Properties

Label 1014.2.g.c.239.3
Level $1014$
Weight $2$
Character 1014.239
Analytic conductor $8.097$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(239,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.9349208943630483456.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 239.3
Root \(0.500000 - 1.74530i\) of defining polynomial
Character \(\chi\) \(=\) 1014.239
Dual form 1014.2.g.c.437.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +(0.796225 - 1.53819i) q^{3} +1.00000i q^{4} +(-2.76293 - 2.76293i) q^{5} +(-1.65068 + 0.524648i) q^{6} +(-1.79623 - 1.79623i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-1.73205 - 2.44949i) q^{9} +3.90738i q^{10} +(-0.412157 + 0.412157i) q^{11} +(1.53819 + 0.796225i) q^{12} +2.54025i q^{14} +(-6.44983 + 2.05000i) q^{15} -1.00000 q^{16} -1.09400 q^{17} +(-0.507306 + 2.95680i) q^{18} +(-0.971553 + 0.971553i) q^{19} +(2.76293 - 2.76293i) q^{20} +(-4.19313 + 1.33273i) q^{21} +0.582877 q^{22} +1.75292 q^{23} +(-0.524648 - 1.65068i) q^{24} +10.2676i q^{25} +(-5.14688 + 0.713876i) q^{27} +(1.79623 - 1.79623i) q^{28} -5.92330i q^{29} +(6.01029 + 3.11115i) q^{30} +(6.49983 - 6.49983i) q^{31} +(0.707107 + 0.707107i) q^{32} +(0.305805 + 0.962144i) q^{33} +(0.773575 + 0.773575i) q^{34} +9.92570i q^{35} +(2.44949 - 1.73205i) q^{36} +(2.18840 + 2.18840i) q^{37} +1.37398 q^{38} -3.90738 q^{40} +(3.74650 + 3.74650i) q^{41} +(3.90738 + 2.02261i) q^{42} +3.76778i q^{43} +(-0.412157 - 0.412157i) q^{44} +(-1.98224 + 11.5533i) q^{45} +(-1.23950 - 1.23950i) q^{46} +(-5.51114 + 5.51114i) q^{47} +(-0.796225 + 1.53819i) q^{48} -0.547150i q^{49} +(7.26029 - 7.26029i) q^{50} +(-0.871071 + 1.68278i) q^{51} -3.04435i q^{53} +(4.14418 + 3.13461i) q^{54} +2.27752 q^{55} -2.54025 q^{56} +(0.720857 + 2.26801i) q^{57} +(-4.18840 + 4.18840i) q^{58} +(-5.99556 + 5.99556i) q^{59} +(-2.05000 - 6.44983i) q^{60} +9.34533 q^{61} -9.19215 q^{62} +(-1.28868 + 7.51099i) q^{63} -1.00000i q^{64} +(0.464102 - 0.896575i) q^{66} +(4.66788 - 4.66788i) q^{67} -1.09400i q^{68} +(1.39572 - 2.69632i) q^{69} +(7.01853 - 7.01853i) q^{70} +(0.601383 + 0.601383i) q^{71} +(-2.95680 - 0.507306i) q^{72} +(-5.18078 - 5.18078i) q^{73} -3.09487i q^{74} +(15.7935 + 8.17533i) q^{75} +(-0.971553 - 0.971553i) q^{76} +1.48065 q^{77} -13.1089 q^{79} +(2.76293 + 2.76293i) q^{80} +(-3.00000 + 8.48528i) q^{81} -5.29835i q^{82} +(-5.15394 - 5.15394i) q^{83} +(-1.33273 - 4.19313i) q^{84} +(3.02265 + 3.02265i) q^{85} +(2.66422 - 2.66422i) q^{86} +(-9.11115 - 4.71628i) q^{87} +0.582877i q^{88} +(-6.85191 + 6.85191i) q^{89} +(9.57108 - 6.76778i) q^{90} +1.75292i q^{92} +(-4.82264 - 15.1733i) q^{93} +7.79393 q^{94} +5.36867 q^{95} +(1.65068 - 0.524648i) q^{96} +(0.433704 - 0.433704i) q^{97} +(-0.386893 + 0.386893i) q^{98} +(1.72345 + 0.295697i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{7} - 24 q^{15} - 16 q^{16} + 32 q^{19} - 24 q^{21} + 16 q^{28} + 16 q^{31} + 24 q^{33} + 24 q^{34} - 8 q^{37} - 48 q^{45} + 48 q^{55} - 24 q^{57} - 24 q^{58} - 24 q^{60} + 48 q^{61} - 48 q^{66}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0.796225 1.53819i 0.459701 0.888074i
