Properties

Label 1014.2.g.c.437.1
Level $1014$
Weight $2$
Character 1014.437
Analytic conductor $8.097$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1014,2,Mod(239,1014)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1014.239"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1014, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.9349208943630483456.9
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 437.1
Root \(0.500000 + 1.00333i\) of defining polynomial
Character \(\chi\) \(=\) 1014.437
Dual form 1014.2.g.c.239.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-1.53819 + 0.796225i) q^{3} -1.00000i q^{4} +(0.428520 - 0.428520i) q^{5} +(0.524648 - 1.65068i) q^{6} +(0.538189 - 0.538189i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.73205 - 2.44949i) q^{9} +0.606018i q^{10} +(-2.97155 - 2.97155i) q^{11} +(0.796225 + 1.53819i) q^{12} +0.761114i q^{14} +(-0.317946 + 1.00034i) q^{15} -1.00000 q^{16} -5.24723 q^{17} +(0.507306 + 2.95680i) q^{18} +(2.41216 + 2.41216i) q^{19} +(-0.428520 - 0.428520i) q^{20} +(-0.399317 + 1.25636i) q^{21} +4.20241 q^{22} +1.86661 q^{23} +(-1.65068 - 0.524648i) q^{24} +4.63274i q^{25} +(-0.713876 + 5.14688i) q^{27} +(-0.538189 - 0.538189i) q^{28} +8.70629i q^{29} +(-0.482527 - 0.932171i) q^{30} +(-2.68240 - 2.68240i) q^{31} +(0.707107 - 0.707107i) q^{32} +(6.93684 + 2.20478i) q^{33} +(3.71035 - 3.71035i) q^{34} -0.461249i q^{35} +(-2.44949 - 1.73205i) q^{36} +(4.15628 - 4.15628i) q^{37} -3.41130 q^{38} +0.606018 q^{40} +(-6.27128 + 6.27128i) q^{41} +(-0.606018 - 1.17074i) q^{42} +1.95035i q^{43} +(-2.97155 + 2.97155i) q^{44} +(-0.307437 - 1.79187i) q^{45} +(-1.31989 + 1.31989i) q^{46} +(-5.73474 - 5.73474i) q^{47} +(1.53819 - 0.796225i) q^{48} +6.42071i q^{49} +(-3.27584 - 3.27584i) q^{50} +(8.07123 - 4.17798i) q^{51} +9.01501i q^{53} +(-3.13461 - 4.14418i) q^{54} -2.54674 q^{55} +0.761114 q^{56} +(-5.63097 - 1.78973i) q^{57} +(-6.15628 - 6.15628i) q^{58} +(-6.10925 - 6.10925i) q^{59} +(1.00034 + 0.317946i) q^{60} -8.13061 q^{61} +3.79348 q^{62} +(-0.386118 - 2.25046i) q^{63} +1.00000i q^{64} +(-6.46410 + 3.34607i) q^{66} +(0.0740874 + 0.0740874i) q^{67} +5.24723i q^{68} +(-2.87120 + 1.48624i) q^{69} +(0.326152 + 0.326152i) q^{70} +(-7.37536 + 7.37536i) q^{71} +(2.95680 - 0.507306i) q^{72} +(5.57806 - 5.57806i) q^{73} +5.87787i q^{74} +(-3.68871 - 7.12603i) q^{75} +(2.41216 - 2.41216i) q^{76} -3.19851 q^{77} -13.5805 q^{79} +(-0.428520 + 0.428520i) q^{80} +(-3.00000 - 8.48528i) q^{81} -8.86892i q^{82} +(-0.996926 + 0.996926i) q^{83} +(1.25636 + 0.399317i) q^{84} +(-2.24854 + 2.24854i) q^{85} +(-1.37910 - 1.37910i) q^{86} +(-6.93217 - 13.3919i) q^{87} -4.20241i q^{88} +(-4.62980 - 4.62980i) q^{89} +(1.48444 + 1.04965i) q^{90} -1.86661i q^{92} +(6.26182 + 1.99024i) q^{93} +8.11015 q^{94} +2.06731 q^{95} +(-0.524648 + 1.65068i) q^{96} +(11.1369 + 11.1369i) q^{97} +(-4.54012 - 4.54012i) q^{98} +(-12.4257 + 2.13191i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{7} - 24 q^{15} - 16 q^{16} + 32 q^{19} - 24 q^{21} + 16 q^{28} + 16 q^{31} + 24 q^{33} + 24 q^{34} - 8 q^{37} - 48 q^{45} + 48 q^{55} - 24 q^{57} - 24 q^{58} - 24 q^{60} + 48 q^{61} - 48 q^{66}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −1.53819 + 0.796225i −0.888074 + 0.459701i
\(4\) 1.00000i 0.500000i
\(5\) 0.428520 0.428520i 0.191640 0.191640i −0.604765 0.796404i \(-0.706733\pi\)
0.796404 + 0.604765i \(0.206733\pi\)
\(6\) 0.524648 1.65068i 0.214186 0.673887i
\(7\) 0.538189 0.538189i 0.203416 0.203416i −0.598046 0.801462i \(-0.704056\pi\)
0.801462 + 0.598046i \(0.204056\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 1.73205 2.44949i 0.577350 0.816497i
\(10\) 0.606018i 0.191640i
\(11\) −2.97155 2.97155i −0.895957 0.895957i 0.0991187 0.995076i \(-0.468398\pi\)
−0.995076 + 0.0991187i \(0.968398\pi\)
\(12\) 0.796225 + 1.53819i 0.229850 + 0.444037i
\(13\) 0 0
\(14\) 0.761114i 0.203416i
\(15\) −0.317946 + 1.00034i −0.0820933 + 0.258287i
\(16\) −1.00000 −0.250000
\(17\) −5.24723 −1.27264 −0.636320 0.771425i \(-0.719544\pi\)
−0.636320 + 0.771425i \(0.719544\pi\)
\(18\) 0.507306 + 2.95680i 0.119573 + 0.696923i
\(19\) 2.41216 + 2.41216i 0.553387 + 0.553387i 0.927417 0.374030i \(-0.122024\pi\)
−0.374030 + 0.927417i \(0.622024\pi\)
\(20\) −0.428520 0.428520i −0.0958199 0.0958199i
\(21\) −0.399317 + 1.25636i −0.0871381 + 0.274159i
\(22\) 4.20241 0.895957
\(23\) 1.86661 0.389216 0.194608 0.980881i \(-0.437657\pi\)
0.194608 + 0.980881i \(0.437657\pi\)
\(24\) −1.65068 0.524648i −0.336944 0.107093i
\(25\) 4.63274i 0.926548i
\(26\) 0 0
\(27\) −0.713876 + 5.14688i −0.137386 + 0.990518i
\(28\) −0.538189 0.538189i −0.101708 0.101708i
\(29\) 8.70629i 1.61672i 0.588690 + 0.808359i \(0.299644\pi\)
−0.588690 + 0.808359i \(0.700356\pi\)
\(30\) −0.482527 0.932171i −0.0880970 0.170190i
\(31\) −2.68240 2.68240i −0.481773 0.481773i 0.423925 0.905697i \(-0.360652\pi\)
−0.905697 + 0.423925i \(0.860652\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 6.93684 + 2.20478i 1.20755 + 0.383804i
\(34\) 3.71035 3.71035i 0.636320 0.636320i
\(35\) 0.461249i 0.0779653i
\(36\) −2.44949 1.73205i −0.408248 0.288675i
\(37\) 4.15628 4.15628i 0.683288 0.683288i −0.277452 0.960740i \(-0.589490\pi\)
0.960740 + 0.277452i \(0.0894898\pi\)
\(38\) −3.41130 −0.553387
\(39\) 0 0
\(40\) 0.606018 0.0958199
\(41\) −6.27128 + 6.27128i −0.979409 + 0.979409i −0.999792 0.0203836i \(-0.993511\pi\)
0.0203836 + 0.999792i \(0.493511\pi\)
\(42\) −0.606018 1.17074i −0.0935107 0.180649i
\(43\) 1.95035i 0.297425i 0.988880 + 0.148712i \(0.0475129\pi\)
−0.988880 + 0.148712i \(0.952487\pi\)
\(44\) −2.97155 + 2.97155i −0.447978 + 0.447978i
\(45\) −0.307437 1.79187i −0.0458300 0.267117i
\(46\) −1.31989 + 1.31989i −0.194608 + 0.194608i
\(47\) −5.73474 5.73474i −0.836498 0.836498i 0.151898 0.988396i \(-0.451461\pi\)
−0.988396 + 0.151898i \(0.951461\pi\)
\(48\) 1.53819 0.796225i 0.222018 0.114925i
\(49\) 6.42071i 0.917244i
\(50\) −3.27584 3.27584i −0.463274 0.463274i
\(51\) 8.07123 4.17798i 1.13020 0.585034i
\(52\) 0 0
\(53\) 9.01501i 1.23831i 0.785270 + 0.619153i \(0.212524\pi\)
−0.785270 + 0.619153i \(0.787476\pi\)
\(54\) −3.13461 4.14418i −0.426566 0.563952i
\(55\) −2.54674 −0.343402
\(56\) 0.761114 0.101708
\(57\) −5.63097 1.78973i −0.745841 0.237056i
\(58\) −6.15628 6.15628i −0.808359 0.808359i
\(59\) −6.10925 6.10925i −0.795357 0.795357i 0.187002 0.982359i \(-0.440123\pi\)
−0.982359 + 0.187002i \(0.940123\pi\)
\(60\) 1.00034 + 0.317946i 0.129144 + 0.0410467i
\(61\) −8.13061 −1.04102 −0.520509 0.853856i \(-0.674258\pi\)
−0.520509 + 0.853856i \(0.674258\pi\)
\(62\) 3.79348 0.481773
\(63\) −0.386118 2.25046i −0.0486463 0.283531i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) −6.46410 + 3.34607i −0.795676 + 0.411872i
\(67\) 0.0740874 + 0.0740874i 0.00905121 + 0.00905121i 0.711618 0.702567i \(-0.247963\pi\)
−0.702567 + 0.711618i \(0.747963\pi\)
