 0.713876i −0.990518 + 0.137386i
\(28\) 1.79623 + 1.79623i 0.339455 + 0.339455i
\(29\) 5.92330i 1.09993i −0.835188 0.549965i \(-0.814641\pi\)
0.835188 0.549965i \(-0.185359\pi\)
\(30\) −6.01029 3.11115i −1.09732 0.568016i
\(31\) 6.49983 + 6.49983i 1.16740 + 1.16740i 0.982816 + 0.184588i \(0.0590950\pi\)
0.184588 + 0.982816i \(0.440905\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0.962144 0.305805i 0.167488 0.0532339i
\(34\) 0.773575 0.773575i 0.132667 0.132667i
\(35\) 9.92570i 1.67775i
\(36\) −2.44949 + 1.73205i −0.408248 + 0.288675i
\(37\) 2.18840 2.18840i 0.359772 0.359772i −0.503957 0.863729i \(-0.668123\pi\)
0.863729 + 0.503957i \(0.168123\pi\)
\(38\) −1.37398 −0.222890
\(39\) 0 0
\(40\) −3.90738 −0.617811
\(41\) −3.74650 + 3.74650i −0.585105 + 0.585105i −0.936302 0.351197i \(-0.885775\pi\)
0.351197 + 0.936302i \(0.385775\pi\)
\(42\) 3.90738 + 2.02261i 0.602922 + 0.312095i
\(43\) 3.76778i 0.574581i −0.957844 0.287290i \(-0.907246\pi\)
0.957844 0.287290i \(-0.0927545\pi\)
\(44\) 0.412157 0.412157i 0.0621349 0.0621349i
\(45\) −11.5533 1.98224i −1.72227 0.295494i
\(46\) −1.23950 + 1.23950i −0.182755 + 0.182755i
\(47\) 5.51114 + 5.51114i 0.803883 + 0.803883i 0.983700 0.179817i \(-0.0575506\pi\)
−0.179817 + 0.983700i \(0.557551\pi\)
\(48\) −0.796225 + 1.53819i −0.114925 + 0.222018i
\(49\) 0.547150i 0.0781643i
\(50\) −7.26029 7.26029i −1.02676 1.02676i
\(51\) 0.871071 1.68278i 0.121974 0.235636i
\(52\) 0 0
\(53\) 3.04435i 0.418173i −0.977897 0.209087i \(-0.932951\pi\)
0.977897 0.209087i \(-0.0670490\pi\)
\(54\) −3.13461 + 4.14418i −0.426566 + 0.563952i
\(55\) 2.27752 0.307101
\(56\) 2.54025 0.339455
\(57\) −2.26801 + 0.720857i −0.300405 + 0.0954799i
\(58\) −4.18840 4.18840i −0.549965 0.549965i
\(59\) 5.99556 + 5.99556i 0.780556 + 0.780556i 0.979925 0.199369i \(-0.0638892\pi\)
−0.199369 + 0.979925i \(0.563889\pi\)
\(60\) −6.44983 + 2.05000i −0.832670 + 0.264653i
\(61\) 9.34533 1.19655 0.598273 0.801292i \(-0.295854\pi\)
0.598273 + 0.801292i \(0.295854\pi\)
\(62\) 9.19215 1.16740
\(63\) 7.51099 + 1.28868i 0.946296 + 0.162359i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) 0.464102 0.896575i 0.0571270 0.110361i
\(67\) 4.66788 + 4.66788i 0.570272 + 0.570272i 0.932204 0.361932i \(-0.117883\pi\)
−0.361932 + 0.932204i \(0.617883\pi\)
\(68\) 1.09400i 0.132667i
\(69\) −1.39572 + 2.69632i −0.168025 + 0.324599i
\(70\) 7.01853 + 7.01853i 0.838875 + 0.838875i
\(71\) −0.601383 + 0.601383i −0.0713711 + 0.0713711i −0.741891 0.670520i \(-0.766071\pi\)
0.670520 + 0.741891i \(0.266071\pi\)
\(72\) −0.507306 + 2.95680i −0.0597866 + 0.348462i
\(73\) −5.18078 + 5.18078i −0.606365 + 0.606365i −0.941994 0.335629i \(-0.891051\pi\)
0.335629 + 0.941994i \(0.391051\pi\)
\(74\) 3.09487i 0.359772i
\(75\) −15.7935 8.17533i −1.82368 0.944006i
\(76\) −0.971553 + 0.971553i −0.111445 + 0.111445i
\(77\) −1.48065 −0.168736
\(78\) 0 0
\(79\) −13.1089 −1.47486 −0.737431 0.675422i \(-0.763961\pi\)
−0.737431 + 0.675422i \(0.763961\pi\)
\(80\) −2.76293 + 2.76293i −0.308905 + 0.308905i
\(81\) −3.00000 + 8.48528i −0.333333 + 0.942809i
\(82\) 5.29835i 0.585105i
\(83\) 5.15394 5.15394i 0.565719 0.565719i −0.365208 0.930926i \(-0.619002\pi\)
0.930926 + 0.365208i \(0.119002\pi\)
\(84\) 4.19313 1.33273i 0.457508 0.145413i
\(85\) 3.02265 3.02265i 0.327852 0.327852i
\(86\) −2.66422 2.66422i −0.287290 0.287290i
\(87\) −9.11115 4.71628i −0.976818 0.505638i
\(88\) 0.582877i 0.0621349i
\(89\) 6.85191 + 6.85191i 0.726301 + 0.726301i 0.969881 0.243580i \(-0.0783219\pi\)
−0.243580 + 0.969881i \(0.578322\pi\)
\(90\) −9.57108 + 6.76778i −1.00888 + 0.713386i
\(91\) 0 0
\(92\) 1.75292i 0.182755i
\(93\) 15.1733 4.82264i 1.57340 0.500084i
\(94\) 7.79393 0.803883
\(95\) −5.36867 −0.550814
\(96\) 0.524648 + 1.65068i 0.0535466 + 0.168472i
\(97\) 0.433704 + 0.433704i 0.0440360 + 0.0440360i 0.728782 0.684746i \(-0.240087\pi\)
−0.684746 + 0.728782i \(0.740087\pi\)
\(98\) 0.386893 + 0.386893i 0.0390821 + 0.0390821i
\(99\) 0.295697 1.72345i 0.0297187 0.173213i
\(100\) −10.2676 −1.02676
\(101\) 5.83579 0.580682 0.290341 0.956923i \(-0.406231\pi\)
0.290341 + 0.956923i \(0.406231\pi\)
\(102\) −0.573965 1.80584i −0.0568310 0.178805i
\(103\) 2.07313i 0.204272i −0.994770 0.102136i \(-0.967432\pi\)
0.994770 0.102136i \(-0.0325677\pi\)
\(104\) 0 0
\(105\) 15.2676 + 7.90310i 1.48997 + 0.771263i
\(106\) −2.15268 2.15268i −0.209087 0.209087i
\(107\) 3.45856i 0.334351i −0.985927 0.167176i \(-0.946535\pi\)
0.985927 0.167176i \(-0.0534647\pi\)
\(108\) 0.713876 + 5.14688i 0.0686928 + 0.495259i
\(109\) −10.9901 10.9901i −1.05266 1.05266i −0.998534 0.0541251i \(-0.982763\pi\)
−0.0541251 0.998534i \(-0.517237\pi\)
\(110\) 1.61045 1.61045i 0.153551 0.153551i
\(111\) −1.62372 5.10864i −0.154116 0.484891i
\(112\) 1.79623 1.79623i 0.169727 0.169727i
\(113\) 10.8971i 1.02512i −0.858653 0.512558i \(-0.828698\pi\)
0.858653 0.512558i \(-0.171302\pi\)
\(114\) −1.09400 + 2.11345i −0.102463 + 0.197942i
\(115\) −4.84320 + 4.84320i −0.451631 + 0.451631i
\(116\) −5.92330 −0.549965
\(117\) 0 0
\(118\) 8.47900 0.780556
\(119\) −1.96507 + 1.96507i −0.180138 + 0.180138i
\(120\) −3.11115 + 6.01029i −0.284008 + 0.548662i
\(121\) 10.6603i 0.969114i
\(122\) 6.60814 6.60814i 0.598273 0.598273i
\(123\) 2.77977 + 8.74588i 0.250643 + 0.788589i
\(124\) 6.49983 6.49983i 0.583702 0.583702i
\(125\) −14.5541 14.5541i −1.30175 1.30175i
\(126\) 6.22231 4.39984i 0.554327 0.391968i
\(127\) 9.31325i 0.826417i 0.910636 + 0.413209i \(0.135592\pi\)
−0.910636 + 0.413209i \(0.864408\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) −5.79555 3.00000i −0.510270 0.264135i
\(130\) 0 0
\(131\) 0.917828i 0.0801910i −0.999196 0.0400955i \(-0.987234\pi\)
0.999196 0.0400955i \(-0.0127662\pi\)
\(132\) −0.305805 0.962144i −0.0266169 0.0837439i
\(133\) 3.49026 0.302644
\(134\) 6.60137 0.570272
\(135\) −12.2481 + 16.1929i −1.05415 + 1.39366i
\(136\) −0.773575 0.773575i −0.0663335 0.0663335i
\(137\) 6.09427 + 6.09427i 0.520669 + 0.520669i 0.917773 0.397104i \(-0.129985\pi\)
−0.397104 + 0.917773i \(0.629985\pi\)
\(138\) 0.919666 + 2.89351i 0.0782871 + 0.246312i
\(139\) 3.31325 0.281026 0.140513 0.990079i \(-0.455125\pi\)
0.140513 + 0.990079i \(0.455125\pi\)
\(140\) 9.92570 0.838875
\(141\) 12.8653 4.08907i 1.08345 0.344362i
\(142\) 0.850484i 0.0713711i
\(143\) 0 0