\(4\) 1.00000i 0.500000i
\(5\) −2.76293 2.76293i −1.23562 1.23562i −0.961773 0.273849i \(-0.911703\pi\)
−0.273849 0.961773i \(-0.588297\pi\)
\(6\) −1.65068 + 0.524648i −0.673887 + 0.214186i
\(7\) −1.79623 1.79623i −0.678909 0.678909i 0.280844 0.959753i \(-0.409386\pi\)
−0.959753 + 0.280844i \(0.909386\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) −1.73205 2.44949i −0.577350 0.816497i
\(10\) 3.90738i 1.23562i
\(11\) −0.412157 + 0.412157i −0.124270 + 0.124270i −0.766506 0.642237i \(-0.778007\pi\)
0.642237 + 0.766506i \(0.278007\pi\)
\(12\) 1.53819 + 0.796225i 0.444037 + 0.229850i
\(13\) 0 0
\(14\) 2.54025i 0.678909i
\(15\) −6.44983 + 2.05000i −1.66534 + 0.529307i
\(16\) −1.00000 −0.250000
\(17\) −1.09400 −0.265334 −0.132667 0.991161i \(-0.542354\pi\)
−0.132667 + 0.991161i \(0.542354\pi\)
\(18\) −0.507306 + 2.95680i −0.119573 + 0.696923i
\(19\) −0.971553 + 0.971553i −0.222890 + 0.222890i −0.809714 0.586825i \(-0.800378\pi\)
0.586825 + 0.809714i \(0.300378\pi\)
\(20\) 2.76293 2.76293i 0.617811 0.617811i
\(21\) −4.19313 + 1.33273i −0.915017 + 0.290826i
\(22\) 0.582877 0.124270
\(23\) 1.75292 0.365509 0.182755 0.983159i \(-0.441499\pi\)
0.182755 + 0.983159i \(0.441499\pi\)
\(24\) −0.524648 1.65068i −0.107093 0.336944i
\(25\) 10.2676i 2.05352i
\(26\) 0 0
\(27\) −5.14688 + 0.713876i −0.990518 + 0.137386i
\(28\) 1.79623 1.79623i 0.339455 0.339455i
\(29\) 5.92330i 1.09993i −0.835188 0.549965i \(-0.814641\pi\)
0.835188 0.549965i \(-0.185359\pi\)
\(30\) 6.01029 + 3.11115i 1.09732 + 0.568016i
\(31\) 6.49983 6.49983i 1.16740 1.16740i 0.184588 0.982816i \(-0.440905\pi\)
0.982816 0.184588i \(-0.0590950\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0.305805 + 0.962144i 0.0532339 + 0.167488i
\(34\) 0.773575 + 0.773575i 0.132667 + 0.132667i
\(35\) 9.92570i 1.67775i
\(36\) 2.44949 1.73205i 0.408248 0.288675i
\(37\) 2.18840 + 2.18840i 0.359772 + 0.359772i 0.863729 0.503957i \(-0.168123\pi\)
−0.503957 + 0.863729i \(0.668123\pi\)
\(38\) 1.37398 0.222890
\(39\) 0 0
\(40\) −3.90738 −0.617811
\(41\) 3.74650 + 3.74650i 0.585105 + 0.585105i 0.936302 0.351197i \(-0.114225\pi\)
−0.351197 + 0.936302i \(0.614225\pi\)
\(42\) 3.90738 + 2.02261i 0.602922 + 0.312095i
\(43\) 3.76778i 0.574581i 0.957844 + 0.287290i \(0.0927545\pi\)
−0.957844 + 0.287290i \(0.907246\pi\)
\(44\) −0.412157 0.412157i −0.0621349 0.0621349i
\(45\) −1.98224 + 11.5533i −0.295494 + 1.72227i
\(46\) −1.23950 1.23950i −0.182755 0.182755i
\(47\) −5.51114 + 5.51114i −0.803883 + 0.803883i −0.983700 0.179817i \(-0.942449\pi\)
0.179817 + 0.983700i \(0.442449\pi\)
\(48\) −0.796225 + 1.53819i −0.114925 + 0.222018i
\(49\) 0.547150i 0.0781643i
\(50\) 7.26029 7.26029i 1.02676 1.02676i
\(51\) −0.871071 + 1.68278i −0.121974 + 0.235636i
\(52\) 0 0
\(53\) 3.04435i 0.418173i −0.977897 0.209087i \(-0.932951\pi\)
0.977897 0.209087i \(-0.0670490\pi\)
\(54\) 4.14418 + 3.13461i 0.563952 + 0.426566i
\(55\) 2.27752 0.307101
\(56\) −2.54025 −0.339455
\(57\) 0.720857 + 2.26801i 0.0954799 + 0.300405i
\(58\) −4.18840 + 4.18840i −0.549965 + 0.549965i