\(68\) 5.24723i 0.636320i
\(69\) −2.87120 + 1.48624i −0.345652 + 0.178923i
\(70\) 0.326152 + 0.326152i 0.0389827 + 0.0389827i
\(71\) −7.37536 + 7.37536i −0.875294 + 0.875294i −0.993043 0.117749i \(-0.962432\pi\)
0.117749 + 0.993043i \(0.462432\pi\)
\(72\) 2.95680 0.507306i 0.348462 0.0597866i
\(73\) 5.57806 5.57806i 0.652863 0.652863i −0.300819 0.953681i \(-0.597260\pi\)
0.953681 + 0.300819i \(0.0972599\pi\)
\(74\) 5.87787i 0.683288i
\(75\) −3.68871 7.12603i −0.425935 0.822843i
\(76\) 2.41216 2.41216i 0.276693 0.276693i
\(77\) −3.19851 −0.364505
\(78\) 0 0
\(79\) −13.5805 −1.52793 −0.763963 0.645260i \(-0.776749\pi\)
−0.763963 + 0.645260i \(0.776749\pi\)
\(80\) −0.428520 + 0.428520i −0.0479100 + 0.0479100i
\(81\) −3.00000 8.48528i −0.333333 0.942809i
\(82\) 8.86892i 0.979409i
\(83\) −0.996926 + 0.996926i −0.109427 + 0.109427i −0.759700 0.650273i \(-0.774654\pi\)
0.650273 + 0.759700i \(0.274654\pi\)
\(84\) 1.25636 + 0.399317i 0.137080 + 0.0435690i
\(85\) −2.24854 + 2.24854i −0.243889 + 0.243889i
\(86\) −1.37910 1.37910i −0.148712 0.148712i
\(87\) −6.93217 13.3919i −0.743207 1.43577i
\(88\) 4.20241i 0.447978i
\(89\) −4.62980 4.62980i −0.490758 0.490758i 0.417787 0.908545i \(-0.362806\pi\)
−0.908545 + 0.417787i \(0.862806\pi\)
\(90\) 1.48444 + 1.04965i 0.156473 + 0.110643i
\(91\) 0 0
\(92\) 1.86661i 0.194608i
\(93\) 6.26182 + 1.99024i 0.649321 + 0.206378i
\(94\) 8.11015 0.836498
\(95\) 2.06731 0.212102
\(96\) −0.524648 + 1.65068i −0.0535466 + 0.168472i
\(97\) 11.1369 + 11.1369i 1.13078 + 1.13078i 0.990048 + 0.140730i \(0.0449449\pi\)
0.140730 + 0.990048i \(0.455055\pi\)
\(98\) −4.54012 4.54012i −0.458622 0.458622i
\(99\) −12.4257 + 2.13191i −1.24883 + 0.214265i
\(100\) 4.63274 0.463274
\(101\) −3.27260 −0.325636 −0.162818 0.986656i \(-0.552058\pi\)
−0.162818 + 0.986656i \(0.552058\pi\)
\(102\) −2.75295 + 8.66150i −0.272582 + 0.857616i
\(103\) 4.79880i 0.472840i −0.971651 0.236420i \(-0.924026\pi\)
0.971651 0.236420i \(-0.0759741\pi\)
\(104\) 0 0
\(105\) 0.367258 + 0.709488i 0.0358407 + 0.0692390i
\(106\) −6.37457 6.37457i −0.619153 0.619153i
\(107\) 3.12505i 0.302110i 0.988525 + 0.151055i \(0.0482671\pi\)
−0.988525 + 0.151055i \(0.951733\pi\)
\(108\) 5.14688 + 0.713876i 0.495259 + 0.0686928i
\(109\) −0.913996 0.913996i −0.0875449 0.0875449i 0.661978 0.749523i \(-0.269717\pi\)
−0.749523 + 0.661978i \(0.769717\pi\)
\(110\) 1.80082 1.80082i 0.171701 0.171701i
\(111\) −3.08381 + 9.70248i −0.292702 + 0.920918i
\(112\) −0.538189 + 0.538189i −0.0508541 + 0.0508541i
\(113\) 6.97128i 0.655802i 0.944712 + 0.327901i \(0.106341\pi\)
−0.944712 + 0.327901i \(0.893659\pi\)
\(114\) 5.24723 2.71617i 0.491448 0.254392i
\(115\) 0.799880 0.799880i 0.0745892 0.0745892i
\(116\) 8.70629 0.808359
\(117\) 0 0
\(118\) 8.63979 0.795357
\(119\) −2.82400 + 2.82400i −0.258876 + 0.258876i
\(120\) −0.932171 + 0.482527i −0.0850952 + 0.0440485i
\(121\) 6.66025i 0.605478i
\(122\) 5.74921 5.74921i 0.520509 0.520509i
\(123\) 4.65306 14.6398i 0.419552 1.32002i
\(124\) −2.68240 + 2.68240i −0.240886 + 0.240886i
\(125\) 4.12782 + 4.12782i 0.369203 + 0.369203i
\(126\) 1.86434 + 1.31829i 0.166089 + 0.117442i
\(127\) 2.23497i 0.198321i 0.995071 + 0.0991607i \(0.0316158\pi\)
−0.995071 + 0.0991607i \(0.968384\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) −1.55291 3.00000i −0.136726 0.264135i
\(130\) 0 0
\(131\) 22.0856i 1.92963i −0.262938 0.964813i \(-0.584692\pi\)
0.262938 0.964813i \(-0.415308\pi\)
\(132\) 2.20478 6.93684i 0.191902 0.603774i
\(133\) 2.59639 0.225136
\(134\) −0.104775 −0.00905121
\(135\) 1.89963 + 2.51145i 0.163494 + 0.216151i
\(136\) −3.71035 3.71035i −0.318160 0.318160i
\(137\) −7.05984 7.05984i −0.603162 0.603162i 0.337988 0.941150i \(-0.390254\pi\)
−0.941150 + 0.337988i \(0.890254\pi\)
\(138\) 0.979314 3.08118i 0.0833647 0.262287i
\(139\) −3.76503 −0.319346 −0.159673 0.987170i \(-0.551044\pi\)
−0.159673 + 0.987170i \(0.551044\pi\)
\(140\) −0.461249 −0.0389827
\(141\) 13.3873 + 4.25497i 1.12741 + 0.358333i
\(142\) 10.4303i 0.875294i
\(143\) 0 0
\(144\) −1.73205 + 2.44949i −0.144338 + 0.204124i
\(145\) 3.73082 + 3.73082i 0.309828 + 0.309828i
\(146\) 7.88857i 0.652863i
\(147\) −5.11233 9.87626i −0.421658 0.814580i
\(148\) −4.15628 4.15628i −0.341644 0.341644i
\(149\) −6.17093 + 6.17093i −0.505542 + 0.505542i −0.913155 0.407613i \(-0.866361\pi\)
0.407613 + 0.913155i \(0.366361\pi\)
\(150\) 7.64717 + 2.43056i 0.624389 + 0.198454i
\(151\) −17.3671 + 17.3671i −1.41331 + 1.41331i −0.681429 + 0.731885i \(0.738641\pi\)
−0.731885 + 0.681429i \(0.761359\pi\)
\(152\) 3.41130i 0.276693i
\(153\) −9.08847 + 12.8530i −0.734759 + 1.03911i
\(154\) 2.26169 2.26169i 0.182252 0.182252i
\(155\) −2.29892 −0.184654
\(156\) 0 0
\(157\) 11.0713 0.883589 0.441794 0.897116i \(-0.354342\pi\)
0.441794 + 0.897116i \(0.354342\pi\)
\(158\) 9.60287 9.60287i 0.763963 0.763963i
\(159\) −7.17798 13.8668i −0.569251 1.09971i
\(160\) 0.606018i 0.0479100i
\(161\) 1.00459 1.00459i 0.0791728 0.0791728i
\(162\) 8.12132 + 3.87868i 0.638071 + 0.304738i
\(163\) 3.71617 3.71617i 0.291073 0.291073i −0.546431 0.837504i \(-0.684014\pi\)
0.837504 + 0.546431i \(0.184014\pi\)
\(164\) 6.27128 + 6.27128i 0.489704 + 0.489704i
\(165\) 3.91736 2.02778i 0.304966 0.157862i
\(166\) 1.40987i 0.109427i
\(167\) 11.1219 + 11.1219i 0.860635 + 0.860635i 0.991412 0.130777i \(-0.0417471\pi\)
−0.130777 + 0.991412i \(0.541747\pi\)
\(168\) −1.17074 + 0.606018i −0.0903244 + 0.0467553i
\(169\) 0 0
\(170\) 3.17992i 0.243889i
\(171\) 10.0865 1.73057i 0.771336 0.132340i
\(172\) 1.95035 0.148712
\(173\) 5.42372 0.412358 0.206179 0.978514i \(-0.433897\pi\)
0.206179 + 0.978514i \(0.433897\pi\)
\(174\) 14.3713 + 4.56774i 1.08949 + 0.346279i
\(175\) 2.49329 + 2.49329i 0.188475 + 0.188475i
\(176\) 2.97155 + 2.97155i 0.223989 + 0.223989i
\(177\) 14.2615 + 4.53284i 1.07196 + 0.340709i
\(178\) 6.54753 0.490758
\(179\) 10.3808 0.775900 0.387950 0.921680i \(-0.373183\pi\)
0.387950 + 0.921680i \(0.373183\pi\)
\(180\) −1.79187 + 0.307437i −0.133558 + 0.0229150i
\(181\) 11.1172i 0.826335i 0.910655 + 0.413167i \(0.135578\pi\)
−0.910655 + 0.413167i \(0.864422\pi\)
\(182\) 0 0
\(183\) 12.5064 6.47380i 0.924501 0.478557i
\(184\) 1.31989 + 1.31989i 0.0973039 + 0.0973039i
\(185\) 3.56209i 0.261890i
\(186\) −5.83509 + 3.02047i −0.427850 + 0.221471i
\(187\) 15.5924 + 15.5924i 1.14023 + 1.14023i
\(188\) −5.73474 + 5.73474i −0.418249 + 0.418249i
\(189\) 2.38579 + 3.15419i 0.173541 + 0.229434i
\(190\) −1.46181 + 1.46181i −0.106051 + 0.106051i
\(191\) 5.73244i 0.414785i 0.978258 + 0.207392i \(0.0664977\pi\)
−0.978258 + 0.207392i \(0.933502\pi\)
\(192\) −0.796225 1.53819i −0.0574626 0.111009i
\(193\) −8.02170 + 8.02170i −0.577414 + 0.577414i −0.934190 0.356776i \(-0.883876\pi\)
0.356776 + 0.934190i \(0.383876\pi\)
\(194\) −15.7499 −1.13078
\(195\) 0 0
\(196\) 6.42071 0.458622
\(197\) −3.31151 + 3.31151i −0.235935 + 0.235935i −0.815165 0.579229i \(-0.803354\pi\)