\(144\) 1.73205 + 2.44949i 0.144338 + 0.204124i
\(145\) −16.3657 16.3657i −1.35910 1.35910i
\(146\) 7.32673i 0.606365i
\(147\) 0.841620 + 0.435655i 0.0694156 + 0.0359322i
\(148\) −2.18840 2.18840i −0.179886 0.179886i
\(149\) −5.55437 + 5.55437i −0.455032 + 0.455032i −0.897021 0.441989i \(-0.854273\pi\)
0.441989 + 0.897021i \(0.354273\pi\)
\(150\) −16.9485 + 5.38688i −1.38384 + 0.439837i
\(151\) 10.2600 10.2600i 0.834946 0.834946i −0.153243 0.988189i \(-0.548972\pi\)
0.988189 + 0.153243i \(0.0489717\pi\)
\(152\) 1.37398i 0.111445i
\(153\) −1.89486 2.67974i −0.153191 0.216644i
\(154\) −1.04698 + 1.04698i −0.0843680 + 0.0843680i
\(155\) 35.9172 2.88494
\(156\) 0 0
\(157\) −6.71547 −0.535953 −0.267976 0.963425i \(-0.586355\pi\)
−0.267976 + 0.963425i \(0.586355\pi\)
\(158\) −9.26936 + 9.26936i −0.737431 + 0.737431i
\(159\) −4.68278 2.42398i −0.371369 0.192235i
\(160\) 3.90738i 0.308905i
\(161\) 3.14864 3.14864i 0.248148 0.248148i
\(162\) 3.87868 + 8.12132i 0.304738 + 0.638071i
\(163\) −1.11345 + 1.11345i −0.0872118 + 0.0872118i −0.749367 0.662155i \(-0.769642\pi\)
0.662155 + 0.749367i \(0.269642\pi\)
\(164\) 3.74650 + 3.74650i 0.292552 + 0.292552i
\(165\) 1.81342 3.50326i 0.141175 0.272728i
\(166\) 7.28877i 0.565719i
\(167\) −17.2850 17.2850i −1.33755 1.33755i −0.898427 0.439123i \(-0.855289\pi\)
−0.439123 0.898427i \(-0.644711\pi\)
\(168\) 2.02261 3.90738i 0.156048 0.301461i
\(169\) 0 0
\(170\) 4.27467i 0.327852i
\(171\) −0.697030 + 4.06259i −0.0533032 + 0.310674i
\(172\) −3.76778 −0.287290
\(173\) 20.7673 1.57891 0.789456 0.613807i \(-0.210363\pi\)
0.789456 + 0.613807i \(0.210363\pi\)
\(174\) −9.77747 + 3.10764i −0.741228 + 0.235590i
\(175\) 18.4429 + 18.4429i 1.39415 + 1.39415i
\(176\) −0.412157 0.412157i −0.0310675 0.0310675i
\(177\) 13.9961 4.44849i 1.05201 0.334369i
\(178\) 9.69006 0.726301
\(179\) 14.0004 1.04644 0.523218 0.852199i \(-0.324731\pi\)
0.523218 + 0.852199i \(0.324731\pi\)
\(180\) −1.98224 + 11.5533i −0.147747 + 0.861134i
\(181\) 25.5405i 1.89841i 0.314653 + 0.949207i \(0.398112\pi\)
−0.314653 + 0.949207i \(0.601888\pi\)
\(182\) 0 0
\(183\) 7.44098 14.3749i 0.550053 1.06262i
\(184\) 1.23950 + 1.23950i 0.0913773 + 0.0913773i
\(185\) 12.0928i 0.889083i
\(186\) 7.31902 14.1393i 0.536656 1.03674i
\(187\) 0.450899 + 0.450899i 0.0329730 + 0.0329730i
\(188\) 5.51114 5.51114i 0.401941 0.401941i
\(189\) 7.96267 10.5272i 0.579199 0.765744i
\(190\) −3.79623 + 3.79623i −0.275407 + 0.275407i
\(191\) 23.6463i 1.71099i 0.517814 + 0.855493i \(0.326746\pi\)
−0.517814 + 0.855493i \(0.673254\pi\)
\(192\) 1.53819 + 0.796225i 0.111009 + 0.0574626i
\(193\) −7.49437 + 7.49437i −0.539457 + 0.539457i −0.923369 0.383913i \(-0.874576\pi\)
0.383913 + 0.923369i \(0.374576\pi\)
\(194\) 0.613350 0.0440360
\(195\) 0 0
\(196\) 0.547150 0.0390821
\(197\) 2.45207 2.45207i 0.174703 0.174703i −0.614339 0.789042i \(-0.710577\pi\)
0.789042 + 0.614339i \(0.210577\pi\)
\(198\) −1.00957 1.42775i −0.0717472 0.101466i
\(199\) 3.08804i 0.218905i 0.993992 + 0.109453i \(0.0349098\pi\)
−0.993992 + 0.109453i \(0.965090\pi\)
\(200\) −7.26029 + 7.26029i −0.513380 + 0.513380i
\(201\) 10.8968 3.46340i 0.768598 0.244289i
\(202\) 4.12652 4.12652i 0.290341 0.290341i
\(203\) 10.6396 + 10.6396i 0.746752 + 0.746752i
\(204\) −1.68278 0.871071i −0.117818 0.0609871i
\(205\) 20.7026i 1.44594i
\(206\) −1.46593 1.46593i −0.102136 0.102136i
\(207\) 3.03615 + 4.29376i 0.211027 + 0.298437i
\(208\) 0 0
\(209\) 0.800864i 0.0553969i
\(210\) 16.3842 5.20750i 1.13061 0.359351i
\(211\) −4.95801 −0.341323 −0.170662 0.985330i \(-0.554591\pi\)
−0.170662 + 0.985330i \(0.554591\pi\)
\(212\) −3.04435 −0.209087
\(213\) 0.446205 + 1.40388i 0.0305734 + 0.0961921i
\(214\) −2.44557 2.44557i −0.167176 0.167176i
\(215\) −10.4101 10.4101i −0.709964 0.709964i
\(216\) 4.14418 + 3.13461i 0.281976 + 0.213283i
\(217\) −23.3503 −1.58512
\(218\) −15.5423 −1.05266
\(219\) 3.84395 + 12.0941i 0.259750 + 0.817243i
\(220\) 2.27752i 0.153551i
\(221\) 0 0
\(222\) −4.76050 2.46422i −0.319504 0.165387i
\(223\) 13.4803 + 13.4803i 0.902710 + 0.902710i 0.995670 0.0929595i \(-0.0296327\pi\)
−0.0929595 + 0.995670i \(0.529633\pi\)
\(224\) 2.54025i 0.169727i
\(225\) −25.1504 + 17.7840i −1.67669 + 1.18560i
\(226\) −7.70543 7.70543i −0.512558 0.512558i
\(227\) 3.79025 3.79025i 0.251568 0.251568i −0.570045 0.821613i \(-0.693074\pi\)
0.821613 + 0.570045i \(0.193074\pi\)
\(228\) 0.720857 + 2.26801i 0.0477399 + 0.150202i
\(229\) 2.78436 2.78436i 0.183996 0.183996i −0.609099 0.793094i \(-0.708469\pi\)
0.793094 + 0.609099i \(0.208469\pi\)
\(230\) 6.84932i 0.451631i
\(231\) −1.17893 + 2.27752i −0.0775681 + 0.149850i
\(232\) −4.18840 + 4.18840i −0.274982 + 0.274982i
\(233\) 3.83663 0.251346 0.125673 0.992072i \(-0.459891\pi\)
0.125673 + 0.992072i \(0.459891\pi\)
\(234\) 0 0
\(235\) 30.4538 1.98659
\(236\) 5.99556 5.99556i 0.390278 0.390278i
\(237\) −10.4376 + 20.1639i −0.677995 + 1.30979i
\(238\) 2.77903i 0.180138i
\(239\) 0.751524 0.751524i 0.0486121 0.0486121i −0.682383 0.730995i \(-0.739056\pi\)
0.730995 + 0.682383i \(0.239056\pi\)
\(240\) 2.05000 + 6.44983i 0.132327 + 0.416335i
\(241\) −19.7732 + 19.7732i −1.27371 + 1.27371i −0.329577 + 0.944129i \(0.606906\pi\)
−0.944129 + 0.329577i \(0.893094\pi\)
\(242\) −7.53794 7.53794i −0.484557 0.484557i
\(243\) 10.6633 + 11.3708i 0.684050 + 0.729435i
\(244\) 9.34533i 0.598273i
\(245\) 1.51174 + 1.51174i 0.0965815 + 0.0965815i
\(246\) 8.14986 + 4.21868i 0.519616 + 0.268973i
\(247\) 0 0
\(248\) 9.19215i 0.583702i
\(249\) −3.82404 12.0314i −0.242339 0.762461i
\(250\) −20.5825 −1.30175
\(251\) 15.1264 0.954770 0.477385 0.878694i \(-0.341585\pi\)
0.477385 + 0.878694i \(0.341585\pi\)
\(252\) 1.28868 7.51099i 0.0811793 0.473148i
\(253\) −0.722478 0.722478i −0.0454218 0.0454218i
\(254\) 6.58546 + 6.58546i 0.413209 + 0.413209i
\(255\) −2.24270 7.05612i −0.140443 0.441871i
\(256\) 1.00000 0.0625000
\(257\) 0.357201 0.0222816 0.0111408 0.999938i \(-0.496454\pi\)
0.0111408 + 0.999938i \(0.496454\pi\)
\(258\) −6.21940 + 1.97676i −0.387203 + 0.123067i
\(259\) 7.86174i 0.488505i
\(260\) 0 0
\(261\) −14.5091 + 10.2595i −0.898088 + 0.635044i
\(262\) −0.649002 0.649002i −0.0400955 0.0400955i
\(263\) 2.14777i 0.132437i 0.997805 + 0.0662186i \(0.0210935\pi\)
−0.997805 + 0.0662186i \(0.978907\pi\)
\(264\) −0.896575 0.464102i −0.0551804 0.0285635i