\(59\) −5.99556 + 5.99556i −0.780556 + 0.780556i −0.979925 0.199369i \(-0.936111\pi\)
0.199369 + 0.979925i \(0.436111\pi\)
\(60\) −2.05000 6.44983i −0.264653 0.832670i
\(61\) 9.34533 1.19655 0.598273 0.801292i \(-0.295854\pi\)
0.598273 + 0.801292i \(0.295854\pi\)
\(62\) −9.19215 −1.16740
\(63\) −1.28868 + 7.51099i −0.162359 + 0.946296i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) 0.464102 0.896575i 0.0571270 0.110361i
\(67\) 4.66788 4.66788i 0.570272 0.570272i −0.361932 0.932204i \(-0.617883\pi\)
0.932204 + 0.361932i \(0.117883\pi\)
\(68\) 1.09400i 0.132667i
\(69\) 1.39572 2.69632i 0.168025 0.324599i
\(70\) 7.01853 7.01853i 0.838875 0.838875i
\(71\) 0.601383 + 0.601383i 0.0713711 + 0.0713711i 0.741891 0.670520i \(-0.233929\pi\)
−0.670520 + 0.741891i \(0.733929\pi\)
\(72\) −2.95680 0.507306i −0.348462 0.0597866i
\(73\) −5.18078 5.18078i −0.606365 0.606365i 0.335629 0.941994i \(-0.391051\pi\)
−0.941994 + 0.335629i \(0.891051\pi\)
\(74\) 3.09487i 0.359772i
\(75\) 15.7935 + 8.17533i 1.82368 + 0.944006i
\(76\) −0.971553 0.971553i −0.111445 0.111445i
\(77\) 1.48065 0.168736
\(78\) 0 0
\(79\) −13.1089 −1.47486 −0.737431 0.675422i \(-0.763961\pi\)
−0.737431 + 0.675422i \(0.763961\pi\)
\(80\) 2.76293 + 2.76293i 0.308905 + 0.308905i
\(81\) −3.00000 + 8.48528i −0.333333 + 0.942809i
\(82\) 5.29835i 0.585105i
\(83\) −5.15394 5.15394i −0.565719 0.565719i 0.365208 0.930926i \(-0.380998\pi\)
−0.930926 + 0.365208i \(0.880998\pi\)
\(84\) −1.33273 4.19313i −0.145413 0.457508i
\(85\) 3.02265 + 3.02265i 0.327852 + 0.327852i
\(86\) 2.66422 2.66422i 0.287290 0.287290i
\(87\) −9.11115 4.71628i −0.976818 0.505638i
\(88\) 0.582877i 0.0621349i
\(89\) −6.85191 + 6.85191i −0.726301 + 0.726301i −0.969881 0.243580i \(-0.921678\pi\)
0.243580 + 0.969881i \(0.421678\pi\)
\(90\) 9.57108 6.76778i 1.00888 0.713386i
\(91\) 0 0
\(92\) 1.75292i 0.182755i
\(93\) −4.82264 15.1733i −0.500084 1.57340i
\(94\) 7.79393 0.803883
\(95\) 5.36867 0.550814
\(96\) 1.65068 0.524648i 0.168472 0.0535466i
\(97\) 0.433704 0.433704i 0.0440360 0.0440360i −0.684746 0.728782i \(-0.740087\pi\)
0.728782 + 0.684746i \(0.240087\pi\)
\(98\) −0.386893 + 0.386893i −0.0390821 + 0.0390821i
\(99\) 1.72345 + 0.295697i 0.173213 + 0.0297187i
\(100\) −10.2676 −1.02676
\(101\) −5.83579 −0.580682 −0.290341 0.956923i \(-0.593769\pi\)
−0.290341 + 0.956923i \(0.593769\pi\)
\(102\) 1.80584 0.573965i 0.178805 0.0568310i
\(103\) 2.07313i 0.204272i 0.994770 + 0.102136i \(0.0325677\pi\)
−0.994770 + 0.102136i \(0.967432\pi\)
\(104\) 0 0
\(105\) 15.2676 + 7.90310i 1.48997 + 0.771263i
\(106\) −2.15268 + 2.15268i −0.209087 + 0.209087i
\(107\) 3.45856i 0.334351i −0.985927 0.167176i \(-0.946535\pi\)
0.985927 0.167176i \(-0.0534647\pi\)
\(108\) −0.713876 5.14688i −0.0686928 0.495259i
\(109\) −10.9901 + 10.9901i −1.05266 + 1.05266i −0.0541251 + 0.998534i \(0.517237\pi\)
−0.998534 + 0.0541251i \(0.982763\pi\)
\(110\) −1.61045 1.61045i −0.153551 0.153551i
\(111\) 5.10864 1.62372i 0.484891 0.154116i
\(112\) 1.79623 + 1.79623i 0.169727 + 0.169727i
\(113\) 10.8971i 1.02512i −0.858653 0.512558i \(-0.828698\pi\)