0.579229 + 0.815165i \(0.303354\pi\)
\(198\) 7.27879 10.2938i 0.517281 0.731546i
\(199\) 12.9027i 0.914648i 0.889300 + 0.457324i \(0.151192\pi\)
−0.889300 + 0.457324i \(0.848808\pi\)
\(200\) −3.27584 + 3.27584i −0.231637 + 0.231637i
\(201\) −0.172951 0.0549702i −0.0121990 0.00387730i
\(202\) 2.31408 2.31408i 0.162818 0.162818i
\(203\) 4.68563 + 4.68563i 0.328867 + 0.328867i
\(204\) −4.17798 8.07123i −0.292517 0.565099i
\(205\) 5.37473i 0.375387i
\(206\) 3.39327 + 3.39327i 0.236420 + 0.236420i
\(207\) 3.23307 4.57225i 0.224714 0.317793i
\(208\) 0 0
\(209\) 14.3357i 0.991621i
\(210\) −0.761375 0.241993i −0.0525399 0.0166991i
\(211\) −5.27958 −0.363461 −0.181731 0.983348i \(-0.558170\pi\)
−0.181731 + 0.983348i \(0.558170\pi\)
\(212\) 9.01501 0.619153
\(213\) 5.47225 17.2171i 0.374952 1.17970i
\(214\) −2.20975 2.20975i −0.151055 0.151055i
\(215\) 0.835761 + 0.835761i 0.0569985 + 0.0569985i
\(216\) −4.14418 + 3.13461i −0.281976 + 0.213283i
\(217\) −2.88727 −0.196001
\(218\) 1.29259 0.0875449
\(219\) −4.13872 + 13.0215i −0.279669 + 0.879912i
\(220\) 2.54674i 0.171701i
\(221\) 0 0
\(222\) −4.68011 9.04127i −0.314108 0.606810i
\(223\) 2.51039 + 2.51039i 0.168108 + 0.168108i 0.786147 0.618039i \(-0.212073\pi\)
−0.618039 + 0.786147i \(0.712073\pi\)
\(224\) 0.761114i 0.0508541i
\(225\) 11.3479 + 8.02414i 0.756524 + 0.534943i
\(226\) −4.92944 4.92944i −0.327901 0.327901i
\(227\) 3.55443 3.55443i 0.235916 0.235916i −0.579241 0.815157i \(-0.696651\pi\)
0.815157 + 0.579241i \(0.196651\pi\)
\(228\) −1.78973 + 5.63097i −0.118528 + 0.372920i
\(229\) 11.3889 11.3889i 0.752602 0.752602i −0.222362 0.974964i \(-0.571377\pi\)
0.974964 + 0.222362i \(0.0713767\pi\)
\(230\) 1.13120i 0.0745892i
\(231\) 4.91992 2.54674i 0.323707 0.167563i
\(232\) −6.15628 + 6.15628i −0.404180 + 0.404180i
\(233\) −22.3807 −1.46621 −0.733103 0.680117i \(-0.761929\pi\)
−0.733103 + 0.680117i \(0.761929\pi\)
\(234\) 0 0
\(235\) −4.91490 −0.320613
\(236\) −6.10925 + 6.10925i −0.397679 + 0.397679i
\(237\) 20.8894 10.8131i 1.35691 0.702389i
\(238\) 3.99374i 0.258876i
\(239\) 6.08236 6.08236i 0.393435 0.393435i −0.482475 0.875910i \(-0.660262\pi\)
0.875910 + 0.482475i \(0.160262\pi\)
\(240\) 0.317946 1.00034i 0.0205233 0.0645718i
\(241\) −4.34556 + 4.34556i −0.279922 + 0.279922i −0.833078 0.553156i \(-0.813423\pi\)
0.553156 + 0.833078i \(0.313423\pi\)
\(242\) −4.70951 4.70951i −0.302739 0.302739i
\(243\) 11.3708 + 10.6633i 0.729435 + 0.684050i
\(244\) 8.13061i 0.520509i
\(245\) 2.75140 + 2.75140i 0.175780 + 0.175780i
\(246\) 7.06166 + 13.6421i 0.450235 + 0.869787i
\(247\) 0 0
\(248\) 3.79348i 0.240886i
\(249\) 0.739683 2.32724i 0.0468755 0.147483i
\(250\) −5.83762 −0.369203
\(251\) 12.5562 0.792538 0.396269 0.918134i \(-0.370305\pi\)
0.396269 + 0.918134i \(0.370305\pi\)
\(252\) −2.25046 + 0.386118i −0.141766 + 0.0243231i
\(253\) −5.54674 5.54674i −0.348720 0.348720i
\(254\) −1.58036 1.58036i −0.0991607 0.0991607i
\(255\) 1.66834 5.24903i 0.104475 0.328707i
\(256\) 1.00000 0.0625000
\(257\) −4.73782 −0.295537 −0.147768 0.989022i \(-0.547209\pi\)
−0.147768 + 0.989022i \(0.547209\pi\)
\(258\) 3.21940 + 1.02324i 0.200431 + 0.0637044i
\(259\) 4.47373i 0.277984i
\(260\) 0 0
\(261\) 21.3260 + 15.0797i 1.32004 + 0.933413i
\(262\) 15.6169 + 15.6169i 0.964813 + 0.964813i
\(263\) 5.66894i 0.349562i −0.984607 0.174781i \(-0.944078\pi\)
0.984607 0.174781i \(-0.0559218\pi\)
\(264\) 3.34607 + 6.46410i 0.205936 + 0.397838i
\(265\) 3.86311 + 3.86311i 0.237309 + 0.237309i
\(266\) −1.83593 + 1.83593i −0.112568 + 0.112568i
\(267\) 10.8079 + 3.43514i 0.661431 + 0.210227i
\(268\) 0.0740874 0.0740874i 0.00452561 0.00452561i
\(269\) 7.30591i 0.445449i 0.974881 + 0.222725i \(0.0714951\pi\)
−0.974881 + 0.222725i \(0.928505\pi\)
\(270\) −3.11910 0.432622i −0.189823 0.0263285i
\(271\) −17.3439 + 17.3439i −1.05356 + 1.05356i −0.0550829 + 0.998482i \(0.517542\pi\)
−0.998482 + 0.0550829i \(0.982458\pi\)
\(272\) 5.24723 0.318160
\(273\) 0 0
\(274\) 9.98412 0.603162
\(275\) 13.7664 13.7664i 0.830147 0.830147i
\(276\) 1.48624 + 2.87120i 0.0894614 + 0.172826i
\(277\) 8.74626i 0.525512i −0.964862 0.262756i \(-0.915369\pi\)
0.964862 0.262756i \(-0.0846314\pi\)
\(278\) 2.66228 2.66228i 0.159673 0.159673i
\(279\) −11.2165 + 1.92446i −0.671517 + 0.115214i
\(280\) 0.326152 0.326152i 0.0194913 0.0194913i
\(281\) 9.49571 + 9.49571i 0.566467 + 0.566467i 0.931137 0.364670i \(-0.118818\pi\)
−0.364670 + 0.931137i \(0.618818\pi\)
\(282\) −12.4749 + 6.45750i −0.742872 + 0.384539i
\(283\) 31.4361i 1.86868i −0.356378 0.934342i \(-0.615988\pi\)
0.356378 0.934342i \(-0.384012\pi\)
\(284\) 7.37536 + 7.37536i 0.437647 + 0.437647i
\(285\) −3.17992 + 1.64605i −0.188362 + 0.0975034i
\(286\) 0 0
\(287\) 6.75026i 0.398455i
\(288\) −0.507306 2.95680i −0.0298933 0.174231i
\(289\) 10.5334 0.619614
\(290\) −5.27617 −0.309828
\(291\) −25.9981 8.26316i −1.52403 0.484395i
\(292\) −5.57806 5.57806i −0.326431 0.326431i
\(293\) −1.48128 1.48128i −0.0865371 0.0865371i 0.662513 0.749050i \(-0.269490\pi\)
−0.749050 + 0.662513i \(0.769490\pi\)
\(294\) 10.5985 + 3.36861i 0.618119 + 0.196461i
\(295\) −5.23587 −0.304844
\(296\) 5.87787 0.341644
\(297\) 17.4155 13.1729i 1.01055 0.764370i
\(298\) 8.72701i 0.505542i
\(299\) 0 0
\(300\) −7.12603 + 3.68871i −0.411422 + 0.212968i
\(301\) 1.04965 + 1.04965i 0.0605011 + 0.0605011i
\(302\) 24.5608i 1.41331i
\(303\) 5.03388 2.60573i 0.289189 0.149695i
\(304\) −2.41216 2.41216i −0.138347 0.138347i
\(305\) −3.48413 + 3.48413i −0.199501 + 0.199501i
\(306\) −2.66195 15.5150i −0.152174 0.886933i
\(307\) 1.91340 1.91340i 0.109203 0.109203i −0.650394 0.759597i \(-0.725396\pi\)
0.759597 + 0.650394i \(0.225396\pi\)
\(308\) 3.19851i 0.182252i
\(309\) 3.82093 + 7.38147i 0.217365 + 0.419917i
\(310\) 1.62558 1.62558i 0.0923268 0.0923268i
\(311\) 7.19354 0.407908 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(312\) 0 0
\(313\) −14.6520 −0.828180 −0.414090 0.910236i \(-0.635900\pi\)
−0.414090 + 0.910236i \(0.635900\pi\)
\(314\) −7.82861 + 7.82861i −0.441794 + 0.441794i
\(315\) −1.12983 0.798907i −0.0636584 0.0450133i
\(316\) 13.5805i 0.763963i
\(317\) 3.93077 3.93077i 0.220774 0.220774i −0.588050 0.808824i \(-0.700104\pi\)
0.808824 + 0.588050i \(0.200104\pi\)
\(318\) 14.8809 + 4.72970i 0.834479 + 0.265229i
\(319\) 25.8712 25.8712i 1.44851 1.44851i
\(320\) 0.428520 + 0.428520i 0.0239550 + 0.0239550i
\(321\) −2.48825 4.80692i −0.138880 0.268296i
\(322\) 1.42071i 0.0791728i
\(323\) −12.6571 12.6571i −0.704262 0.704262i
\(324\) −8.48528 + 3.00000i −0.471405 + 0.166667i
\(325\) 0 0
\(326\) 5.25545i 0.291073i
\(327\) 2.13364 + 0.678152i 0.117991 + 0.0375019i
\(328\) −8.86892 −0.489704
\(329\) −6.17275 −0.340315
\(330\) −1.33614 + 4.20385i −0.0735521 + 0.231414i
\(331\) −13.9674 13.9674i −0.767720 0.767720i 0.209985 0.977705i \(-0.432659\pi\)
−0.977705 + 0.209985i \(0.932659\pi\)
\(332\) 0.996926 + 0.996926i 0.0547134 + 0.0547134i