\(265\) −8.41133 8.41133i −0.516704 0.516704i
\(266\) 2.46798 2.46798i 0.151322 0.151322i
\(267\) 15.9952 5.08387i 0.978890 0.311128i
\(268\) 4.66788 4.66788i 0.285136 0.285136i
\(269\) 24.5235i 1.49522i −0.664135 0.747612i \(-0.731200\pi\)
0.664135 0.747612i \(-0.268800\pi\)
\(270\) 2.78938 + 20.1108i 0.169756 + 1.22391i
\(271\) 15.5041 15.5041i 0.941805 0.941805i −0.0565921 0.998397i \(-0.518023\pi\)
0.998397 + 0.0565921i \(0.0180234\pi\)
\(272\) −1.09400 −0.0663335
\(273\) 0 0
\(274\) 8.61860 0.520669
\(275\) 4.23186 4.23186i 0.255191 0.255191i
\(276\) 2.69632 + 1.39572i 0.162300 + 0.0840125i
\(277\) 18.6503i 1.12059i 0.828293 + 0.560295i \(0.189312\pi\)
−0.828293 + 0.560295i \(0.810688\pi\)
\(278\) 2.34282 2.34282i 0.140513 0.140513i
\(279\) 4.66323 27.1793i 0.279180 1.62718i
\(280\) 7.01853 7.01853i 0.419438 0.419438i
\(281\) −11.2782 11.2782i −0.672801 0.672801i 0.285560 0.958361i \(-0.407820\pi\)
−0.958361 + 0.285560i \(0.907820\pi\)
\(282\) 6.20573 11.9885i 0.369546 0.713907i
\(283\) 4.71513i 0.280285i 0.990131 + 0.140143i \(0.0447561\pi\)
−0.990131 + 0.140143i \(0.955244\pi\)
\(284\) 0.601383 + 0.601383i 0.0356855 + 0.0356855i
\(285\) −4.27467 + 8.25803i −0.253210 + 0.489164i
\(286\) 0 0
\(287\) 13.4591i 0.794466i
\(288\) 2.95680 + 0.507306i 0.174231 + 0.0298933i
\(289\) −15.8032 −0.929598
\(290\) −23.1446 −1.35910
\(291\) 1.01244 0.321793i 0.0593505 0.0188638i
\(292\) 5.18078 + 5.18078i 0.303182 + 0.303182i
\(293\) −15.1005 15.1005i −0.882179 0.882179i 0.111576 0.993756i \(-0.464410\pi\)
−0.993756 + 0.111576i \(0.964410\pi\)
\(294\) 0.903170 0.287061i 0.0526739 0.0167417i
\(295\) 33.1307 1.92894
\(296\) −3.09487 −0.179886
\(297\) −2.41555 1.82709i −0.140164 0.106019i
\(298\) 7.85507i 0.455032i
\(299\) 0 0
\(300\) −8.17533 + 15.7935i −0.472003 + 0.911839i
\(301\) 6.76778 + 6.76778i 0.390088 + 0.390088i
\(302\) 14.5098i 0.834946i
\(303\) 4.64660 8.97654i 0.266940 0.515689i
\(304\) 0.971553 + 0.971553i 0.0557224 + 0.0557224i
\(305\) 25.8205 25.8205i 1.47848 1.47848i
\(306\) −3.23474 0.554993i −0.184917 0.0317268i
\(307\) −16.2259 + 16.2259i −0.926063 + 0.926063i −0.997449 0.0713857i \(-0.977258\pi\)
0.0713857 + 0.997449i \(0.477258\pi\)
\(308\) 1.48065i 0.0843680i
\(309\) −3.18887 1.65068i −0.181409 0.0939040i
\(310\) 25.3973 25.3973i 1.44247 1.44247i
\(311\) −32.8464 −1.86255 −0.931275 0.364317i \(-0.881303\pi\)
−0.931275 + 0.364317i \(0.881303\pi\)
\(312\) 0 0
\(313\) 11.0629 0.625311 0.312655 0.949867i \(-0.398782\pi\)
0.312655 + 0.949867i \(0.398782\pi\)
\(314\) −4.74855 + 4.74855i −0.267976 + 0.267976i
\(315\) 24.3129 17.1918i 1.36988 0.968649i
\(316\) 13.1089i 0.737431i
\(317\) 17.5500 17.5500i 0.985704 0.985704i −0.0141948 0.999899i \(-0.504519\pi\)
0.999899 + 0.0141948i \(0.00451851\pi\)
\(318\) −5.02524 + 1.59721i −0.281802 + 0.0895670i
\(319\) 2.44133 2.44133i 0.136688 0.136688i
\(320\) 2.76293 + 2.76293i 0.154453 + 0.154453i
\(321\) −5.31992 2.75379i −0.296929 0.153702i
\(322\) 4.45285i 0.248148i
\(323\) −1.06288 1.06288i −0.0591402 0.0591402i
\(324\) 8.48528 + 3.00000i 0.471405 + 0.166667i
\(325\) 0 0
\(326\) 1.57465i 0.0872118i
\(327\) −25.6554 + 8.15424i −1.41875 + 0.450931i
\(328\) 5.29835 0.292552
\(329\) −19.7985 −1.09153
\(330\) −1.19490 3.75946i −0.0657769 0.206952i
\(331\) −3.26963 3.26963i −0.179715 0.179715i 0.611517 0.791232i \(-0.290560\pi\)
−0.791232 + 0.611517i \(0.790560\pi\)
\(332\) −5.15394 5.15394i −0.282859 0.282859i
\(333\) −9.15090 1.57005i −0.501466 0.0860380i
\(334\) −24.4446 −1.33755
\(335\) 25.7941 1.40928
\(336\) −1.33273 4.19313i −0.0727066 0.228754i
\(337\) 7.78436i 0.424041i 0.977265 + 0.212021i \(0.0680044\pi\)
−0.977265 + 0.212021i \(0.931996\pi\)
\(338\) 0 0
\(339\) −16.7618 8.67656i −0.910378 0.471246i
\(340\) −3.02265 3.02265i −0.163926 0.163926i
\(341\) 5.35789i 0.290146i
\(342\) 2.37981 + 3.36556i 0.128685 + 0.181989i
\(343\) −13.5564 13.5564i −0.731976 0.731976i
\(344\) −2.66422 + 2.66422i −0.143645 + 0.143645i
\(345\) 3.59348 + 11.3060i 0.193467 + 0.608697i
\(346\) 14.6847 14.6847i 0.789456 0.789456i
\(347\) 10.8435i 0.582111i 0.956706 + 0.291056i \(0.0940065\pi\)
−0.956706 + 0.291056i \(0.905994\pi\)
\(348\) −4.71628 + 9.11115i −0.252819 + 0.488409i
\(349\) −10.8700 + 10.8700i −0.581856 + 0.581856i −0.935413 0.353557i \(-0.884972\pi\)
0.353557 + 0.935413i \(0.384972\pi\)
\(350\) 26.0822 1.39415
\(351\) 0 0
\(352\) −0.582877 −0.0310675
\(353\) −1.32046 + 1.32046i −0.0702808 + 0.0702808i −0.741373 0.671093i \(-0.765825\pi\)
0.671093 + 0.741373i \(0.265825\pi\)
\(354\) 6.75120 13.0423i 0.358822 0.693191i
\(355\) 3.32316i 0.176375i
\(356\) 6.85191 6.85191i 0.363150 0.363150i
\(357\) 1.45801 + 4.58729i 0.0771661 + 0.242785i
\(358\) 9.89976 9.89976i 0.523218 0.523218i
\(359\) 12.1336 + 12.1336i 0.640387 + 0.640387i 0.950650 0.310264i \(-0.100417\pi\)
−0.310264 + 0.950650i \(0.600417\pi\)
\(360\) 6.76778 + 9.57108i 0.356693 + 0.504440i
\(361\) 17.1122i 0.900641i
\(362\) 18.0599 + 18.0599i 0.949207 + 0.949207i
\(363\) −16.3975 8.48796i −0.860645 0.445503i
\(364\) 0 0
\(365\) 28.6283i 1.49847i
\(366\) −4.90300 15.4261i −0.256284 0.806337i
\(367\) −9.06282 −0.473075 −0.236538 0.971622i \(-0.576013\pi\)
−0.236538 + 0.971622i \(0.576013\pi\)
\(368\) 1.75292 0.0913773
\(369\) 15.6661 + 2.68788i 0.815546 + 0.139926i
\(370\) −8.55093 8.55093i −0.444541 0.444541i
\(371\) 5.46833 + 5.46833i 0.283902 + 0.283902i
\(372\) −4.82264 15.1733i −0.250042 0.786699i
\(373\) −7.57587 −0.392264 −0.196132 0.980578i \(-0.562838\pi\)
−0.196132 + 0.980578i \(0.562838\pi\)
\(374\) 0.637668 0.0329730
\(375\) −33.9752 + 10.7986i −1.75447 + 0.557636i
\(376\) 7.79393i 0.401941i
\(377\) 0 0
\(378\) −1.81342 13.0743i −0.0932723 0.672472i
\(379\) 8.53980 + 8.53980i 0.438660 + 0.438660i 0.891561 0.452901i \(-0.149611\pi\)
−0.452901 + 0.891561i \(0.649611\pi\)
\(380\) 5.36867i 0.275407i
\(381\) 14.3255 + 7.41544i 0.733920 + 0.379905i
\(382\) 16.7205 + 16.7205i 0.855493 + 0.855493i
\(383\) −26.0444 + 26.0444i −1.33081 + 1.33081i −0.426157 + 0.904649i \(0.640133\pi\)
−0.904649 + 0.426157i \(0.859867\pi\)
\(384\) 1.65068 0.524648i 0.0842359 0.0267733i
\(385\) −4.09094 + 4.09094i −0.208494 + 0.208494i
\(386\) 10.5986i 0.539457i
\(387\) −9.22913 + 6.52598i −0.469143 + 0.331734i
\(388\) 0.433704 0.433704i 0.0220180 0.0220180i