0.858653 0.512558i \(-0.171302\pi\)
\(114\) 1.09400 2.11345i 0.102463 0.197942i
\(115\) −4.84320 4.84320i −0.451631 0.451631i
\(116\) 5.92330 0.549965
\(117\) 0 0
\(118\) 8.47900 0.780556
\(119\) 1.96507 + 1.96507i 0.180138 + 0.180138i
\(120\) −3.11115 + 6.01029i −0.284008 + 0.548662i
\(121\) 10.6603i 0.969114i
\(122\) −6.60814 6.60814i −0.598273 0.598273i
\(123\) 8.74588 2.77977i 0.788589 0.250643i
\(124\) 6.49983 + 6.49983i 0.583702 + 0.583702i
\(125\) 14.5541 14.5541i 1.30175 1.30175i
\(126\) 6.22231 4.39984i 0.554327 0.391968i
\(127\) 9.31325i 0.826417i −0.910636 0.413209i \(-0.864408\pi\)
0.910636 0.413209i \(-0.135592\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 5.79555 + 3.00000i 0.510270 + 0.264135i
\(130\) 0 0
\(131\) 0.917828i 0.0801910i −0.999196 0.0400955i \(-0.987234\pi\)
0.999196 0.0400955i \(-0.0127662\pi\)
\(132\) −0.962144 + 0.305805i −0.0837439 + 0.0266169i
\(133\) 3.49026 0.302644
\(134\) −6.60137 −0.570272
\(135\) 16.1929 + 12.2481i 1.39366 + 1.05415i
\(136\) −0.773575 + 0.773575i −0.0663335 + 0.0663335i
\(137\) −6.09427 + 6.09427i −0.520669 + 0.520669i −0.917773 0.397104i \(-0.870015\pi\)
0.397104 + 0.917773i \(0.370015\pi\)
\(138\) −2.89351 + 0.919666i −0.246312 + 0.0782871i
\(139\) 3.31325 0.281026 0.140513 0.990079i \(-0.455125\pi\)
0.140513 + 0.990079i \(0.455125\pi\)
\(140\) −9.92570 −0.838875
\(141\) 4.08907 + 12.8653i 0.344362 + 1.08345i
\(142\) 0.850484i 0.0713711i
\(143\) 0 0
\(144\) 1.73205 + 2.44949i 0.144338 + 0.204124i
\(145\) −16.3657 + 16.3657i −1.35910 + 1.35910i
\(146\) 7.32673i 0.606365i
\(147\) −0.841620 0.435655i −0.0694156 0.0359322i
\(148\) −2.18840 + 2.18840i −0.179886 + 0.179886i
\(149\) 5.55437 + 5.55437i 0.455032 + 0.455032i 0.897021 0.441989i \(-0.145727\pi\)
−0.441989 + 0.897021i \(0.645727\pi\)
\(150\) −5.38688 16.9485i −0.439837 1.38384i
\(151\) 10.2600 + 10.2600i 0.834946 + 0.834946i 0.988189 0.153243i \(-0.0489717\pi\)
−0.153243 + 0.988189i \(0.548972\pi\)
\(152\) 1.37398i 0.111445i
\(153\) 1.89486 + 2.67974i 0.153191 + 0.216644i
\(154\) −1.04698 1.04698i −0.0843680 0.0843680i
\(155\) −35.9172 −2.88494
\(156\) 0 0
\(157\) −6.71547 −0.535953 −0.267976 0.963425i \(-0.586355\pi\)
−0.267976 + 0.963425i \(0.586355\pi\)
\(158\) 9.26936 + 9.26936i 0.737431 + 0.737431i
\(159\) −4.68278 2.42398i −0.371369 0.192235i
\(160\) 3.90738i 0.308905i
\(161\) −3.14864 3.14864i −0.248148 0.248148i
\(162\) 8.12132 3.87868i 0.638071 0.304738i
\(163\) −1.11345 1.11345i −0.0872118 0.0872118i 0.662155 0.749367i \(-0.269642\pi\)
−0.749367 + 0.662155i \(0.769642\pi\)
\(164\) −3.74650 + 3.74650i −0.292552 + 0.292552i
\(165\) 1.81342 3.50326i 0.141175 0.272728i
\(166\) 7.28877i 0.565719i
\(167\) 17.2850 17.2850i 1.33755 1.33755i 0.439123 0.898427i \(-0.355289\pi\)
0.898427 0.439123i \(-0.144711\pi\)
\(168\) −2.02261 + 3.90738i −0.156048 + 0.301461i
\(169\) 0 0
\(170\) 4.27467i 0.327852i
\(171\) 4.06259 + 0.697030i 0.310674 + 0.0533032i
\(172\) −3.76778 −0.287290
\(173\) −20.7673 −1.57891 −0.789456 0.613807i \(-0.789637\pi\)
−0.789456 + 0.613807i \(0.789637\pi\)