\(333\) −2.98188 17.3797i −0.163406 0.952399i
\(334\) −15.7287 −0.860635
\(335\) 0.0634958 0.00346915
\(336\) 0.399317 1.25636i 0.0217845 0.0685398i
\(337\) 16.3889i 0.892762i 0.894843 + 0.446381i \(0.147287\pi\)
−0.894843 + 0.446381i \(0.852713\pi\)
\(338\) 0 0
\(339\) −5.55071 10.7231i −0.301473 0.582401i
\(340\) 2.24854 + 2.24854i 0.121944 + 0.121944i
\(341\) 15.9418i 0.863295i
\(342\) −5.90855 + 8.35596i −0.319498 + 0.451838i
\(343\) 7.22288 + 7.22288i 0.389999 + 0.389999i
\(344\) −1.37910 + 1.37910i −0.0743562 + 0.0743562i
\(345\) −0.593482 + 1.86725i −0.0319520 + 0.100529i
\(346\) −3.83515 + 3.83515i −0.206179 + 0.206179i
\(347\) 21.6243i 1.16085i 0.814312 + 0.580427i \(0.197114\pi\)
−0.814312 + 0.580427i \(0.802886\pi\)
\(348\) −13.3919 + 6.93217i −0.717883 + 0.371603i
\(349\) −1.37688 + 1.37688i −0.0737029 + 0.0737029i −0.742997 0.669294i \(-0.766597\pi\)
0.669294 + 0.742997i \(0.266597\pi\)
\(350\) −3.52605 −0.188475
\(351\) 0 0
\(352\) −4.20241 −0.223989
\(353\) 16.4570 16.4570i 0.875919 0.875919i −0.117191 0.993109i \(-0.537389\pi\)
0.993109 + 0.117191i \(0.0373888\pi\)
\(354\) −13.2896 + 6.87922i −0.706336 + 0.365626i
\(355\) 6.32097i 0.335482i
\(356\) −4.62980 + 4.62980i −0.245379 + 0.245379i
\(357\) 2.09531 6.59239i 0.110895 0.348906i
\(358\) −7.34036 + 7.34036i −0.387950 + 0.387950i
\(359\) −15.8859 15.8859i −0.838428 0.838428i 0.150224 0.988652i \(-0.452000\pi\)
−0.988652 + 0.150224i \(0.952000\pi\)
\(360\) 1.04965 1.48444i 0.0553216 0.0782366i
\(361\) 7.36300i 0.387526i
\(362\) −7.86104 7.86104i −0.413167 0.413167i
\(363\) −5.30306 10.2447i −0.278339 0.537709i
\(364\) 0 0
\(365\) 4.78062i 0.250229i
\(366\) −4.26571 + 13.4210i −0.222972 + 0.701529i
\(367\) 0.601762 0.0314117 0.0157059 0.999877i \(-0.495000\pi\)
0.0157059 + 0.999877i \(0.495000\pi\)
\(368\) −1.86661 −0.0973039
\(369\) 4.49926 + 26.2236i 0.234222 + 1.36515i
\(370\) 2.51878 + 2.51878i 0.130945 + 0.130945i
\(371\) 4.85178 + 4.85178i 0.251892 + 0.251892i
\(372\) 1.99024 6.26182i 0.103189 0.324660i
\(373\) 11.4157 0.591080 0.295540 0.955330i \(-0.404500\pi\)
0.295540 + 0.955330i \(0.404500\pi\)
\(374\) −22.0510 −1.14023
\(375\) −9.63604 3.06269i −0.497603 0.158157i
\(376\) 8.11015i 0.418249i
\(377\) 0 0
\(378\) −3.91736 0.543341i −0.201487 0.0279465i
\(379\) −26.5622 26.5622i −1.36441 1.36441i −0.868211 0.496196i \(-0.834730\pi\)
−0.496196 0.868211i \(-0.665270\pi\)
\(380\) 2.06731i 0.106051i
\(381\) −1.77954 3.43780i −0.0911685 0.176124i
\(382\) −4.05345 4.05345i −0.207392 0.207392i
\(383\) 8.93292 8.93292i 0.456451 0.456451i −0.441038 0.897489i \(-0.645390\pi\)
0.897489 + 0.441038i \(0.145390\pi\)
\(384\) 1.65068 + 0.524648i 0.0842359 + 0.0267733i
\(385\) −1.37063 + 1.37063i −0.0698536 + 0.0698536i
\(386\) 11.3444i 0.577414i
\(387\) 4.77735 + 3.37810i 0.242846 + 0.171718i
\(388\) 11.1369 11.1369i 0.565389 0.565389i
\(389\) 18.8229 0.954361 0.477180 0.878805i \(-0.341659\pi\)
0.477180 + 0.878805i \(0.341659\pi\)
\(390\) 0 0
\(391\) −9.79455 −0.495332
\(392\) −4.54012 + 4.54012i −0.229311 + 0.229311i
\(393\) 17.5851 + 33.9718i 0.887050 + 1.71365i
\(394\) 4.68319i 0.235935i
\(395\) −5.81951 + 5.81951i −0.292812 + 0.292812i
\(396\) 2.13191 + 12.4257i 0.107132 + 0.624413i
\(397\) −8.43859 + 8.43859i −0.423521 + 0.423521i −0.886414 0.462893i \(-0.846811\pi\)
0.462893 + 0.886414i \(0.346811\pi\)
\(398\) −9.12358 9.12358i −0.457324 0.457324i
\(399\) −3.99374 + 2.06731i −0.199937 + 0.103495i
\(400\) 4.63274i 0.231637i
\(401\) 17.1270 + 17.1270i 0.855280 + 0.855280i 0.990778 0.135497i \(-0.0432632\pi\)
−0.135497 + 0.990778i \(0.543263\pi\)
\(402\) 0.161164 0.0834248i 0.00803815 0.00416085i
\(403\) 0 0
\(404\) 3.27260i 0.162818i
\(405\) −4.92167 2.35055i −0.244560 0.116800i
\(406\) −6.62648 −0.328867
\(407\) −24.7012 −1.22439
\(408\) 8.66150 + 2.75295i 0.428808 + 0.136291i
\(409\) 18.9725 + 18.9725i 0.938128 + 0.938128i 0.998194 0.0600662i \(-0.0191312\pi\)
−0.0600662 + 0.998194i \(0.519131\pi\)
\(410\) −3.80051 3.80051i −0.187694 0.187694i
\(411\) 16.4806 + 5.23814i 0.812927 + 0.258379i
\(412\) −4.79880 −0.236420
\(413\) −6.57587 −0.323577
\(414\) 0.946944 + 5.51919i 0.0465397 + 0.271253i
\(415\) 0.854405i 0.0419411i
\(416\) 0 0
\(417\) 5.79133 2.99781i 0.283603 0.146804i
\(418\) 10.1369 + 10.1369i 0.495811 + 0.495811i
\(419\) 10.8367i 0.529409i −0.964330 0.264704i \(-0.914726\pi\)
0.964330 0.264704i \(-0.0852743\pi\)
\(420\) 0.709488 0.367258i 0.0346195 0.0179204i
\(421\) −22.8984 22.8984i −1.11600 1.11600i −0.992323 0.123676i \(-0.960532\pi\)
−0.123676 0.992323i \(-0.539468\pi\)
\(422\) 3.73322 3.73322i 0.181731 0.181731i
\(423\) −23.9801 + 4.11433i −1.16595 + 0.200045i
\(424\) −6.37457 + 6.37457i −0.309577 + 0.309577i
\(425\) 24.3091i 1.17916i
\(426\) 8.30489 + 16.0438i 0.402373 + 0.777326i
\(427\) −4.37581 + 4.37581i −0.211760 + 0.211760i
\(428\) 3.12505 0.151055
\(429\) 0 0
\(430\) −1.18195 −0.0569985
\(431\) −23.7339 + 23.7339i −1.14322 + 1.14322i −0.155362 + 0.987858i \(0.549654\pi\)
−0.987858 + 0.155362i \(0.950346\pi\)
\(432\) 0.713876 5.14688i 0.0343464 0.247629i
\(433\) 23.7562i 1.14165i −0.821072 0.570825i \(-0.806623\pi\)
0.821072 0.570825i \(-0.193377\pi\)
\(434\) 2.04161 2.04161i 0.0980004 0.0980004i
\(435\) −8.70927 2.76813i −0.417578 0.132722i
\(436\) −0.913996 + 0.913996i −0.0437725 + 0.0437725i
\(437\) 4.50256 + 4.50256i 0.215387 + 0.215387i
\(438\) −6.28108 12.1341i −0.300122 0.579790i
\(439\) 14.8663i 0.709532i −0.934955 0.354766i \(-0.884561\pi\)
0.934955 0.354766i \(-0.115439\pi\)
\(440\) −1.80082 1.80082i −0.0858505 0.0858505i
\(441\) 15.7275 + 11.1210i 0.748926 + 0.529571i
\(442\) 0 0
\(443\) 40.3416i 1.91669i 0.285619 + 0.958343i \(0.407801\pi\)
−0.285619 + 0.958343i \(0.592199\pi\)
\(444\) 9.70248 + 3.08381i 0.460459 + 0.146351i
\(445\) −3.96792 −0.188097
\(446\) −3.55022 −0.168108
\(447\) 4.57860 14.4055i 0.216560 0.681357i
\(448\) 0.538189 + 0.538189i 0.0254270 + 0.0254270i
\(449\) 3.22808 + 3.22808i 0.152343 + 0.152343i 0.779163 0.626821i \(-0.215644\pi\)
−0.626821 + 0.779163i \(0.715644\pi\)
\(450\) −13.6981 + 2.35022i −0.645733 + 0.110790i
\(451\) 37.2709 1.75502
\(452\) 6.97128 0.327901
\(453\) 12.8857 40.5420i 0.605425 1.90483i
\(454\) 5.02672i 0.235916i
\(455\) 0 0
\(456\) −2.71617 5.24723i −0.127196 0.245724i
\(457\) −18.5918 18.5918i −0.869687 0.869687i 0.122750 0.992438i \(-0.460829\pi\)
−0.992438 + 0.122750i \(0.960829\pi\)
\(458\) 16.1064i 0.752602i
\(459\) 3.74587 27.0069i 0.174842 1.26057i
\(460\) −0.799880 0.799880i −0.0372946 0.0372946i
\(461\) 10.6532 10.6532i 0.496168 0.496168i −0.414075 0.910243i \(-0.635895\pi\)
0.910243 + 0.414075i \(0.135895\pi\)
\(462\) −1.67809 + 5.27972i −0.0780719 + 0.245635i
\(463\) −12.8578 + 12.8578i −0.597552 + 0.597552i −0.939661 0.342108i \(-0.888859\pi\)
0.342108 + 0.939661i \(0.388859\pi\)
\(464\) 8.70629i 0.404180i
\(465\) 3.53617 1.83046i 0.163986 0.0848854i