\(389\) −14.1012 −0.714961 −0.357481 0.933921i \(-0.616364\pi\)
−0.357481 + 0.933921i \(0.616364\pi\)
\(390\) 0 0
\(391\) −1.91770 −0.0969820
\(392\) 0.386893 0.386893i 0.0195411 0.0195411i
\(393\) −1.41179 0.730798i −0.0712155 0.0368639i
\(394\) 3.46775i 0.174703i
\(395\) −36.2189 + 36.2189i −1.82237 + 1.82237i
\(396\) −1.72345 0.295697i −0.0866066 0.0148593i
\(397\) −5.55214 + 5.55214i −0.278654 + 0.278654i −0.832571 0.553918i \(-0.813132\pi\)
0.553918 + 0.832571i \(0.313132\pi\)
\(398\) 2.18357 + 2.18357i 0.109453 + 0.109453i
\(399\) 2.77903 5.36867i 0.139126 0.268770i
\(400\) 10.2676i 0.513380i
\(401\) 15.4546 + 15.4546i 0.771764 + 0.771764i 0.978415 0.206650i \(-0.0662563\pi\)
−0.206650 + 0.978415i \(0.566256\pi\)
\(402\) 5.25618 10.1542i 0.262154 0.506444i
\(403\) 0 0
\(404\) 5.83579i 0.290341i
\(405\) 15.1555 + 31.7331i 0.753081 + 1.57683i
\(406\) 15.0466 0.746752
\(407\) 1.80393 0.0894175
\(408\) −1.80584 + 0.573965i −0.0894026 + 0.0284155i
\(409\) −1.58498 1.58498i −0.0783720 0.0783720i 0.666834 0.745206i \(-0.267649\pi\)
−0.745206 + 0.666834i \(0.767649\pi\)
\(410\) 14.6390 + 14.6390i 0.722968 + 0.722968i
\(411\) 14.2266 4.52173i 0.701744 0.223041i
\(412\) −2.07313 −0.102136
\(413\) −21.5388 −1.05985
\(414\) 5.18303 + 0.889267i 0.254732 + 0.0437051i
\(415\) 28.4800i 1.39803i
\(416\) 0 0
\(417\) 2.63809 5.09640i 0.129188 0.249572i
\(418\) −0.566296 0.566296i −0.0276985 0.0276985i
\(419\) 33.3854i 1.63098i 0.578770 + 0.815491i \(0.303533\pi\)
−0.578770 + 0.815491i \(0.696467\pi\)
\(420\) 7.90310 15.2676i 0.385632 0.744983i
\(421\) 2.25285 + 2.25285i 0.109797 + 0.109797i 0.759871 0.650074i \(-0.225262\pi\)
−0.650074 + 0.759871i \(0.725262\pi\)
\(422\) −3.50584 + 3.50584i −0.170662 + 0.170662i
\(423\) 3.95391 23.0451i 0.192246 1.12049i
\(424\) −2.15268 + 2.15268i −0.104543 + 0.104543i
\(425\) 11.2328i 0.544869i
\(426\) 1.30821 + 0.677177i 0.0633828 + 0.0328093i
\(427\) −16.7863 + 16.7863i −0.812346 + 0.812346i
\(428\) −3.45856 −0.167176
\(429\) 0 0
\(430\) −14.7221 −0.709964
\(431\) −15.3329 + 15.3329i −0.738562 + 0.738562i −0.972300 0.233738i \(-0.924904\pi\)
0.233738 + 0.972300i \(0.424904\pi\)
\(432\) 5.14688 0.713876i 0.247629 0.0343464i
\(433\) 30.0520i 1.44421i −0.691786 0.722103i \(-0.743176\pi\)
0.691786 0.722103i \(-0.256824\pi\)
\(434\) −16.5112 + 16.5112i −0.792561 + 0.792561i
\(435\) −38.2043 + 12.1427i −1.83176 + 0.582200i
\(436\) −10.9901 + 10.9901i −0.526330 + 0.526330i
\(437\) 1.70306 + 1.70306i 0.0814682 + 0.0814682i
\(438\) 11.2699 + 5.83373i 0.538497 + 0.278746i
\(439\) 20.8459i 0.994920i −0.867487 0.497460i \(-0.834266\pi\)
0.867487 0.497460i \(-0.165734\pi\)
\(440\) −1.61045 1.61045i −0.0767753 0.0767753i
\(441\) 1.34024 0.947691i 0.0638209 0.0451282i
\(442\) 0 0
\(443\) 13.0363i 0.619374i −0.950839 0.309687i \(-0.899776\pi\)
0.950839 0.309687i \(-0.100224\pi\)
\(444\) −5.10864 + 1.62372i −0.242445 + 0.0770582i
\(445\) 37.8627 1.79487
\(446\) 19.0641 0.902710
\(447\) 4.12114 + 12.9662i 0.194923 + 0.613281i
\(448\) −1.79623 1.79623i −0.0848637 0.0848637i
\(449\) 13.4636 + 13.4636i 0.635385 + 0.635385i 0.949414 0.314028i \(-0.101679\pi\)
−0.314028 + 0.949414i \(0.601679\pi\)
\(450\) −5.20882 + 30.3592i −0.245546 + 1.43115i
\(451\) −3.08829 −0.145422
\(452\) −10.8971 −0.512558
\(453\) −7.61254 23.9511i −0.357668 1.12532i
\(454\) 5.36023i 0.251568i
\(455\) 0 0
\(456\) 2.11345 + 1.09400i 0.0989712 + 0.0512313i
\(457\) −15.0333 15.0333i −0.703228 0.703228i 0.261874 0.965102i \(-0.415659\pi\)
−0.965102 + 0.261874i \(0.915659\pi\)
\(458\) 3.93768i 0.183996i
\(459\) −5.63069 + 0.780980i −0.262818 + 0.0364530i
\(460\) 4.84320 + 4.84320i 0.225816 + 0.225816i
\(461\) 1.07969 1.07969i 0.0502864 0.0502864i −0.681516 0.731803i \(-0.738679\pi\)
0.731803 + 0.681516i \(0.238679\pi\)
\(462\) 0.776820 + 2.44408i 0.0361410 + 0.113709i
\(463\) −21.3272 + 21.3272i −0.991159 + 0.991159i −0.999961 0.00880240i \(-0.997198\pi\)
0.00880240 + 0.999961i \(0.497198\pi\)
\(464\) 5.92330i 0.274982i
\(465\) 28.5982 55.2474i 1.32621 2.56204i
\(466\) 2.71290 2.71290i 0.125673 0.125673i
\(467\) 11.2935 0.522601 0.261300 0.965258i \(-0.415849\pi\)
0.261300 + 0.965258i \(0.415849\pi\)
\(468\) 0 0
\(469\) −16.7691 −0.774326
\(470\) 21.5341 21.5341i 0.993295 0.993295i
\(471\) −5.34703 + 10.3297i −0.246378 + 0.475966i
\(472\) 8.47900i 0.390278i
\(473\) 1.55291 1.55291i 0.0714031 0.0714031i
\(474\) 6.87753 + 21.6385i 0.315896 + 0.993891i
\(475\) −9.97552 + 9.97552i −0.457708 + 0.457708i
\(476\) 1.96507 + 1.96507i 0.0900689 + 0.0900689i
\(477\) −7.45709 + 5.27296i −0.341437 + 0.241432i
\(478\) 1.06282i 0.0486121i
\(479\) −20.5591 20.5591i −0.939371 0.939371i 0.0588932 0.998264i \(-0.481243\pi\)
−0.998264 + 0.0588932i \(0.981243\pi\)
\(480\) 6.01029 + 3.11115i 0.274331 + 0.142004i
\(481\) 0 0
\(482\) 27.9636i 1.27371i
\(483\) −2.33618 7.35023i −0.106300 0.334447i
\(484\) −10.6603 −0.484557
\(485\) 2.39659 0.108824
\(486\) 15.5804 + 0.500258i 0.706743 + 0.0226921i
\(487\) −1.79164 1.79164i −0.0811869 0.0811869i 0.665347 0.746534i \(-0.268284\pi\)
−0.746534 + 0.665347i \(0.768284\pi\)
\(488\) −6.60814 6.60814i −0.299137 0.299137i
\(489\) 0.826137 + 2.59924i 0.0373592 + 0.117542i
\(490\) 2.13792 0.0965815
\(491\) −36.9151 −1.66596 −0.832978 0.553307i \(-0.813366\pi\)
−0.832978 + 0.553307i \(0.813366\pi\)
\(492\) 8.74588 2.77977i 0.394295 0.125321i
\(493\) 6.48009i 0.291849i
\(494\) 0 0
\(495\) −3.94478 5.57877i −0.177305 0.250747i
\(496\) −6.49983 6.49983i −0.291851 0.291851i
\(497\) 2.16044i 0.0969090i
\(498\) −11.2115 5.80351i −0.502400 0.260061i
\(499\) 22.3461 + 22.3461i 1.00035 + 1.00035i 1.00000 0.000347536i \(0.000110624\pi\)
0.000347536 1.00000i \(0.499889\pi\)
\(500\) −14.5541 + 14.5541i −0.650877 + 0.650877i
\(501\) −40.3502 + 12.8248i −1.80272 + 0.572970i
\(502\) 10.6960 10.6960i 0.477385 0.477385i
\(503\) 23.3454i 1.04092i −0.853886 0.520460i \(-0.825760\pi\)
0.853886 0.520460i \(-0.174240\pi\)
\(504\) −4.39984 6.22231i −0.195984 0.277164i
\(505\) 16.1239 16.1239i 0.717504 0.717504i
\(506\) −1.02174 −0.0454218
\(507\) 0 0
\(508\) 9.31325 0.413209
\(509\) 13.1852 13.1852i 0.584424 0.584424i −0.351692 0.936116i \(-0.614394\pi\)
0.936116 + 0.351692i \(0.114394\pi\)
\(510\) −6.57525 3.40360i −0.291157 0.150714i
\(511\) 18.6117i 0.823333i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 5.69404 + 4.30690i 0.251398 + 0.190154i