\(174\) 3.10764 + 9.77747i 0.235590 + 0.741228i
\(175\) 18.4429 18.4429i 1.39415 1.39415i
\(176\) 0.412157 0.412157i 0.0310675 0.0310675i
\(177\) 4.44849 + 13.9961i 0.334369 + 1.05201i
\(178\) 9.69006 0.726301
\(179\) −14.0004 −1.04644 −0.523218 0.852199i \(-0.675269\pi\)
−0.523218 + 0.852199i \(0.675269\pi\)
\(180\) −11.5533 1.98224i −0.861134 0.147747i
\(181\) 25.5405i 1.89841i −0.314653 0.949207i \(-0.601888\pi\)
0.314653 0.949207i \(-0.398112\pi\)
\(182\) 0 0
\(183\) 7.44098 14.3749i 0.550053 1.06262i
\(184\) 1.23950 1.23950i 0.0913773 0.0913773i
\(185\) 12.0928i 0.889083i
\(186\) −7.31902 + 14.1393i −0.536656 + 1.03674i
\(187\) 0.450899 0.450899i 0.0329730 0.0329730i
\(188\) −5.51114 5.51114i −0.401941 0.401941i
\(189\) 10.5272 + 7.96267i 0.765744 + 0.579199i
\(190\) −3.79623 3.79623i −0.275407 0.275407i
\(191\) 23.6463i 1.71099i 0.517814 + 0.855493i \(0.326746\pi\)
−0.517814 + 0.855493i \(0.673254\pi\)
\(192\) −1.53819 0.796225i −0.111009 0.0574626i
\(193\) −7.49437 7.49437i −0.539457 0.539457i 0.383913 0.923369i \(-0.374576\pi\)
−0.923369 + 0.383913i \(0.874576\pi\)
\(194\) −0.613350 −0.0440360
\(195\) 0 0
\(196\) 0.547150 0.0390821
\(197\) −2.45207 2.45207i −0.174703 0.174703i 0.614339 0.789042i \(-0.289423\pi\)
−0.789042 + 0.614339i \(0.789423\pi\)
\(198\) −1.00957 1.42775i −0.0717472 0.101466i
\(199\) 3.08804i 0.218905i −0.993992 0.109453i \(-0.965090\pi\)
0.993992 0.109453i \(-0.0349098\pi\)
\(200\) 7.26029 + 7.26029i 0.513380 + 0.513380i
\(201\) −3.46340 10.8968i −0.244289 0.768598i
\(202\) 4.12652 + 4.12652i 0.290341 + 0.290341i
\(203\) −10.6396 + 10.6396i −0.746752 + 0.746752i
\(204\) −1.68278 0.871071i −0.117818 0.0609871i
\(205\) 20.7026i 1.44594i
\(206\) 1.46593 1.46593i 0.102136 0.102136i
\(207\) −3.03615 4.29376i −0.211027 0.298437i
\(208\) 0 0
\(209\) 0.800864i 0.0553969i
\(210\) −5.20750 16.3842i −0.359351 1.13061i
\(211\) −4.95801 −0.341323 −0.170662 0.985330i \(-0.554591\pi\)
−0.170662 + 0.985330i \(0.554591\pi\)
\(212\) 3.04435 0.209087
\(213\) 1.40388 0.446205i 0.0961921 0.0305734i
\(214\) −2.44557 + 2.44557i −0.167176 + 0.167176i
\(215\) 10.4101 10.4101i 0.709964 0.709964i
\(216\) −3.13461 + 4.14418i −0.213283 + 0.281976i
\(217\) −23.3503 −1.58512
\(218\) 15.5423 1.05266
\(219\) −12.0941 + 3.84395i −0.817243 + 0.259750i
\(220\) 2.27752i 0.153551i
\(221\) 0 0
\(222\) −4.76050 2.46422i −0.319504 0.165387i
\(223\) 13.4803 13.4803i 0.902710 0.902710i −0.0929595 0.995670i \(-0.529633\pi\)
0.995670 + 0.0929595i \(0.0296327\pi\)
\(224\) 2.54025i 0.169727i
\(225\) 25.1504 17.7840i 1.67669 1.18560i
\(226\) −7.70543 + 7.70543i −0.512558 + 0.512558i
\(227\) −3.79025 3.79025i −0.251568 0.251568i 0.570045 0.821613i \(-0.306926\pi\)
−0.821613 + 0.570045i \(0.806926\pi\)
\(228\) −2.26801 + 0.720857i −0.150202 + 0.0477399i
\(229\) 2.78436 + 2.78436i 0.183996 + 0.183996i 0.793094 0.609099i \(-0.208469\pi\)
−0.609099 + 0.793094i \(0.708469\pi\)
\(230\) 6.84932i 0.451631i
\(231\) 1.17893 2.27752i 0.0775681 0.149850i
\(232\) −4.18840 4.18840i −0.274982 0.274982i
\(233\) −3.83663 −0.251346 −0.125673 0.992072i \(-0.540109\pi\)