\(466\) 15.8255 15.8255i 0.733103 0.733103i
\(467\) 12.7104 0.588168 0.294084 0.955780i \(-0.404985\pi\)
0.294084 + 0.955780i \(0.404985\pi\)
\(468\) 0 0
\(469\) 0.0797460 0.00368233
\(470\) 3.47536 3.47536i 0.160306 0.160306i
\(471\) −17.0298 + 8.81527i −0.784692 + 0.406186i
\(472\) 8.63979i 0.397679i
\(473\) 5.79555 5.79555i 0.266480 0.266480i
\(474\) −7.12498 + 22.4171i −0.327261 + 1.02965i
\(475\) −11.1749 + 11.1749i −0.512739 + 0.512739i
\(476\) 2.82400 + 2.82400i 0.129438 + 0.129438i
\(477\) 22.0822 + 15.6145i 1.01107 + 0.714937i
\(478\) 8.60176i 0.393435i
\(479\) −25.3340 25.3340i −1.15754 1.15754i −0.985003 0.172535i \(-0.944804\pi\)
−0.172535 0.985003i \(-0.555196\pi\)
\(480\) 0.482527 + 0.932171i 0.0220242 + 0.0425476i
\(481\) 0 0
\(482\) 6.14555i 0.279922i
\(483\) −0.745370 + 2.34513i −0.0339155 + 0.106707i
\(484\) 6.66025 0.302739
\(485\) 9.54474 0.433404
\(486\) −15.5804 + 0.500258i −0.706743 + 0.0226921i
\(487\) −4.75849 4.75849i −0.215628 0.215628i 0.591025 0.806653i \(-0.298723\pi\)
−0.806653 + 0.591025i \(0.798723\pi\)
\(488\) −5.74921 5.74921i −0.260255 0.260255i
\(489\) −2.75726 + 8.67507i −0.124688 + 0.392300i
\(490\) −3.89106 −0.175780
\(491\) 29.8138 1.34548 0.672740 0.739879i \(-0.265117\pi\)
0.672740 + 0.739879i \(0.265117\pi\)
\(492\) −14.6398 4.65306i −0.660011 0.209776i
\(493\) 45.6839i 2.05750i
\(494\) 0 0
\(495\) −4.41108 + 6.23821i −0.198263 + 0.280387i
\(496\) 2.68240 + 2.68240i 0.120443 + 0.120443i
\(497\) 7.93867i 0.356098i
\(498\) 1.12257 + 2.16864i 0.0503036 + 0.0971791i
\(499\) 25.5487 + 25.5487i 1.14372 + 1.14372i 0.987764 + 0.155954i \(0.0498453\pi\)
0.155954 + 0.987764i \(0.450155\pi\)
\(500\) 4.12782 4.12782i 0.184602 0.184602i
\(501\) −25.9630 8.25202i −1.15994 0.368673i
\(502\) −8.87855 + 8.87855i −0.396269 + 0.396269i
\(503\) 42.5984i 1.89937i −0.313210 0.949684i \(-0.601404\pi\)
0.313210 0.949684i \(-0.398596\pi\)
\(504\) 1.31829 1.86434i 0.0587212 0.0830444i
\(505\) −1.40238 + 1.40238i −0.0624049 + 0.0624049i
\(506\) 7.84427 0.348720
\(507\) 0 0
\(508\) 2.23497 0.0991607
\(509\) 11.9455 11.9455i 0.529477 0.529477i −0.390940 0.920416i \(-0.627850\pi\)
0.920416 + 0.390940i \(0.127850\pi\)
\(510\) 2.53193 + 4.89131i 0.112116 + 0.216591i
\(511\) 6.00410i 0.265606i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −14.1371 + 10.6931i −0.624167 + 0.472112i
\(514\) 3.35014 3.35014i 0.147768 0.147768i
\(515\) −2.05638 2.05638i −0.0906150 0.0906150i
\(516\) −3.00000 + 1.55291i −0.132068 + 0.0683632i
\(517\) 34.0822i 1.49893i
\(518\) 3.16340 + 3.16340i 0.138992 + 0.138992i
\(519\) −8.34271 + 4.31851i −0.366204 + 0.189561i
\(520\) 0 0
\(521\) 18.8358i 0.825213i 0.910909 + 0.412607i \(0.135382\pi\)
−0.910909 + 0.412607i \(0.864618\pi\)
\(522\) −25.7427 + 4.41675i −1.12673 + 0.193316i
\(523\) −11.9533 −0.522683 −0.261342 0.965246i \(-0.584165\pi\)
−0.261342 + 0.965246i \(0.584165\pi\)
\(524\) −22.0856 −0.964813
\(525\) −5.82037 1.84993i −0.254022 0.0807376i
\(526\) 4.00855 + 4.00855i 0.174781 + 0.174781i
\(527\) 14.0752 + 14.0752i 0.613123 + 0.613123i
\(528\) −6.93684 2.20478i −0.301887 0.0959509i
\(529\) −19.5158 −0.848511
\(530\) −5.46326 −0.237309
\(531\) −25.5461 + 4.38302i −1.10861 + 0.190207i
\(532\) 2.59639i 0.112568i
\(533\) 0 0
\(534\) −10.0713 + 5.21331i −0.435829 + 0.225602i
\(535\) 1.33915 + 1.33915i 0.0578964 + 0.0578964i
\(536\) 0.104775i 0.00452561i
\(537\) −15.9677 + 8.26548i −0.689057 + 0.356682i
\(538\) −5.16606 5.16606i −0.222725 0.222725i
\(539\) 19.0795 19.0795i 0.821811 0.821811i
\(540\) 2.51145 1.89963i 0.108076 0.0817470i
\(541\) 13.7056 13.7056i 0.589250 0.589250i −0.348179 0.937428i \(-0.613200\pi\)
0.937428 + 0.348179i \(0.113200\pi\)
\(542\) 24.5279i 1.05356i
\(543\) −8.85179 17.1003i −0.379867 0.733846i
\(544\) −3.71035 + 3.71035i −0.159080 + 0.159080i
\(545\) −0.783330 −0.0335542
\(546\) 0 0
\(547\) −14.6259 −0.625359 −0.312679 0.949859i \(-0.601227\pi\)
−0.312679 + 0.949859i \(0.601227\pi\)
\(548\) −7.05984 + 7.05984i −0.301581 + 0.301581i
\(549\) −14.0826 + 19.9159i −0.601032 + 0.849988i
\(550\) 19.4687i 0.830147i
\(551\) −21.0009 + 21.0009i −0.894670 + 0.894670i
\(552\) −3.08118 0.979314i −0.131144 0.0416824i
\(553\) −7.30888 + 7.30888i −0.310805 + 0.310805i
\(554\) 6.18454 + 6.18454i 0.262756 + 0.262756i
\(555\) 2.83623 + 5.47918i 0.120391 + 0.232578i
\(556\) 3.76503i 0.159673i
\(557\) 0.855215 + 0.855215i 0.0362366 + 0.0362366i 0.724993 0.688756i \(-0.241843\pi\)
−0.688756 + 0.724993i \(0.741843\pi\)
\(558\) 6.57050 9.29209i 0.278152 0.393366i
\(559\) 0 0
\(560\) 0.461249i 0.0194913i
\(561\) −36.3992 11.5690i −1.53677 0.488444i
\(562\) −13.4290 −0.566467
\(563\) 24.4117 1.02883 0.514416 0.857541i \(-0.328009\pi\)
0.514416 + 0.857541i \(0.328009\pi\)
\(564\) 4.25497 13.3873i 0.179167 0.563705i
\(565\) 2.98733 + 2.98733i 0.125678 + 0.125678i
\(566\) 22.2287 + 22.2287i 0.934342 + 0.934342i
\(567\) −6.18125 2.95212i −0.259588 0.123977i
\(568\) −10.4303 −0.437647
\(569\) −5.97665 −0.250554 −0.125277 0.992122i \(-0.539982\pi\)
−0.125277 + 0.992122i \(0.539982\pi\)
\(570\) 1.08461 3.41247i 0.0454293 0.142933i
\(571\) 35.8068i 1.49847i 0.662307 + 0.749233i \(0.269578\pi\)
−0.662307 + 0.749233i \(0.730422\pi\)
\(572\) 0 0
\(573\) −4.56431 8.81758i −0.190677 0.368360i
\(574\) −4.77316 4.77316i −0.199228 0.199228i
\(575\) 8.64753i 0.360627i
\(576\) 2.44949 + 1.73205i 0.102062 + 0.0721688i
\(577\) 13.8142 + 13.8142i 0.575094 + 0.575094i 0.933548 0.358453i \(-0.116696\pi\)
−0.358453 + 0.933548i \(0.616696\pi\)
\(578\) −7.44826 + 7.44826i −0.309807 + 0.309807i
\(579\) 5.95181 18.7260i 0.247349 0.778225i
\(580\) 3.73082 3.73082i 0.154914 0.154914i
\(581\) 1.07307i 0.0445184i
\(582\) 24.2263 12.5405i 1.00421 0.519820i
\(583\) 26.7886 26.7886i 1.10947 1.10947i
\(584\) 7.88857 0.326431
\(585\) 0 0
\(586\) 2.09484 0.0865371
\(587\) −10.9112 + 10.9112i −0.450353 + 0.450353i −0.895472 0.445119i \(-0.853162\pi\)
0.445119 + 0.895472i \(0.353162\pi\)
\(588\) −9.87626 + 5.11233i −0.407290 + 0.210829i
\(589\) 12.9407i 0.533213i
\(590\) 3.70232 3.70232i 0.152422 0.152422i
\(591\) 2.45702 7.73044i 0.101068 0.317988i
\(592\) −4.15628 + 4.15628i −0.170822 + 0.170822i
\(593\) −19.1066 19.1066i −0.784613 0.784613i 0.195992 0.980605i \(-0.437207\pi\)
−0.980605 + 0.195992i \(0.937207\pi\)
\(594\) −3.00000 + 21.6293i −0.123091 + 0.887461i
\(595\) 2.42028i 0.0992218i
\(596\) 6.17093 + 6.17093i 0.252771 + 0.252771i
\(597\) −10.2734 19.8468i −0.420464 0.812275i
\(598\) 0 0
\(599\) 15.6579i 0.639764i −0.947457 0.319882i \(-0.896357\pi\)
0.947457 0.319882i \(-0.103643\pi\)
\(600\) 2.43056 7.64717i 0.0992271 0.312195i
\(601\) −13.3171 −0.543217 −0.271609 0.962408i \(-0.587556\pi\)
−0.271609 + 0.962408i \(0.587556\pi\)
\(602\) −1.48444 −0.0605011
\(603\) 0.309799 0.0531532i 0.0126160 0.00216456i
\(604\) 17.3671 + 17.3671i 0.706657 + 0.706657i
\(605\) 2.85405 + 2.85405i 0.116034 + 0.116034i