\(514\) 0.252579 0.252579i 0.0111408 0.0111408i
\(515\) −5.72793 5.72793i −0.252403 0.252403i
\(516\) −3.00000 + 5.79555i −0.132068 + 0.255135i
\(517\) 4.54291i 0.199797i
\(518\) 5.55909 + 5.55909i 0.244252 + 0.244252i
\(519\) 16.5355 31.9441i 0.725827 1.40219i
\(520\) 0 0
\(521\) 20.1922i 0.884637i 0.896858 + 0.442318i \(0.145844\pi\)
−0.896858 + 0.442318i \(0.854156\pi\)
\(522\) −3.00492 + 17.5140i −0.131522 + 0.766566i
\(523\) 28.2236 1.23413 0.617066 0.786912i \(-0.288321\pi\)
0.617066 + 0.786912i \(0.288321\pi\)
\(524\) −0.917828 −0.0400955
\(525\) 43.0534 13.6840i 1.87901 0.597218i
\(526\) 1.51870 + 1.51870i 0.0662186 + 0.0662186i
\(527\) 7.11081 + 7.11081i 0.309752 + 0.309752i
\(528\) −0.962144 + 0.305805i −0.0418719 + 0.0133085i
\(529\) −19.9273 −0.866403
\(530\) −11.8954 −0.516704
\(531\) 4.30145 25.0707i 0.186667 1.08797i
\(532\) 3.49026i 0.151322i
\(533\) 0 0
\(534\) 7.71547 14.9051i 0.333881 0.645009i
\(535\) −9.55577 9.55577i −0.413132 0.413132i
\(536\) 6.60137i 0.285136i
\(537\) 11.1474 21.5352i 0.481048 0.929313i
\(538\) −17.3407 17.3407i −0.747612 0.747612i
\(539\) −0.225511 + 0.225511i −0.00971346 + 0.00971346i
\(540\) 16.1929 + 12.2481i 0.696831 + 0.527074i
\(541\) −13.2334 + 13.2334i −0.568947 + 0.568947i −0.931833 0.362887i \(-0.881791\pi\)
0.362887 + 0.931833i \(0.381791\pi\)
\(542\) 21.9261i 0.941805i
\(543\) 39.2862 + 20.3360i 1.68593 + 0.872702i
\(544\) −0.773575 + 0.773575i −0.0331668 + 0.0331668i
\(545\) −60.7298 −2.60138
\(546\) 0 0
\(547\) −14.7212 −0.629433 −0.314717 0.949186i \(-0.601909\pi\)
−0.314717 + 0.949186i \(0.601909\pi\)
\(548\) 6.09427 6.09427i 0.260334 0.260334i
\(549\) −16.1866 22.8913i −0.690826 0.976976i
\(550\) 5.98476i 0.255191i
\(551\) −5.75480 + 5.75480i −0.245163 + 0.245163i
\(552\) 2.89351 0.919666i 0.123156 0.0391436i
\(553\) 23.5465 23.5465i 1.00130 1.00130i
\(554\) 13.1878 + 13.1878i 0.560295 + 0.560295i
\(555\) −18.6011 9.62862i −0.789571 0.408712i
\(556\) 3.31325i 0.140513i
\(557\) −8.71827 8.71827i −0.369405 0.369405i 0.497855 0.867260i \(-0.334121\pi\)
−0.867260 + 0.497855i \(0.834121\pi\)
\(558\) −15.9213 22.5161i −0.674001 0.953181i
\(559\) 0 0
\(560\) 9.92570i 0.419438i
\(561\) 1.05259 0.334551i 0.0444402 0.0141248i
\(562\) −15.9498 −0.672801
\(563\) −19.7326 −0.831628 −0.415814 0.909450i \(-0.636503\pi\)
−0.415814 + 0.909450i \(0.636503\pi\)
\(564\) −4.08907 12.8653i −0.172181 0.541726i
\(565\) −30.1080 30.1080i −1.26665 1.26665i
\(566\) 3.33410 + 3.33410i 0.140143 + 0.140143i
\(567\) −9.85280 20.6302i −0.413779 0.866385i
\(568\) 0.850484 0.0356855
\(569\) 34.9006 1.46311 0.731555 0.681782i \(-0.238795\pi\)
0.731555 + 0.681782i \(0.238795\pi\)
\(570\) 2.81666 + 8.86196i 0.117977 + 0.371187i
\(571\) 2.37582i 0.0994248i 0.998764 + 0.0497124i \(0.0158305\pi\)
−0.998764 + 0.0497124i \(0.984170\pi\)
\(572\) 0 0
\(573\) 36.3725 + 18.8278i 1.51948 + 0.786542i
\(574\) −9.51702 9.51702i −0.397233 0.397233i
\(575\) 17.9983i 0.750581i
\(576\) 2.44949 1.73205i 0.102062 0.0721688i
\(577\) 3.78848 + 3.78848i 0.157716 + 0.157716i 0.781554 0.623838i \(-0.214427\pi\)
−0.623838 + 0.781554i \(0.714427\pi\)
\(578\) −11.1745 + 11.1745i −0.464799 + 0.464799i
\(579\) 5.56055 + 17.4950i 0.231089 + 0.727066i
\(580\) −16.3657 + 16.3657i −0.679548 + 0.679548i
\(581\) 18.5153i 0.768143i
\(582\) 0.488365 0.943448i 0.0202434 0.0391072i
\(583\) 1.25475 1.25475i 0.0519663 0.0519663i
\(584\) 7.32673 0.303182
\(585\) 0 0
\(586\) −21.3553 −0.882179
\(587\) −7.18566 + 7.18566i −0.296584 + 0.296584i −0.839674 0.543090i \(-0.817254\pi\)
0.543090 + 0.839674i \(0.317254\pi\)
\(588\) 0.435655 0.841620i 0.0179661 0.0347078i
\(589\) 12.6299i 0.520404i
\(590\) 23.4269 23.4269i 0.964471 0.964471i
\(591\) −1.81935 5.72415i −0.0748380 0.235460i
\(592\) −2.18840 + 2.18840i −0.0899429 + 0.0899429i
\(593\) −9.76893 9.76893i −0.401162 0.401162i 0.477481 0.878642i \(-0.341550\pi\)
−0.878642 + 0.477481i \(0.841550\pi\)
\(594\) −3.00000 + 0.416102i −0.123091 + 0.0170729i
\(595\) 10.8587i 0.445164i
\(596\) 5.55437 + 5.55437i 0.227516 + 0.227516i
\(597\) 4.74998 + 2.45877i 0.194404 + 0.100631i
\(598\) 0 0
\(599\) 35.2538i 1.44043i 0.693750 + 0.720216i \(0.255957\pi\)
−0.693750 + 0.720216i \(0.744043\pi\)
\(600\) 5.38688 + 16.9485i 0.219918 + 0.691921i
\(601\) 9.14384 0.372985 0.186493 0.982456i \(-0.440288\pi\)
0.186493 + 0.982456i \(0.440288\pi\)
\(602\) 9.57108 0.390088
\(603\) 3.34892 19.5189i 0.136378 0.794872i
\(604\) −10.2600 10.2600i −0.417473 0.417473i
\(605\) −29.4536 29.4536i −1.19746 1.19746i
\(606\) −3.06173 9.63301i −0.124374 0.391314i
\(607\) −19.9279 −0.808847 −0.404423 0.914572i \(-0.632528\pi\)
−0.404423 + 0.914572i \(0.632528\pi\)
\(608\) 1.37398 0.0557224
\(609\) 24.8372 7.89418i 1.00645 0.319888i
\(610\) 36.5157i 1.47848i
\(611\) 0 0
\(612\) −2.67974 + 1.89486i −0.108322 + 0.0765953i
\(613\) −10.6247 10.6247i −0.429127 0.429127i 0.459204 0.888331i \(-0.348135\pi\)
−0.888331 + 0.459204i \(0.848135\pi\)
\(614\) 22.9469i 0.926063i
\(615\) 31.8446 + 16.4840i 1.28410 + 0.664698i
\(616\) 1.04698 + 1.04698i 0.0421840 + 0.0421840i
\(617\) −7.20247 + 7.20247i −0.289961 + 0.289961i −0.837065 0.547104i \(-0.815730\pi\)
0.547104 + 0.837065i \(0.315730\pi\)
\(618\) −3.42208 + 1.08766i −0.137656 + 0.0437523i
\(619\) 18.1131 18.1131i 0.728027 0.728027i −0.242199 0.970226i \(-0.577869\pi\)
0.970226 + 0.242199i \(0.0778688\pi\)
\(620\) 35.9172i 1.44247i
\(621\) 9.02207 1.25137i 0.362043 0.0502157i
\(622\) −23.2259 + 23.2259i −0.931275 + 0.931275i
\(623\) −24.6151 −0.986185
\(624\) 0 0
\(625\) −29.0857 −1.16343
\(626\) 7.82263 7.82263i 0.312655 0.312655i
\(627\) −1.23188 0.637668i −0.0491965 0.0254660i
\(628\) 6.71547i 0.267976i
\(629\) 2.39412 2.39412i 0.0954596 0.0954596i
\(630\) 5.03537 29.3483i 0.200614 1.16926i
\(631\) −14.2008 + 14.2008i −0.565325 + 0.565325i −0.930815 0.365490i \(-0.880901\pi\)
0.365490 + 0.930815i \(0.380901\pi\)
\(632\) 9.26936 + 9.26936i 0.368716 + 0.368716i
\(633\) −3.94769 + 7.62635i −0.156907 + 0.303120i
\(634\) 24.8194i 0.985704i
\(635\) 25.7319 + 25.7319i 1.02114 + 1.02114i
\(636\) −2.42398 + 4.68278i −0.0961173 + 0.185684i
\(637\) 0 0
\(638\) 3.45256i 0.136688i
\(639\) 2.51471 + 0.431456i 0.0994803 + 0.0170681i
\(640\) 3.90738 0.154453