−0.125673 + 0.992072i \(0.540109\pi\)
\(234\) 0 0
\(235\) 30.4538 1.98659
\(236\) −5.99556 5.99556i −0.390278 0.390278i
\(237\) −10.4376 + 20.1639i −0.677995 + 1.30979i
\(238\) 2.77903i 0.180138i
\(239\) −0.751524 0.751524i −0.0486121 0.0486121i 0.682383 0.730995i \(-0.260944\pi\)
−0.730995 + 0.682383i \(0.760944\pi\)
\(240\) 6.44983 2.05000i 0.416335 0.132327i
\(241\) −19.7732 19.7732i −1.27371 1.27371i −0.944129 0.329577i \(-0.893094\pi\)
−0.329577 0.944129i \(-0.606906\pi\)
\(242\) 7.53794 7.53794i 0.484557 0.484557i
\(243\) 10.6633 + 11.3708i 0.684050 + 0.729435i
\(244\) 9.34533i 0.598273i
\(245\) −1.51174 + 1.51174i −0.0965815 + 0.0965815i
\(246\) −8.14986 4.21868i −0.519616 0.268973i
\(247\) 0 0
\(248\) 9.19215i 0.583702i
\(249\) −12.0314 + 3.82404i −0.762461 + 0.242339i
\(250\) −20.5825 −1.30175
\(251\) −15.1264 −0.954770 −0.477385 0.878694i \(-0.658415\pi\)
−0.477385 + 0.878694i \(0.658415\pi\)
\(252\) −7.51099 1.28868i −0.473148 0.0811793i
\(253\) −0.722478 + 0.722478i −0.0454218 + 0.0454218i
\(254\) −6.58546 + 6.58546i −0.413209 + 0.413209i
\(255\) 7.05612 2.24270i 0.441871 0.140443i
\(256\) 1.00000 0.0625000
\(257\) −0.357201 −0.0222816 −0.0111408 0.999938i \(-0.503546\pi\)
−0.0111408 + 0.999938i \(0.503546\pi\)
\(258\) −1.97676 6.21940i −0.123067 0.387203i
\(259\) 7.86174i 0.488505i
\(260\) 0 0
\(261\) −14.5091 + 10.2595i −0.898088 + 0.635044i
\(262\) −0.649002 + 0.649002i −0.0400955 + 0.0400955i
\(263\) 2.14777i 0.132437i 0.997805 + 0.0662186i \(0.0210935\pi\)
−0.997805 + 0.0662186i \(0.978907\pi\)
\(264\) 0.896575 + 0.464102i 0.0551804 + 0.0285635i
\(265\) −8.41133 + 8.41133i −0.516704 + 0.516704i
\(266\) −2.46798 2.46798i −0.151322 0.151322i
\(267\) 5.08387 + 15.9952i 0.311128 + 0.978890i
\(268\) 4.66788 + 4.66788i 0.285136 + 0.285136i
\(269\) 24.5235i 1.49522i −0.664135 0.747612i \(-0.731200\pi\)
0.664135 0.747612i \(-0.268800\pi\)
\(270\) −2.78938 20.1108i −0.169756 1.22391i
\(271\) 15.5041 + 15.5041i 0.941805 + 0.941805i 0.998397 0.0565921i \(-0.0180234\pi\)
−0.0565921 + 0.998397i \(0.518023\pi\)
\(272\) 1.09400 0.0663335
\(273\) 0 0
\(274\) 8.61860 0.520669
\(275\) −4.23186 4.23186i −0.255191 0.255191i
\(276\) 2.69632 + 1.39572i 0.162300 + 0.0840125i
\(277\) 18.6503i 1.12059i −0.828293 0.560295i \(-0.810688\pi\)
0.828293 0.560295i \(-0.189312\pi\)
\(278\) −2.34282 2.34282i −0.140513 0.140513i
\(279\) −27.1793 4.66323i −1.62718 0.279180i
\(280\) 7.01853 + 7.01853i 0.419438 + 0.419438i
\(281\) 11.2782 11.2782i 0.672801 0.672801i −0.285560 0.958361i \(-0.592180\pi\)
0.958361 + 0.285560i \(0.0921797\pi\)
\(282\) 6.20573 11.9885i 0.369546 0.713907i
\(283\) 4.71513i 0.280285i −0.990131 0.140143i \(-0.955244\pi\)
0.990131 0.140143i \(-0.0447561\pi\)
\(284\) −0.601383 + 0.601383i −0.0356855 + 0.0356855i
\(285\) 4.27467 8.25803i 0.253210 0.489164i
\(286\) 0 0
\(287\) 13.4591i 0.794466i
\(288\) 0.507306 2.95680i 0.0298933 0.174231i
\(289\) −15.8032 −0.929598
\(290\) 23.1446 1.35910
\(291\) −0.321793 1.01244i −0.0188638 0.0593505i
\(292\) 5.18078 5.18078i 0.303182 0.303182i