\(606\) −1.71696 + 5.40202i −0.0697469 + 0.219442i
\(607\) 12.2930 0.498957 0.249479 0.968380i \(-0.419741\pi\)
0.249479 + 0.968380i \(0.419741\pi\)
\(608\) 3.41130 0.138347
\(609\) −10.9382 3.47657i −0.443238 0.140878i
\(610\) 4.92730i 0.199501i
\(611\) 0 0
\(612\) 12.8530 + 9.08847i 0.519553 + 0.367380i
\(613\) 7.60371 + 7.60371i 0.307111 + 0.307111i 0.843788 0.536677i \(-0.180321\pi\)
−0.536677 + 0.843788i \(0.680321\pi\)
\(614\) 2.70595i 0.109203i
\(615\) −4.27950 8.26735i −0.172566 0.333372i
\(616\) −2.26169 2.26169i −0.0911261 0.0911261i
\(617\) −8.90722 + 8.90722i −0.358591 + 0.358591i −0.863294 0.504702i \(-0.831602\pi\)
0.504702 + 0.863294i \(0.331602\pi\)
\(618\) −7.92129 2.51768i −0.318641 0.101276i
\(619\) −5.08096 + 5.08096i −0.204221 + 0.204221i −0.801806 0.597585i \(-0.796127\pi\)
0.597585 + 0.801806i \(0.296127\pi\)
\(620\) 2.29892i 0.0923268i
\(621\) −1.33253 + 9.60723i −0.0534726 + 0.385525i
\(622\) −5.08660 + 5.08660i −0.203954 + 0.203954i
\(623\) −4.98342 −0.199656
\(624\) 0 0
\(625\) −19.6260 −0.785040
\(626\) 10.3605 10.3605i 0.414090 0.414090i
\(627\) 11.4144 + 22.0510i 0.455849 + 0.880633i
\(628\) 11.0713i 0.441794i
\(629\) −21.8090 + 21.8090i −0.869580 + 0.869580i
\(630\) 1.36382 0.233994i 0.0543359 0.00932256i
\(631\) 17.5431 17.5431i 0.698378 0.698378i −0.265682 0.964061i \(-0.585597\pi\)
0.964061 + 0.265682i \(0.0855973\pi\)
\(632\) −9.60287 9.60287i −0.381982 0.381982i
\(633\) 8.12099 4.20373i 0.322780 0.167083i
\(634\) 5.55894i 0.220774i
\(635\) 0.957728 + 0.957728i 0.0380063 + 0.0380063i
\(636\) −13.8668 + 7.17798i −0.549854 + 0.284625i
\(637\) 0 0
\(638\) 36.5874i 1.44851i
\(639\) 5.29137 + 30.8404i 0.209323 + 1.22003i
\(640\) −0.606018 −0.0239550
\(641\) −11.8520 −0.468127 −0.234064 0.972221i \(-0.575202\pi\)
−0.234064 + 0.972221i \(0.575202\pi\)
\(642\) 5.15846 + 1.63955i 0.203588 + 0.0647079i
\(643\) −19.6347 19.6347i −0.774319 0.774319i 0.204540 0.978858i \(-0.434430\pi\)
−0.978858 + 0.204540i \(0.934430\pi\)
\(644\) −1.00459 1.00459i −0.0395864 0.0395864i
\(645\) −1.95101 0.620105i −0.0768211 0.0244166i
\(646\) 17.8999 0.704262
\(647\) −19.6923 −0.774182 −0.387091 0.922041i \(-0.626520\pi\)
−0.387091 + 0.922041i \(0.626520\pi\)
\(648\) 3.87868 8.12132i 0.152369 0.319036i
\(649\) 36.3079i 1.42521i
\(650\) 0 0
\(651\) 4.44117 2.29892i 0.174063 0.0901017i
\(652\) −3.71617 3.71617i −0.145536 0.145536i
\(653\) 48.6132i 1.90238i −0.308602 0.951191i \(-0.599861\pi\)
0.308602 0.951191i \(-0.400139\pi\)
\(654\) −1.98824 + 1.02919i −0.0777464 + 0.0402445i
\(655\) −9.46410 9.46410i −0.369793 0.369793i
\(656\) 6.27128 6.27128i 0.244852 0.244852i
\(657\) −4.00192 23.3249i −0.156130 0.909991i
\(658\) 4.36479 4.36479i 0.170157 0.170157i
\(659\) 3.70793i 0.144440i 0.997389 + 0.0722202i \(0.0230084\pi\)
−0.997389 + 0.0722202i \(0.976992\pi\)
\(660\) −2.02778 3.91736i −0.0789311 0.152483i
\(661\) 4.54658 4.54658i 0.176842 0.176842i −0.613136 0.789977i \(-0.710092\pi\)
0.789977 + 0.613136i \(0.210092\pi\)
\(662\) 19.7529 0.767720
\(663\) 0 0
\(664\) −1.40987 −0.0547134
\(665\) 1.11261 1.11261i 0.0431450 0.0431450i
\(666\) 14.3978 + 10.1808i 0.557902 + 0.394497i
\(667\) 16.2513i 0.629252i
\(668\) 11.1219 11.1219i 0.430318 0.430318i
\(669\) −5.86029 1.86262i −0.226572 0.0720129i
\(670\) −0.0448983 + 0.0448983i −0.00173457 + 0.00173457i
\(671\) 24.1605 + 24.1605i 0.932708 + 0.932708i
\(672\) 0.606018 + 1.17074i 0.0233777 + 0.0451622i
\(673\) 5.93825i 0.228903i −0.993429 0.114451i \(-0.963489\pi\)
0.993429 0.114451i \(-0.0365110\pi\)
\(674\) −11.5887 11.5887i −0.446381 0.446381i
\(675\) −23.8442 3.30720i −0.917763 0.127294i
\(676\) 0 0
\(677\) 24.5297i 0.942753i 0.881932 + 0.471376i \(0.156243\pi\)
−0.881932 + 0.471376i \(0.843757\pi\)
\(678\) 11.5073 + 3.65746i 0.441937 + 0.140464i
\(679\) 11.9875 0.460037
\(680\) −3.17992 −0.121944
\(681\) −2.63726 + 8.29751i −0.101060 + 0.317961i
\(682\) −11.2725 11.2725i −0.431647 0.431647i
\(683\) 18.9705 + 18.9705i 0.725885 + 0.725885i 0.969797 0.243912i \(-0.0784308\pi\)
−0.243912 + 0.969797i \(0.578431\pi\)
\(684\) −1.73057 10.0865i −0.0661702 0.385668i
\(685\) −6.05056 −0.231180
\(686\) −10.2147 −0.389999
\(687\) −8.45018 + 26.5865i −0.322394 + 1.01434i
\(688\) 1.95035i 0.0743562i
\(689\) 0 0
\(690\) −0.900691 1.74000i −0.0342887 0.0662407i
\(691\) 7.45140 + 7.45140i 0.283464 + 0.283464i 0.834489 0.551025i \(-0.185763\pi\)
−0.551025 + 0.834489i \(0.685763\pi\)
\(692\) 5.42372i 0.206179i
\(693\) −5.53999 + 7.83473i −0.210447 + 0.297617i
\(694\) −15.2907 15.2907i −0.580427 0.580427i
\(695\) −1.61339 + 1.61339i −0.0611994 + 0.0611994i
\(696\) 4.56774 14.3713i 0.173140 0.544743i
\(697\) 32.9068 32.9068i 1.24644 1.24644i
\(698\) 1.94721i 0.0737029i
\(699\) 34.4257 17.8201i 1.30210 0.674016i
\(700\) 2.49329 2.49329i 0.0942375 0.0942375i
\(701\) 48.3500 1.82616 0.913078 0.407785i \(-0.133699\pi\)
0.913078 + 0.407785i \(0.133699\pi\)
\(702\) 0 0
\(703\) 20.0512 0.756245
\(704\) 2.97155 2.97155i 0.111995 0.111995i
\(705\) 7.56004 3.91337i 0.284728 0.147386i
\(706\) 23.2737i 0.875919i
\(707\) −1.76128 + 1.76128i −0.0662397 + 0.0662397i
\(708\) 4.53284 14.2615i 0.170355 0.535981i
\(709\) −20.8103 + 20.8103i −0.781546 + 0.781546i −0.980092 0.198545i \(-0.936378\pi\)
0.198545 + 0.980092i \(0.436378\pi\)
\(710\) −4.46960 4.46960i −0.167741 0.167741i
\(711\) −23.5221 + 33.2653i −0.882149 + 1.24755i
\(712\) 6.54753i 0.245379i
\(713\) −5.00699 5.00699i −0.187513 0.187513i
\(714\) 3.17992 + 6.14313i 0.119005 + 0.229901i
\(715\) 0 0
\(716\) 10.3808i 0.387950i
\(717\) −4.51289 + 14.1988i −0.168537 + 0.530262i
\(718\) 22.4661 0.838428
\(719\) −42.8472 −1.59793 −0.798966 0.601376i \(-0.794619\pi\)
−0.798966 + 0.601376i \(0.794619\pi\)
\(720\) 0.307437 + 1.79187i 0.0114575 + 0.0667791i
\(721\) −2.58266 2.58266i −0.0961834 0.0961834i
\(722\) 5.20643 + 5.20643i 0.193763 + 0.193763i
\(723\) 3.22425 10.1443i 0.119911 0.377272i
\(724\) 11.1172 0.413167
\(725\) −40.3340 −1.49797
\(726\) 10.9939 + 3.49429i 0.408024 + 0.129685i
\(727\) 1.92620i 0.0714389i −0.999362 0.0357194i \(-0.988628\pi\)
0.999362 0.0357194i \(-0.0113723\pi\)
\(728\) 0 0
\(729\) −25.9808 7.34847i −0.962250 0.272166i
\(730\) 3.38041 + 3.38041i 0.125115 + 0.125115i
\(731\) 10.2339i 0.378515i
\(732\) −6.47380 12.5064i −0.239279 0.462251i
\(733\) −22.6065 22.6065i −0.834990 0.834990i 0.153204 0.988195i \(-0.451041\pi\)
−0.988195 + 0.153204i \(0.951041\pi\)
\(734\) −0.425510 + 0.425510i −0.0157059 + 0.0157059i
\(735\) −6.42290 2.04144i −0.236912 0.0752996i
\(736\) 1.31989 1.31989i 0.0486519 0.0486519i
\(737\) 0.440309i 0.0162190i
\(738\) −21.7243 15.3614i −0.799684 0.565462i
\(739\) −1.02751 + 1.02751i −0.0377976 + 0.0377976i −0.725753 0.687955i \(-0.758508\pi\)
0.687955 + 0.725753i \(0.258508\pi\)
\(740\) −3.56209 −0.130945
\(741\) 0 0
\(742\) −6.86145 −0.251892
\(743\) 26.1830 26.1830i 0.960561 0.960561i −0.0386900 0.999251i \(-0.512318\pi\)