\(641\) −44.6833 −1.76489 −0.882443 0.470420i \(-0.844102\pi\)
−0.882443 + 0.470420i \(0.844102\pi\)
\(642\) −5.70897 + 1.81452i −0.225315 + 0.0716136i
\(643\) −6.35599 6.35599i −0.250656 0.250656i 0.570584 0.821239i \(-0.306717\pi\)
−0.821239 + 0.570584i \(0.806717\pi\)
\(644\) −3.14864 3.14864i −0.124074 0.124074i
\(645\) −24.3015 + 7.72393i −0.956872 + 0.304130i
\(646\) −1.50314 −0.0591402
\(647\) −37.9737 −1.49290 −0.746451 0.665441i \(-0.768244\pi\)
−0.746451 + 0.665441i \(0.768244\pi\)
\(648\) 8.12132 3.87868i 0.319036 0.152369i
\(649\) 4.94222i 0.193999i
\(650\) 0 0
\(651\) −18.5921 + 35.9172i −0.728682 + 1.40771i
\(652\) 1.11345 + 1.11345i 0.0436059 + 0.0436059i
\(653\) 18.4886i 0.723513i −0.932273 0.361757i \(-0.882177\pi\)
0.932273 0.361757i \(-0.117823\pi\)
\(654\) −12.3752 + 23.9070i −0.483908 + 0.934839i
\(655\) −2.53590 2.53590i −0.0990857 0.0990857i
\(656\) 3.74650 3.74650i 0.146276 0.146276i
\(657\) 21.6637 + 3.71690i 0.845180 + 0.145010i
\(658\) −13.9997 + 13.9997i −0.545763 + 0.545763i
\(659\) 0.743853i 0.0289764i 0.999895 + 0.0144882i \(0.00461190\pi\)
−0.999895 + 0.0144882i \(0.995388\pi\)
\(660\) −3.50326 1.81342i −0.136364 0.0705873i
\(661\) −19.8275 + 19.8275i −0.771200 + 0.771200i −0.978316 0.207116i \(-0.933592\pi\)
0.207116 + 0.978316i \(0.433592\pi\)
\(662\) −4.62395 −0.179715
\(663\) 0 0
\(664\) −7.28877 −0.282859
\(665\) 9.64335 9.64335i 0.373953 0.373953i
\(666\) −7.58086 + 5.36048i −0.293752 + 0.207714i
\(667\) 10.3831i 0.402034i
\(668\) −17.2850 + 17.2850i −0.668775 + 0.668775i
\(669\) 31.4687 10.0019i 1.21665 0.386697i
\(670\) 18.2392 18.2392i 0.704640 0.704640i
\(671\) 3.85174 + 3.85174i 0.148695 + 0.148695i
\(672\) −3.90738 2.02261i −0.150730 0.0780238i
\(673\) 27.6374i 1.06534i 0.846322 + 0.532672i \(0.178812\pi\)
−0.846322 + 0.532672i \(0.821188\pi\)
\(674\) 5.50437 + 5.50437i 0.212021 + 0.212021i
\(675\) 7.32980 + 52.8461i 0.282124 + 2.03405i
\(676\) 0 0
\(677\) 34.0927i 1.31029i −0.755504 0.655145i \(-0.772608\pi\)
0.755504 0.655145i \(-0.227392\pi\)
\(678\) −17.9877 + 5.71715i −0.690812 + 0.219566i
\(679\) −1.55806 −0.0597928
\(680\) −4.27467 −0.163926
\(681\) −2.81223 8.84802i −0.107765 0.339057i
\(682\) 3.78860 + 3.78860i 0.145073 + 0.145073i
\(683\) −16.4785 16.4785i −0.630531 0.630531i 0.317670 0.948201i \(-0.397100\pi\)
−0.948201 + 0.317670i \(0.897100\pi\)
\(684\) 4.06259 + 0.697030i 0.155337 + 0.0266516i
\(685\) 33.6762 1.28670
\(686\) −19.1716 −0.731976
\(687\) −2.06589 6.49985i −0.0788188 0.247985i
\(688\) 3.76778i 0.143645i
\(689\) 0 0
\(690\) 10.5356 + 5.45361i 0.401082 + 0.207615i
\(691\) 7.22628 + 7.22628i 0.274901 + 0.274901i 0.831069 0.556169i \(-0.187729\pi\)
−0.556169 + 0.831069i \(0.687729\pi\)
\(692\) 20.7673i 0.789456i
\(693\) 2.56456 + 3.62684i 0.0974197 + 0.137772i
\(694\) 7.66753 + 7.66753i 0.291056 + 0.291056i
\(695\) 9.15429 9.15429i 0.347242 0.347242i
\(696\) 3.10764 + 9.77747i 0.117795 + 0.370614i
\(697\) −4.09867 + 4.09867i −0.155248 + 0.155248i
\(698\) 15.3725i 0.581856i
\(699\) 3.05482 5.90146i 0.115544 0.223214i
\(700\) 18.4429 18.4429i 0.697077 0.697077i
\(701\) 31.9420 1.20643 0.603217 0.797577i \(-0.293885\pi\)
0.603217 + 0.797577i \(0.293885\pi\)
\(702\) 0 0
\(703\) −4.25230 −0.160379
\(704\) −0.412157 + 0.412157i −0.0155337 + 0.0155337i
\(705\) 24.2481 46.8438i 0.913237 1.76424i
\(706\) 1.86741i 0.0702808i
\(707\) −10.4824 + 10.4824i −0.394231 + 0.394231i
\(708\) −4.44849 13.9961i −0.167184 0.526007i
\(709\) 5.25088 5.25088i 0.197201 0.197201i −0.601598 0.798799i \(-0.705469\pi\)
0.798799 + 0.601598i \(0.205469\pi\)
\(710\) 2.34983 + 2.34983i 0.0881876 + 0.0881876i
\(711\) 22.7052 + 32.1100i 0.851512 + 1.20422i
\(712\) 9.69006i 0.363150i
\(713\) −11.3937 11.3937i −0.426697 0.426697i
\(714\) 4.27467 + 2.21273i 0.159976 + 0.0828095i
\(715\) 0 0
\(716\) 14.0004i 0.523218i
\(717\) −0.557604 1.75437i −0.0208241 0.0655181i
\(718\) 17.1595 0.640387
\(719\) −28.9186 −1.07848 −0.539240 0.842152i \(-0.681289\pi\)
−0.539240 + 0.842152i \(0.681289\pi\)
\(720\) 11.5533 + 1.98224i 0.430567 + 0.0738736i
\(721\) 3.72381 + 3.72381i 0.138682 + 0.138682i
\(722\) −12.1001 12.1001i −0.450320 0.450320i
\(723\) 14.6710 + 46.1589i 0.545621 + 1.71667i
\(724\) 25.5405 0.949207
\(725\) −60.8181 −2.25873
\(726\) −17.5967 + 5.59288i −0.653074 + 0.207571i
\(727\) 13.5518i 0.502608i 0.967908 + 0.251304i \(0.0808594\pi\)
−0.967908 + 0.251304i \(0.919141\pi\)
\(728\) 0 0
\(729\) 25.9808 7.34847i 0.962250 0.272166i
\(730\) 20.2433 + 20.2433i 0.749237 + 0.749237i
\(731\) 4.12195i 0.152456i
\(732\) −14.3749 7.44098i −0.531311 0.275027i
\(733\) −13.9665 13.9665i −0.515864 0.515864i 0.400453 0.916317i \(-0.368853\pi\)
−0.916317 + 0.400453i \(0.868853\pi\)
\(734\) −6.40838 + 6.40838i −0.236538 + 0.236538i
\(735\) 3.52903 1.12166i 0.130170 0.0413729i
\(736\) 1.23950 1.23950i 0.0456887 0.0456887i
\(737\) 3.84779i 0.141735i
\(738\) 12.9782 9.17701i 0.477736 0.337810i
\(739\) 1.39265 1.39265i 0.0512293 0.0512293i −0.681028 0.732257i \(-0.738467\pi\)
0.732257 + 0.681028i \(0.238467\pi\)
\(740\) −12.0928 −0.444541
\(741\) 0 0
\(742\) 7.73339 0.283902
\(743\) −4.23148 + 4.23148i −0.155238 + 0.155238i −0.780453 0.625215i \(-0.785011\pi\)
0.625215 + 0.780453i \(0.285011\pi\)
\(744\) −14.1393 7.31902i −0.518370 0.268328i
\(745\) 30.6927i 1.12449i
\(746\) −5.35695 + 5.35695i −0.196132 + 0.196132i
\(747\) −21.5514 3.69764i −0.788525 0.135290i
\(748\) 0.450899 0.450899i 0.0164865 0.0164865i
\(749\) 6.21235 + 6.21235i 0.226994 + 0.226994i
\(750\) −16.3883 + 31.6598i −0.598417 + 1.15605i
\(751\) 17.5041i 0.638733i −0.947631 0.319366i \(-0.896530\pi\)
0.947631 0.319366i \(-0.103470\pi\)
\(752\) −5.51114 5.51114i −0.200971 0.200971i
\(753\) 12.0440 23.2673i 0.438909 0.847906i
\(754\) 0 0
\(755\) 56.6953i 2.06335i
\(756\) −10.5272 7.96267i −0.382872 0.289600i
\(757\) 8.00336 0.290887 0.145443 0.989367i \(-0.453539\pi\)
0.145443 + 0.989367i \(0.453539\pi\)
\(758\) 12.0771 0.438660
\(759\) −1.68656 + 0.536052i −0.0612183 + 0.0194575i
\(760\) 3.79623 + 3.79623i 0.137704 + 0.137704i
\(761\) 13.8584 + 13.8584i 0.502368 + 0.502368i 0.912173 0.409805i \(-0.134403\pi\)
−0.409805 + 0.912173i \(0.634403\pi\)
\(762\) 15.3732 4.88617i 0.556912 0.177007i
\(763\) 39.4813 1.42932
\(764\) 23.6463 0.855493
\(765\) −12.6393 2.16857i −0.456976 0.0784047i
\(766\) 36.8323i 1.33081i