\(293\) 15.1005 15.1005i 0.882179 0.882179i −0.111576 0.993756i \(-0.535590\pi\)
0.993756 + 0.111576i \(0.0355900\pi\)
\(294\) 0.287061 + 0.903170i 0.0167417 + 0.0526739i
\(295\) 33.1307 1.92894
\(296\) 3.09487 0.179886
\(297\) 1.82709 2.41555i 0.106019 0.140164i
\(298\) 7.85507i 0.455032i
\(299\) 0 0
\(300\) −8.17533 + 15.7935i −0.472003 + 0.911839i
\(301\) 6.76778 6.76778i 0.390088 0.390088i
\(302\) 14.5098i 0.834946i
\(303\) −4.64660 + 8.97654i −0.266940 + 0.515689i
\(304\) 0.971553 0.971553i 0.0557224 0.0557224i
\(305\) −25.8205 25.8205i −1.47848 1.47848i
\(306\) 0.554993 3.23474i 0.0317268 0.184917i
\(307\) −16.2259 16.2259i −0.926063 0.926063i 0.0713857 0.997449i \(-0.477258\pi\)
−0.997449 + 0.0713857i \(0.977258\pi\)
\(308\) 1.48065i 0.0843680i
\(309\) 3.18887 + 1.65068i 0.181409 + 0.0939040i
\(310\) 25.3973 + 25.3973i 1.44247 + 1.44247i
\(311\) 32.8464 1.86255 0.931275 0.364317i \(-0.118697\pi\)
0.931275 + 0.364317i \(0.118697\pi\)
\(312\) 0 0
\(313\) 11.0629 0.625311 0.312655 0.949867i \(-0.398782\pi\)
0.312655 + 0.949867i \(0.398782\pi\)
\(314\) 4.74855 + 4.74855i 0.267976 + 0.267976i
\(315\) 24.3129 17.1918i 1.36988 0.968649i
\(316\) 13.1089i 0.737431i
\(317\) −17.5500 17.5500i −0.985704 0.985704i 0.0141948 0.999899i \(-0.495481\pi\)
−0.999899 + 0.0141948i \(0.995481\pi\)
\(318\) 1.59721 + 5.02524i 0.0895670 + 0.281802i
\(319\) 2.44133 + 2.44133i 0.136688 + 0.136688i
\(320\) −2.76293 + 2.76293i −0.154453 + 0.154453i
\(321\) −5.31992 2.75379i −0.296929 0.153702i
\(322\) 4.45285i 0.248148i
\(323\) 1.06288 1.06288i 0.0591402 0.0591402i
\(324\) −8.48528 3.00000i −0.471405 0.166667i
\(325\) 0 0
\(326\) 1.57465i 0.0872118i
\(327\) 8.15424 + 25.6554i 0.450931 + 1.41875i
\(328\) 5.29835 0.292552
\(329\) 19.7985 1.09153
\(330\) −3.75946 + 1.19490i −0.206952 + 0.0657769i
\(331\) −3.26963 + 3.26963i −0.179715 + 0.179715i −0.791232 0.611517i \(-0.790560\pi\)
0.611517 + 0.791232i \(0.290560\pi\)
\(332\) 5.15394 5.15394i 0.282859 0.282859i
\(333\) 1.57005 9.15090i 0.0860380 0.501466i
\(334\) −24.4446 −1.33755
\(335\) −25.7941 −1.40928
\(336\) 4.19313 1.33273i 0.228754 0.0727066i
\(337\) 7.78436i 0.424041i −0.977265 0.212021i \(-0.931996\pi\)
0.977265 0.212021i \(-0.0680044\pi\)
\(338\) 0 0
\(339\) −16.7618 8.67656i −0.910378 0.471246i
\(340\) −3.02265 + 3.02265i −0.163926 + 0.163926i
\(341\) 5.35789i 0.290146i
\(342\) −2.37981 3.36556i −0.128685 0.181989i
\(343\) −13.5564 + 13.5564i −0.731976 + 0.731976i
\(344\) 2.66422 + 2.66422i 0.143645 + 0.143645i
\(345\) −11.3060 + 3.59348i −0.608697 + 0.193467i
\(346\) 14.6847 + 14.6847i 0.789456 + 0.789456i
\(347\) 10.8435i 0.582111i 0.956706 + 0.291056i \(0.0940065\pi\)
−0.956706 + 0.291056i \(0.905994\pi\)
\(348\) 4.71628 9.11115i 0.252819 0.488409i
\(349\) −10.8700 10.8700i −0.581856 0.581856i 0.353557 0.935413i \(-0.384972\pi\)
−0.935413 + 0.353557i \(0.884972\pi\)
\(350\) −26.0822 −1.39415
\(351\) 0 0
\(352\) −0.582877 −0.0310675
\(353\) 1.32046 + 1.32046i 0.0702808 + 0.0702808i 0.741373 0.671093i \(-0.234175\pi\)
−0.671093 + 0.741373i \(0.734175\pi\)