0.999251 + 0.0386900i \(0.0123185\pi\)
\(744\) 3.02047 + 5.83509i 0.110736 + 0.213925i
\(745\) 5.28873i 0.193764i
\(746\) −8.07209 + 8.07209i −0.295540 + 0.295540i
\(747\) 0.715233 + 4.16869i 0.0261690 + 0.152524i
\(748\) 15.5924 15.5924i 0.570116 0.570116i
\(749\) 1.68187 + 1.68187i 0.0614542 + 0.0614542i
\(750\) 8.97936 4.64806i 0.327880 0.169723i
\(751\) 15.3439i 0.559906i 0.960014 + 0.279953i \(0.0903188\pi\)
−0.960014 + 0.279953i \(0.909681\pi\)
\(752\) 5.73474 + 5.73474i 0.209124 + 0.209124i
\(753\) −19.3138 + 9.99753i −0.703832 + 0.364330i
\(754\) 0 0
\(755\) 14.8843i 0.541694i
\(756\) 3.15419 2.38579i 0.114717 0.0867705i
\(757\) 22.4708 0.816715 0.408357 0.912822i \(-0.366102\pi\)
0.408357 + 0.912822i \(0.366102\pi\)
\(758\) 37.5646 1.36441
\(759\) 12.9484 + 4.11548i 0.469997 + 0.149382i
\(760\) 1.46181 + 1.46181i 0.0530255 + 0.0530255i
\(761\) −0.574247 0.574247i −0.0208164 0.0208164i 0.696622 0.717438i \(-0.254686\pi\)
−0.717438 + 0.696622i \(0.754686\pi\)
\(762\) 3.68922 + 1.17257i 0.133646 + 0.0424777i
\(763\) −0.983805 −0.0356161
\(764\) 5.73244 0.207392
\(765\) 1.61319 + 9.40237i 0.0583251 + 0.339943i
\(766\) 12.6331i 0.456451i
\(767\) 0 0
\(768\) −1.53819 + 0.796225i −0.0555046 + 0.0287313i
\(769\) 8.84388 + 8.84388i 0.318918 + 0.318918i 0.848352 0.529433i \(-0.177595\pi\)
−0.529433 + 0.848352i \(0.677595\pi\)
\(770\) 1.93836i 0.0698536i
\(771\) 7.28766 3.77237i 0.262458 0.135859i
\(772\) 8.02170 + 8.02170i 0.288707 + 0.288707i
\(773\) 10.7358 10.7358i 0.386139 0.386139i −0.487169 0.873308i \(-0.661970\pi\)
0.873308 + 0.487169i \(0.161970\pi\)
\(774\) −5.76677 + 0.989422i −0.207282 + 0.0355640i
\(775\) 12.4268 12.4268i 0.446386 0.446386i
\(776\) 15.7499i 0.565389i
\(777\) 3.56209 + 6.88144i 0.127789 + 0.246870i
\(778\) −13.3098 + 13.3098i −0.477180 + 0.477180i
\(779\) −30.2546 −1.08398
\(780\) 0 0
\(781\) 43.8325 1.56845
\(782\) 6.92579 6.92579i 0.247666 0.247666i
\(783\) −44.8103 6.21521i −1.60139 0.222114i
\(784\) 6.42071i 0.229311i
\(785\) 4.74428 4.74428i 0.169331 0.169331i
\(786\) −36.4562 11.5871i −1.30035 0.413300i
\(787\) 19.7245 19.7245i 0.703104 0.703104i −0.261972 0.965076i \(-0.584373\pi\)
0.965076 + 0.261972i \(0.0843727\pi\)
\(788\) 3.31151 + 3.31151i 0.117968 + 0.117968i
\(789\) 4.51376 + 8.71991i 0.160694 + 0.310437i
\(790\) 8.23004i 0.292812i
\(791\) 3.75186 + 3.75186i 0.133401 + 0.133401i
\(792\) −10.2938 7.27879i −0.365773 0.258640i
\(793\) 0 0
\(794\) 11.9340i 0.423521i
\(795\) −9.01810 2.86629i −0.319839 0.101657i
\(796\) 12.9027 0.457324
\(797\) 43.8082 1.55177 0.775883 0.630877i \(-0.217305\pi\)
0.775883 + 0.630877i \(0.217305\pi\)
\(798\) 1.36219 4.28581i 0.0482210 0.151716i
\(799\) 30.0915 + 30.0915i 1.06456 + 1.06456i
\(800\) 3.27584 + 3.27584i 0.115819 + 0.115819i
\(801\) −19.3597 + 3.32160i −0.684041 + 0.117363i
\(802\) −24.2212 −0.855280
\(803\) −33.1510 −1.16987
\(804\) −0.0549702 + 0.172951i −0.00193865 + 0.00609950i
\(805\) 0.860973i 0.0303453i
\(806\) 0 0
\(807\) −5.81715 11.2379i −0.204773 0.395592i
\(808\) −2.31408 2.31408i −0.0814091 0.0814091i
\(809\) 0.388416i 0.0136560i −0.999977 0.00682798i \(-0.997827\pi\)
0.999977 0.00682798i \(-0.00217343\pi\)
\(810\) 5.14224 1.81805i 0.180680 0.0638799i
\(811\) −5.70744 5.70744i −0.200415 0.200415i 0.599763 0.800178i \(-0.295262\pi\)
−0.800178 + 0.599763i \(0.795262\pi\)
\(812\) 4.68563 4.68563i 0.164433 0.164433i
\(813\) 12.8685 40.4878i 0.451319 1.41997i
\(814\) 17.4664 17.4664i 0.612197 0.612197i
\(815\) 3.18490i 0.111562i
\(816\) −8.07123 + 4.17798i −0.282550 + 0.146258i
\(817\) −4.70454 + 4.70454i −0.164591 + 0.164591i
\(818\) −26.8311 −0.938128
\(819\) 0 0
\(820\) 5.37473 0.187694
\(821\) −24.1892 + 24.1892i −0.844207 + 0.844207i −0.989403 0.145196i \(-0.953619\pi\)
0.145196 + 0.989403i \(0.453619\pi\)
\(822\) −15.3575 + 7.94960i −0.535653 + 0.277274i
\(823\) 37.3184i 1.30084i 0.759576 + 0.650418i \(0.225406\pi\)
−0.759576 + 0.650418i \(0.774594\pi\)
\(824\) 3.39327 3.39327i 0.118210 0.118210i
\(825\) −10.2142 + 32.1366i −0.355613 + 1.11885i
\(826\) 4.64984 4.64984i 0.161789 0.161789i
\(827\) 8.16295 + 8.16295i 0.283854 + 0.283854i 0.834644 0.550790i \(-0.185674\pi\)
−0.550790 + 0.834644i \(0.685674\pi\)
\(828\) −4.57225 3.23307i −0.158897 0.112357i
\(829\) 32.5422i 1.13024i −0.825010 0.565118i \(-0.808831\pi\)
0.825010 0.565118i \(-0.191169\pi\)
\(830\) −0.604155 0.604155i −0.0209705 0.0209705i
\(831\) 6.96399 + 13.4534i 0.241578 + 0.466693i
\(832\) 0 0
\(833\) 33.6909i 1.16732i
\(834\) −1.97532 + 6.21486i −0.0683996 + 0.215203i
\(835\) 9.53187 0.329864
\(836\) −14.3357 −0.495811
\(837\) 15.7209 11.8911i 0.543393 0.411016i
\(838\) 7.66272 + 7.66272i 0.264704 + 0.264704i
\(839\) 9.51383 + 9.51383i 0.328454 + 0.328454i 0.851998 0.523544i \(-0.175391\pi\)
−0.523544 + 0.851998i \(0.675391\pi\)
\(840\) −0.241993 + 0.761375i −0.00834956 + 0.0262699i
\(841\) −46.7996 −1.61378
\(842\) 32.3832 1.11600
\(843\) −22.1669 7.04547i −0.763469 0.242659i
\(844\) 5.27958i 0.181731i
\(845\) 0 0
\(846\) 14.0472 19.8657i 0.482952 0.682998i
\(847\) 3.58448 + 3.58448i 0.123164 + 0.123164i
\(848\) 9.01501i 0.309577i
\(849\) 25.0302 + 48.3547i 0.859035 + 1.65953i
\(850\) 17.1891 + 17.1891i 0.589581 + 0.589581i
\(851\) 7.75816 7.75816i 0.265946 0.265946i
\(852\) −17.2171 5.47225i −0.589850 0.187476i
\(853\) −8.09779 + 8.09779i −0.277263 + 0.277263i −0.832015 0.554752i \(-0.812813\pi\)
0.554752 + 0.832015i \(0.312813\pi\)
\(854\) 6.18833i 0.211760i
\(855\) 3.58069 5.06386i 0.122457 0.173180i
\(856\) −2.20975 + 2.20975i −0.0755276 + 0.0755276i
\(857\) 2.81672 0.0962173 0.0481086 0.998842i \(-0.484681\pi\)
0.0481086 + 0.998842i \(0.484681\pi\)
\(858\) 0 0
\(859\) 18.5174 0.631807 0.315903 0.948791i \(-0.397692\pi\)
0.315903 + 0.948791i \(0.397692\pi\)
\(860\) 0.835761 0.835761i 0.0284992 0.0284992i
\(861\) −5.37473 10.3832i −0.183170 0.353858i
\(862\) 33.5647i 1.14322i
\(863\) 16.9992 16.9992i 0.578658 0.578658i −0.355875 0.934534i \(-0.615817\pi\)
0.934534 + 0.355875i \(0.115817\pi\)
\(864\) 3.13461 + 4.14418i 0.106642 + 0.140988i
\(865\) 2.32417 2.32417i 0.0790242 0.0790242i
\(866\) 16.7982 + 16.7982i 0.570825 + 0.570825i
\(867\) −16.2024 + 8.38698i −0.550263 + 0.284837i
\(868\) 2.88727i 0.0980004i
\(869\) 40.3552 + 40.3552i 1.36896 + 1.36896i
\(870\) 8.11575 4.20102i 0.275150 0.142428i
\(871\) 0 0
\(872\) 1.29259i 0.0437725i
\(873\) 46.5693 7.99003i 1.57613 0.270421i
\(874\) −6.36758 −0.215387
\(875\) 4.44309 0.150204
\(876\) 13.0215 + 4.13872i 0.439956 + 0.139834i
\(877\) −21.8195 21.8195i −0.736793 0.736793i 0.235163 0.971956i \(-0.424438\pi\)
−0.971956 + 0.235163i \(0.924438\pi\)
\(878\) 10.5121 + 10.5121i 0.354766 + 0.354766i
\(879\) 3.45791 + 1.09905i 0.116633 + 0.0370702i
\(880\) 2.54674 0.0858505
\(881\) 46.2624 1.55862 0.779310 0.626638i \(-0.215570\pi\)
0.779310 + 0.626638i \(0.215570\pi\)
\(882\) −18.9847 + 3.25726i −0.639249 + 0.109678i