\(767\) 0 0
\(768\) 0.796225 1.53819i 0.0287313 0.0555046i
\(769\) 30.3616 + 30.3616i 1.09487 + 1.09487i 0.995001 + 0.0998650i \(0.0318411\pi\)
0.0998650 + 0.995001i \(0.468159\pi\)
\(770\) 5.78547i 0.208494i
\(771\) 0.284412 0.549443i 0.0102429 0.0197877i
\(772\) 7.49437 + 7.49437i 0.269728 + 0.269728i
\(773\) 6.55172 6.55172i 0.235649 0.235649i −0.579397 0.815046i \(-0.696712\pi\)
0.815046 + 0.579397i \(0.196712\pi\)
\(774\) −1.91142 + 11.1406i −0.0687044 + 0.400439i
\(775\) 66.7377 66.7377i 2.39729 2.39729i
\(776\) 0.613350i 0.0220180i
\(777\) 12.0928 + 6.25971i 0.433828 + 0.224566i
\(778\) −9.97109 + 9.97109i −0.357481 + 0.357481i
\(779\) 7.27984 0.260827
\(780\) 0 0
\(781\) −0.495728 −0.0177385
\(782\) −1.35602 + 1.35602i −0.0484910 + 0.0484910i
\(783\) 4.22850 + 30.4865i 0.151114 + 1.08950i
\(784\) 0.547150i 0.0195411i
\(785\) −18.5544 + 18.5544i −0.662235 + 0.662235i
\(786\) −1.51504 + 0.481536i −0.0540397 + 0.0171758i
\(787\) −30.1223 + 30.1223i −1.07375 + 1.07375i −0.0766903 + 0.997055i \(0.524435\pi\)
−0.997055 + 0.0766903i \(0.975565\pi\)
\(788\) −2.45207 2.45207i −0.0873514 0.0873514i
\(789\) 3.30368 + 1.71011i 0.117614 + 0.0608815i
\(790\) 51.2213i 1.82237i
\(791\) 19.5737 + 19.5737i 0.695960 + 0.695960i
\(792\) −1.42775 + 1.00957i −0.0507330 + 0.0358736i
\(793\) 0 0
\(794\) 7.85191i 0.278654i
\(795\) −19.6355 + 6.24090i −0.696400 + 0.221342i
\(796\) 3.08804 0.109453
\(797\) −21.0322 −0.744998 −0.372499 0.928033i \(-0.621499\pi\)
−0.372499 + 0.928033i \(0.621499\pi\)
\(798\) −1.83115 5.76130i −0.0648222 0.203948i
\(799\) 6.02919 + 6.02919i 0.213297 + 0.213297i
\(800\) 7.26029 + 7.26029i 0.256690 + 0.256690i
\(801\) 4.91582 28.6515i 0.173692 1.01235i
\(802\) 21.8561 0.771764
\(803\) −4.27059 −0.150706
\(804\) −3.46340 10.8968i −0.122145 0.384299i
\(805\) 17.3990i 0.613233i
\(806\) 0 0
\(807\) −37.7218 19.5262i −1.32787 0.687356i
\(808\) −4.12652 4.12652i −0.145171 0.145171i
\(809\) 27.1206i 0.953508i 0.879037 + 0.476754i \(0.158187\pi\)
−0.879037 + 0.476754i \(0.841813\pi\)
\(810\) 33.1552 + 11.7221i 1.16496 + 0.411874i
\(811\) 39.1597 + 39.1597i 1.37508 + 1.37508i 0.852726 + 0.522359i \(0.174948\pi\)
0.522359 + 0.852726i \(0.325052\pi\)
\(812\) 10.6396 10.6396i 0.373376 0.373376i
\(813\) −11.5035 36.1929i −0.403444 1.26934i
\(814\) 1.27557 1.27557i 0.0447088 0.0447088i
\(815\) 6.15276i 0.215522i
\(816\) −0.871071 + 1.68278i −0.0304936 + 0.0589091i
\(817\) −3.66060 + 3.66060i −0.128068 + 0.128068i
\(818\) −2.24149 −0.0783720
\(819\) 0 0
\(820\) 20.7026 0.722968
\(821\) −6.07641 + 6.07641i −0.212068 + 0.212068i −0.805145 0.593077i \(-0.797913\pi\)
0.593077 + 0.805145i \(0.297913\pi\)
\(822\) 6.86235 13.2570i 0.239352 0.462392i
\(823\) 8.51217i 0.296715i 0.988934 + 0.148358i \(0.0473987\pi\)
−0.988934 + 0.148358i \(0.952601\pi\)
\(824\) −1.46593 + 1.46593i −0.0510680 + 0.0510680i
\(825\) −3.13989 9.87892i −0.109317 0.343940i
\(826\) −15.2302 + 15.2302i −0.529926 + 0.529926i
\(827\) −18.9976 18.9976i −0.660613 0.660613i 0.294912 0.955524i \(-0.404710\pi\)
−0.955524 + 0.294912i \(0.904710\pi\)
\(828\) 4.29376 3.03615i 0.149219 0.105513i
\(829\) 16.5329i 0.574211i 0.957899 + 0.287106i \(0.0926931\pi\)
−0.957899 + 0.287106i \(0.907307\pi\)
\(830\) −20.1384 20.1384i −0.699014 0.699014i
\(831\) 28.6877 + 14.8499i 0.995167 + 0.515136i
\(832\) 0 0
\(833\) 0.598582i 0.0207396i
\(834\) −1.73829 5.46912i −0.0601920 0.189380i
\(835\) −95.5144 −3.30541
\(836\) −0.800864 −0.0276985
\(837\) −38.0939 28.8138i −1.31672 0.995950i
\(838\) 23.6070 + 23.6070i 0.815491 + 0.815491i
\(839\) 29.3294 + 29.3294i 1.01256 + 1.01256i 0.999920 + 0.0126419i \(0.00402414\pi\)
0.0126419 + 0.999920i \(0.495976\pi\)
\(840\) −5.20750 16.3842i −0.179676 0.565307i
\(841\) −6.08547 −0.209844
\(842\) 3.18601 0.109797
\(843\) −26.3280 + 8.36801i −0.906784 + 0.288210i
\(844\) 4.95801i 0.170662i
\(845\) 0 0
\(846\) −13.4995 19.0912i −0.464122 0.656368i
\(847\) 19.1482 + 19.1482i 0.657941 + 0.657941i
\(848\) 3.04435i 0.104543i
\(849\) 7.25276 + 3.75430i 0.248914 + 0.128847i
\(850\) −7.94276 7.94276i −0.272435 0.272435i
\(851\) −3.83610 + 3.83610i −0.131500 + 0.131500i
\(852\) 1.40388 0.446205i 0.0480961 0.0152867i
\(853\) −13.7858 + 13.7858i −0.472018 + 0.472018i −0.902567 0.430549i \(-0.858320\pi\)
0.430549 + 0.902567i \(0.358320\pi\)
\(854\) 23.7394i 0.812346i
\(855\) 9.29881 + 13.1505i 0.318013 + 0.449738i
\(856\) −2.44557 + 2.44557i −0.0835879 + 0.0835879i
\(857\) 41.5499 1.41932 0.709659 0.704545i \(-0.248849\pi\)
0.709659 + 0.704545i \(0.248849\pi\)
\(858\) 0 0
\(859\) 44.2270 1.50900 0.754502 0.656298i \(-0.227878\pi\)
0.754502 + 0.656298i \(0.227878\pi\)
\(860\) −10.4101 + 10.4101i −0.354982 + 0.354982i
\(861\) −20.7026 10.7165i −0.705544 0.365217i
\(862\) 21.6840i 0.738562i
\(863\) −14.7459 + 14.7459i −0.501956 + 0.501956i −0.912045 0.410089i \(-0.865498\pi\)
0.410089 + 0.912045i \(0.365498\pi\)
\(864\) 3.13461 4.14418i 0.106642 0.140988i
\(865\) 57.3788 57.3788i 1.95094 1.95094i
\(866\) −21.2499 21.2499i −0.722103 0.722103i
\(867\) −12.5829 + 24.3083i −0.427337 + 0.825552i
\(868\) 23.3503i 0.792561i
\(869\) −5.40290 5.40290i −0.183281 0.183281i
\(870\) −18.4283 + 35.6007i −0.624778 + 1.20698i
\(871\) 0 0
\(872\) 15.5423i 0.526330i
\(873\) 0.311156 1.81355i 0.0105310 0.0613794i
\(874\) 2.40848 0.0814682
\(875\) 52.2847 1.76755
\(876\) 12.0941 3.84395i 0.408622 0.129875i
\(877\) 31.9277 + 31.9277i 1.07812 + 1.07812i 0.996678 + 0.0814427i \(0.0259527\pi\)
0.0814427 + 0.996678i \(0.474047\pi\)
\(878\) −14.7403 14.7403i −0.497460 0.497460i
\(879\) −35.2508 + 11.2040i −1.18898 + 0.377902i
\(880\) −2.27752 −0.0767753
\(881\) 31.1330 1.04890 0.524448 0.851442i \(-0.324272\pi\)
0.524448 + 0.851442i \(0.324272\pi\)
\(882\) 0.277572 1.61781i 0.00934635 0.0544745i
\(883\) 45.7983i 1.54123i −0.637298 0.770617i \(-0.719948\pi\)
0.637298 0.770617i \(-0.280052\pi\)
\(884\) 0 0
\(885\) 26.3795 50.9612i 0.886737 1.71304i
\(886\) −9.21806 9.21806i −0.309687 0.309687i
\(887\) 29.5730i 0.992965i −0.868047 0.496482i \(-0.834625\pi\)
0.868047 0.496482i \(-0.165375\pi\)
\(888\) −2.46422 + 4.76050i −0.0826936 + 0.159752i
\(889\) −16.7287 16.7287i −0.561062 0.561062i
\(890\) 26.7730 26.7730i 0.897433 0.897433i
\(891\) −4.73373 + 2.26079i −0.158586 + 0.0757395i
\(892\) 13.4803 13.4803i 0.451355 0.451355i