\(883\) 31.0867i 1.04615i −0.852286 0.523076i \(-0.824784\pi\)
0.852286 0.523076i \(-0.175216\pi\)
\(884\) 0 0
\(885\) 8.05376 4.16893i 0.270724 0.140137i
\(886\) −28.5258 28.5258i −0.958343 0.958343i
\(887\) 36.2495i 1.21714i −0.793500 0.608570i \(-0.791744\pi\)
0.793500 0.608570i \(-0.208256\pi\)
\(888\) −9.04127 + 4.68011i −0.303405 + 0.157054i
\(889\) 1.20283 + 1.20283i 0.0403418 + 0.0403418i
\(890\) 2.80574 2.80574i 0.0940487 0.0940487i
\(891\) −16.2998 + 34.1291i −0.546064 + 1.14337i
\(892\) 2.51039 2.51039i 0.0840540 0.0840540i
\(893\) 27.6662i 0.925814i
\(894\) 6.94866 + 13.4238i 0.232398 + 0.448959i
\(895\) 4.44839 4.44839i 0.148693 0.148693i
\(896\) −0.761114 −0.0254270
\(897\) 0 0
\(898\) −4.56520 −0.152343
\(899\) 23.3537 23.3537i 0.778891 0.778891i
\(900\) 8.02414 11.3479i 0.267471 0.378262i
\(901\) 47.3038i 1.57592i
\(902\) −26.3545 + 26.3545i −0.877508 + 0.877508i
\(903\) −2.45033 0.778806i −0.0815418 0.0259170i
\(904\) −4.92944 + 4.92944i −0.163951 + 0.163951i
\(905\) 4.76394 + 4.76394i 0.158359 + 0.158359i
\(906\) 19.5559 + 37.7791i 0.649701 + 1.25513i
\(907\) 54.8347i 1.82076i 0.413777 + 0.910378i \(0.364209\pi\)
−0.413777 + 0.910378i \(0.635791\pi\)
\(908\) −3.55443 3.55443i −0.117958 0.117958i
\(909\) −5.66832 + 8.01621i −0.188006 + 0.265881i
\(910\) 0 0
\(911\) 12.4963i 0.414022i −0.978339 0.207011i \(-0.933626\pi\)
0.978339 0.207011i \(-0.0663737\pi\)
\(912\) 5.63097 + 1.78973i 0.186460 + 0.0592640i
\(913\) 5.92484 0.196083
\(914\) 26.2928 0.869687
\(915\) 2.58510 8.13340i 0.0854607 0.268882i
\(916\) −11.3889 11.3889i −0.376301 0.376301i
\(917\) −11.8862 11.8862i −0.392517 0.392517i
\(918\) 16.4480 + 21.7455i 0.542865 + 0.717708i
\(919\) 30.4287 1.00375 0.501874 0.864941i \(-0.332644\pi\)
0.501874 + 0.864941i \(0.332644\pi\)
\(920\) 1.13120 0.0372946
\(921\) −1.41967 + 4.46666i −0.0467797 + 0.147181i
\(922\) 15.0659i 0.496168i
\(923\) 0 0
\(924\) −2.54674 4.91992i −0.0837815 0.161853i
\(925\) 19.2550 + 19.2550i 0.633099 + 0.633099i
\(926\) 18.1837i 0.597552i
\(927\) −11.7546 8.31177i −0.386072 0.272994i
\(928\) 6.15628 + 6.15628i 0.202090 + 0.202090i
\(929\) 8.30768 8.30768i 0.272566 0.272566i −0.557566 0.830132i \(-0.688265\pi\)
0.830132 + 0.557566i \(0.188265\pi\)
\(930\) −1.20612 + 3.79478i −0.0395503 + 0.124436i
\(931\) −15.4877 + 15.4877i −0.507590 + 0.507590i
\(932\) 22.3807i 0.733103i
\(933\) −11.0650 + 5.72768i −0.362253 + 0.187516i
\(934\) −8.98762 + 8.98762i −0.294084 + 0.294084i
\(935\) 13.3633 0.437027
\(936\) 0 0
\(937\) 4.30645 0.140686 0.0703429 0.997523i \(-0.477591\pi\)
0.0703429 + 0.997523i \(0.477591\pi\)
\(938\) −0.0563890 + 0.0563890i −0.00184116 + 0.00184116i
\(939\) 22.5375 11.6663i 0.735485 0.380715i
\(940\) 4.91490i 0.160306i
\(941\) 35.4161 35.4161i 1.15453 1.15453i 0.168897 0.985634i \(-0.445980\pi\)
0.985634 0.168897i \(-0.0540204\pi\)
\(942\) 5.80855 18.2752i 0.189253 0.595439i
\(943\) −11.7060 + 11.7060i −0.381201 + 0.381201i
\(944\) 6.10925 + 6.10925i 0.198839 + 0.198839i
\(945\) 2.37399 + 0.329275i 0.0772260 + 0.0107113i
\(946\) 8.19615i 0.266480i
\(947\) 39.9302 + 39.9302i 1.29756 + 1.29756i 0.930001 + 0.367557i \(0.119806\pi\)
0.367557 + 0.930001i \(0.380194\pi\)
\(948\) −10.8131 20.8894i −0.351195 0.678456i
\(949\) 0 0
\(950\) 15.8037i 0.512739i
\(951\) −2.91649 + 9.17604i −0.0945735 + 0.297553i
\(952\) −3.99374 −0.129438
\(953\) −6.54349 −0.211964 −0.105982 0.994368i \(-0.533799\pi\)
−0.105982 + 0.994368i \(0.533799\pi\)
\(954\) −26.6555 + 4.57337i −0.863005 + 0.148068i
\(955\) 2.45646 + 2.45646i 0.0794893 + 0.0794893i
\(956\) −6.08236 6.08236i −0.196718 0.196718i
\(957\) −19.1955 + 60.3941i −0.620502 + 1.95226i
\(958\) 35.8276 1.15754
\(959\) −7.59905 −0.245386
\(960\) −1.00034 0.317946i −0.0322859 0.0102617i
\(961\) 16.6095i 0.535790i
\(962\) 0 0
\(963\) 7.65478 + 5.41275i 0.246672 + 0.174423i
\(964\) 4.34556 + 4.34556i 0.139961 + 0.139961i
\(965\) 6.87491i 0.221311i
\(966\) −1.13120 2.18531i −0.0363958 0.0703113i
\(967\) −10.8941 10.8941i −0.350332 0.350332i 0.509901 0.860233i \(-0.329682\pi\)
−0.860233 + 0.509901i \(0.829682\pi\)
\(968\) −4.70951 + 4.70951i −0.151369 + 0.151369i
\(969\) 29.5470 + 9.39114i 0.949187 + 0.301687i
\(970\) −6.74915 + 6.74915i −0.216702 + 0.216702i
\(971\) 2.39332i 0.0768053i 0.999262 + 0.0384027i \(0.0122270\pi\)
−0.999262 + 0.0384027i \(0.987773\pi\)
\(972\) 10.6633 11.3708i 0.342025 0.364717i
\(973\) −2.02630 + 2.02630i −0.0649602 + 0.0649602i
\(974\) 6.72951 0.215628
\(975\) 0 0
\(976\) 8.13061 0.260255
\(977\) 23.8091 23.8091i 0.761722 0.761722i −0.214912 0.976633i \(-0.568946\pi\)
0.976633 + 0.214912i \(0.0689464\pi\)
\(978\) −4.18452 8.08388i −0.133806 0.258494i
\(979\) 27.5154i 0.879396i
\(980\) 2.75140 2.75140i 0.0878902 0.0878902i
\(981\) −3.82191 + 0.655736i −0.122024 + 0.0209360i
\(982\) −21.0816 + 21.0816i −0.672740 + 0.672740i
\(983\) −26.5732 26.5732i −0.847553 0.847553i 0.142274 0.989827i \(-0.454558\pi\)
−0.989827 + 0.142274i \(0.954558\pi\)
\(984\) 13.6421 7.06166i 0.434894 0.225117i
\(985\) 2.83810i 0.0904293i
\(986\) 32.3034 + 32.3034i 1.02875 + 1.02875i
\(987\) 9.49485 4.91490i 0.302225 0.156443i
\(988\) 0 0
\(989\) 3.64054i 0.115762i
\(990\) −1.29198 7.53018i −0.0410617 0.239325i
\(991\) 21.7196 0.689947 0.344974 0.938612i \(-0.387888\pi\)
0.344974 + 0.938612i \(0.387888\pi\)
\(992\) −3.79348 −0.120443
\(993\) 32.6058 + 10.3633i 1.03471 + 0.328871i
\(994\) −5.61349 5.61349i −0.178049 0.178049i
\(995\) 5.52906 + 5.52906i 0.175283 + 0.175283i
\(996\) −2.32724 0.739683i −0.0737413 0.0234377i
\(997\) −11.5522 −0.365862 −0.182931 0.983126i \(-0.558559\pi\)
−0.182931 + 0.983126i \(0.558559\pi\)
\(998\) −36.1314 −1.14372
\(999\) 18.4248 + 24.3589i 0.582935 + 0.770683i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.2.g.c.437.1 16
3.2 odd 2 inner 1014.2.g.c.437.5 16
13.3 even 3 78.2.k.a.59.2 yes 16
13.5 odd 4 inner 1014.2.g.c.239.5 16
13.6 odd 12 78.2.k.a.41.4 yes 16
13.8 odd 4 1014.2.g.d.239.1 16
13.12 even 2 1014.2.g.d.437.5 16
39.5 even 4 inner 1014.2.g.c.239.1 16
39.8 even 4 1014.2.g.d.239.5 16
39.29 odd 6 78.2.k.a.59.4 yes 16
39.32 even 12 78.2.k.a.41.2 16
39.38 odd 2 1014.2.g.d.437.1 16
52.3 odd 6 624.2.cn.d.449.2 16
52.19 even 12 624.2.cn.d.353.1 16
156.71 odd 12 624.2.cn.d.353.2 16
156.107 even 6 624.2.cn.d.449.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.k.a.41.2 16 39.32 even 12
78.2.k.a.41.4 yes 16 13.6 odd 12
78.2.k.a.59.2 yes 16 13.3 even 3
78.2.k.a.59.4 yes 16 39.29 odd 6
624.2.cn.d.353.1 16 52.19 even 12
624.2.cn.d.353.2 16 156.71 odd 12
624.2.cn.d.449.1 16 156.107 even 6
624.2.cn.d.449.2 16 52.3 odd 6
1014.2.g.c.239.1 16 39.5 even 4 inner
1014.2.g.c.239.5 16 13.5 odd 4 inner
1014.2.g.c.437.1 16 1.1 even 1 trivial
1014.2.g.c.437.5 16 3.2 odd 2 inner
1014.2.g.d.239.1 16 13.8 odd 4
1014.2.g.d.239.5 16 39.8 even 4
1014.2.g.d.437.1 16 39.38 odd 2
1014.2.g.d.437.5 16 13.12 even 2