\(893\) 10.7087i 0.358354i
\(894\) 12.0826 + 6.25440i 0.404102 + 0.209179i
\(895\) 38.6821 38.6821i 1.29300 1.29300i
\(896\) −2.54025 −0.0848637
\(897\) 0 0
\(898\) 19.0404 0.635385
\(899\) 38.5004 38.5004i 1.28406 1.28406i
\(900\) 17.7840 + 25.1504i 0.592801 + 0.838347i
\(901\) 3.33051i 0.110956i
\(902\) −2.18375 + 2.18375i −0.0727109 + 0.0727109i
\(903\) 15.7988 5.02145i 0.525751 0.167103i
\(904\) −7.70543 + 7.70543i −0.256279 + 0.256279i
\(905\) 70.5668 + 70.5668i 2.34572 + 2.34572i
\(906\) −22.3188 11.5531i −0.741493 0.383825i
\(907\) 58.1044i 1.92933i −0.263487 0.964663i \(-0.584873\pi\)
0.263487 0.964663i \(-0.415127\pi\)
\(908\) −3.79025 3.79025i −0.125784 0.125784i
\(909\) −10.1079 14.2947i −0.335257 0.474125i
\(910\) 0 0
\(911\) 52.8673i 1.75157i 0.482701 + 0.875785i \(0.339656\pi\)
−0.482701 + 0.875785i \(0.660344\pi\)
\(912\) 2.26801 0.720857i 0.0751012 0.0238700i
\(913\) 4.24846 0.140604
\(914\) −21.2603 −0.703228
\(915\) −19.1579 60.2758i −0.633340 1.99266i
\(916\) −2.78436 2.78436i −0.0919978 0.0919978i
\(917\) 1.64863 + 1.64863i 0.0544424 + 0.0544424i
\(918\) −3.42926 + 4.53373i −0.113182 + 0.149636i
\(919\) −6.15017 −0.202875 −0.101438 0.994842i \(-0.532344\pi\)
−0.101438 + 0.994842i \(0.532344\pi\)
\(920\) 6.84932 0.225816
\(921\) 12.0391 + 37.8781i 0.396700 + 1.24812i
\(922\) 1.52692i 0.0502864i
\(923\) 0 0
\(924\) 2.27752 + 1.17893i 0.0749250 + 0.0387840i
\(925\) −22.4697 22.4697i −0.738799 0.738799i
\(926\) 30.1612i 0.991159i
\(927\) −5.07812 + 3.59077i −0.166787 + 0.117936i
\(928\) 4.18840 + 4.18840i 0.137491 + 0.137491i
\(929\) 25.3106 25.3106i 0.830414 0.830414i −0.157160 0.987573i \(-0.550234\pi\)
0.987573 + 0.157160i \(0.0502337\pi\)
\(930\) −18.8439 59.2878i −0.617915 1.94412i
\(931\) 0.531585 0.531585i 0.0174220 0.0174220i
\(932\) 3.83663i 0.125673i
\(933\) −26.1532 + 50.5240i −0.856216 + 1.65408i
\(934\) 7.98571 7.98571i 0.261300 0.261300i
\(935\) 2.49161 0.0814844
\(936\) 0 0
\(937\) −13.8585 −0.452737 −0.226369 0.974042i \(-0.572685\pi\)
−0.226369 + 0.974042i \(0.572685\pi\)
\(938\) −11.8576 + 11.8576i −0.387163 + 0.387163i
\(939\) 8.80854 17.0168i 0.287456 0.555322i
\(940\) 30.4538i 0.993295i
\(941\) 10.8257 10.8257i 0.352908 0.352908i −0.508283 0.861190i \(-0.669719\pi\)
0.861190 + 0.508283i \(0.169719\pi\)
\(942\) 3.52326 + 11.0851i 0.114794 + 0.361172i
\(943\) 6.56731 6.56731i 0.213861 0.213861i
\(944\) −5.99556 5.99556i −0.195139 0.195139i
\(945\) −7.08572 51.0864i −0.230499 1.66184i
\(946\) 2.19615i 0.0714031i
\(947\) 15.0501 + 15.0501i 0.489061 + 0.489061i 0.908010 0.418949i \(-0.137601\pi\)
−0.418949 + 0.908010i \(0.637601\pi\)
\(948\) 20.1639 + 10.4376i 0.654893 + 0.338998i
\(949\) 0 0
\(950\) 14.1075i 0.457708i
\(951\) −13.0214 40.9689i −0.422249 1.32851i
\(952\) 2.77903 0.0900689
\(953\) 20.6433 0.668703 0.334351 0.942448i \(-0.391483\pi\)
0.334351 + 0.942448i \(0.391483\pi\)
\(954\) −1.54441 + 9.00151i −0.0500023 + 0.291435i
\(955\) 65.3332 + 65.3332i 2.11413 + 2.11413i
\(956\) −0.751524 0.751524i −0.0243060 0.0243060i
\(957\) −1.81138 5.69907i −0.0585535 0.184225i
\(958\) −29.0750 −0.939371
\(959\) −21.8934 −0.706974
\(960\) 6.44983 2.05000i 0.208167 0.0661634i
\(961\) 53.4956i 1.72566i
\(962\) 0 0
\(963\) −8.47170 + 5.99040i −0.272997 + 0.193038i
\(964\) 19.7732 + 19.7732i 0.636853 + 0.636853i
\(965\) 41.4129i 1.33313i
\(966\) −6.84932 3.54547i −0.220373 0.114074i
\(967\) −3.56933 3.56933i −0.114782 0.114782i 0.647383 0.762165i \(-0.275863\pi\)
−0.762165 + 0.647383i \(0.775863\pi\)
\(968\) −7.53794 + 7.53794i −0.242279 + 0.242279i
\(969\) −2.48120 + 0.788618i −0.0797076 + 0.0253341i
\(970\) 1.69465 1.69465i 0.0544118 0.0544118i
\(971\) 37.0559i 1.18918i −0.804029 0.594590i \(-0.797314\pi\)
0.804029 0.594590i \(-0.202686\pi\)
\(972\) 11.3708 10.6633i 0.364717 0.342025i
\(973\) −5.95134 + 5.95134i −0.190791 + 0.190791i
\(974\) −2.53376 −0.0811869
\(975\) 0 0
\(976\) −9.34533 −0.299137
\(977\) 34.5163 34.5163i 1.10427 1.10427i 0.110385 0.993889i \(-0.464792\pi\)
0.993889 0.110385i \(-0.0352083\pi\)
\(978\) 2.42211 + 1.25378i 0.0774505 + 0.0400914i
\(979\) 5.64812i 0.180515i
\(980\) 1.51174 1.51174i 0.0482907 0.0482907i
\(981\) −7.88471 + 45.9555i −0.251740 + 1.46725i
\(982\) −26.1029 + 26.1029i −0.832978 + 0.832978i
\(983\) −33.9032 33.9032i −1.08134 1.08134i −0.996384 0.0849587i \(-0.972924\pi\)
−0.0849587 0.996384i \(-0.527076\pi\)
\(984\) 4.21868 8.14986i 0.134487 0.259808i
\(985\) 13.5498i 0.431733i
\(986\) −4.58212 4.58212i −0.145924 0.145924i
\(987\) −15.7641 + 30.4538i −0.501776 + 0.969357i
\(988\) 0 0
\(989\) 6.60462i 0.210015i
\(990\) −6.73417 1.15540i −0.214026 0.0367210i
\(991\) −48.7016 −1.54706 −0.773529 0.633761i \(-0.781510\pi\)
−0.773529 + 0.633761i \(0.781510\pi\)
\(992\) −9.19215 −0.291851
\(993\) −7.63267 + 2.42595i −0.242215 + 0.0769850i
\(994\) −1.52766 1.52766i −0.0484545 0.0484545i
\(995\) 8.53204 + 8.53204i 0.270484 + 0.270484i
\(996\) −12.0314 + 3.82404i −0.381231 + 0.121169i
\(997\) −5.53393 −0.175261 −0.0876306 0.996153i \(-0.527930\pi\)
−0.0876306 + 0.996153i \(0.527930\pi\)
\(998\) 31.6021 1.00035
\(999\) −9.70121 + 12.8257i −0.306933 + 0.405787i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.2.g.c.437.7 16
3.2 odd 2 inner 1014.2.g.c.437.3 16
13.2 odd 12 78.2.k.a.71.4 yes 16
13.5 odd 4 inner 1014.2.g.c.239.3 16
13.8 odd 4 1014.2.g.d.239.7 16
13.9 even 3 78.2.k.a.11.1 16
13.12 even 2 1014.2.g.d.437.3 16
39.2 even 12 78.2.k.a.71.1 yes 16
39.5 even 4 inner 1014.2.g.c.239.7 16
39.8 even 4 1014.2.g.d.239.3 16
39.35 odd 6 78.2.k.a.11.4 yes 16
39.38 odd 2 1014.2.g.d.437.7 16
52.15 even 12 624.2.cn.d.305.2 16
52.35 odd 6 624.2.cn.d.401.4 16
156.35 even 6 624.2.cn.d.401.2 16
156.119 odd 12 624.2.cn.d.305.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.k.a.11.1 16 13.9 even 3
78.2.k.a.11.4 yes 16 39.35 odd 6
78.2.k.a.71.1 yes 16 39.2 even 12
78.2.k.a.71.4 yes 16 13.2 odd 12
624.2.cn.d.305.2 16 52.15 even 12
624.2.cn.d.305.4 16 156.119 odd 12
624.2.cn.d.401.2 16 156.35 even 6
624.2.cn.d.401.4 16 52.35 odd 6
1014.2.g.c.239.3 16 13.5 odd 4 inner
1014.2.g.c.239.7 16 39.5 even 4 inner
1014.2.g.c.437.3 16 3.2 odd 2 inner
1014.2.g.c.437.7 16 1.1 even 1 trivial
1014.2.g.d.239.3 16 39.8 even 4
1014.2.g.d.239.7 16 13.8 odd 4
1014.2.g.d.437.3 16 13.12 even 2
1014.2.g.d.437.7 16 39.38 odd 2