\(354\) 6.75120 13.0423i 0.358822 0.693191i
\(355\) 3.32316i 0.176375i
\(356\) −6.85191 6.85191i −0.363150 0.363150i
\(357\) 4.58729 1.45801i 0.242785 0.0771661i
\(358\) 9.89976 + 9.89976i 0.523218 + 0.523218i
\(359\) −12.1336 + 12.1336i −0.640387 + 0.640387i −0.950650 0.310264i \(-0.899583\pi\)
0.310264 + 0.950650i \(0.399583\pi\)
\(360\) 6.76778 + 9.57108i 0.356693 + 0.504440i
\(361\) 17.1122i 0.900641i
\(362\) −18.0599 + 18.0599i −0.949207 + 0.949207i
\(363\) 16.3975 + 8.48796i 0.860645 + 0.445503i
\(364\) 0 0
\(365\) 28.6283i 1.49847i
\(366\) −15.4261 + 4.90300i −0.806337 + 0.256284i
\(367\) −9.06282 −0.473075 −0.236538 0.971622i \(-0.576013\pi\)
−0.236538 + 0.971622i \(0.576013\pi\)
\(368\) −1.75292 −0.0913773
\(369\) 2.68788 15.6661i 0.139926 0.815546i
\(370\) −8.55093 + 8.55093i −0.444541 + 0.444541i
\(371\) −5.46833 + 5.46833i −0.283902 + 0.283902i
\(372\) 15.1733 4.82264i 0.786699 0.250042i
\(373\) −7.57587 −0.392264 −0.196132 0.980578i \(-0.562838\pi\)
−0.196132 + 0.980578i \(0.562838\pi\)
\(374\) −0.637668 −0.0329730
\(375\) −10.7986 33.9752i −0.557636 1.75447i
\(376\) 7.79393i 0.401941i
\(377\) 0 0
\(378\) −1.81342 13.0743i −0.0932723 0.672472i
\(379\) 8.53980 8.53980i 0.438660 0.438660i −0.452901 0.891561i \(-0.649611\pi\)
0.891561 + 0.452901i \(0.149611\pi\)
\(380\) 5.36867i 0.275407i
\(381\) −14.3255 7.41544i −0.733920 0.379905i
\(382\) 16.7205 16.7205i 0.855493 0.855493i
\(383\) 26.0444 + 26.0444i 1.33081 + 1.33081i 0.904649 + 0.426157i \(0.140133\pi\)
0.426157 + 0.904649i \(0.359867\pi\)
\(384\) 0.524648 + 1.65068i 0.0267733 + 0.0842359i
\(385\) −4.09094 4.09094i −0.208494 0.208494i
\(386\) 10.5986i 0.539457i
\(387\) 9.22913 6.52598i 0.469143 0.331734i
\(388\) 0.433704 + 0.433704i 0.0220180 + 0.0220180i
\(389\) 14.1012 0.714961 0.357481 0.933921i \(-0.383636\pi\)
0.357481 + 0.933921i \(0.383636\pi\)
\(390\) 0 0
\(391\) −1.91770 −0.0969820
\(392\) −0.386893 0.386893i −0.0195411 0.0195411i
\(393\) −1.41179 0.730798i −0.0712155 0.0368639i
\(394\) 3.46775i 0.174703i
\(395\) 36.2189 + 36.2189i 1.82237 + 1.82237i
\(396\) −0.295697 + 1.72345i −0.0148593 + 0.0866066i
\(397\) −5.55214 5.55214i −0.278654 0.278654i 0.553918 0.832571i \(-0.313132\pi\)
−0.832571 + 0.553918i \(0.813132\pi\)
\(398\) −2.18357 + 2.18357i −0.109453 + 0.109453i
\(399\) 2.77903 5.36867i 0.139126 0.268770i
\(400\) 10.2676i 0.513380i
\(401\) −15.4546 + 15.4546i −0.771764 + 0.771764i −0.978415 0.206650i \(-0.933744\pi\)
0.206650 + 0.978415i \(0.433744\pi\)
\(402\) −5.25618 + 10.1542i −0.262154 + 0.506444i
\(403\) 0 0
\(404\) 5.83579i 0.290341i
\(405\) 31.7331 15.1555i 1.57683 0.753081i
\(406\) 15.0466 0.746752
\(407\) −1.80393 −0.0894175
\(408\) 0.573965 + 1.80584i 0.0284155 + 0.0894026i
\(409\) −1.58498 + 1.58498i −0.0783720 + 0.0783720i −0.745206 0.666834i \(-0.767649\pi\)
0.666834 + 0.745206i \(0.267649\pi\)
\(410\) −14.6390 + 14.6390i −0.722968 + 0.722968i
\(411\) 4.52173 + 14.2266i 0.223041 + 0.701744i
\(412\) −2.07313 −0.102136
\(413\) 21.5388 1.05985
\(414\) −0.889267 + 5.18303i −0.0437051 + 0.254732i
\(415\) 28.4800i 1.39803i
\(416\) 0 0
\(417\) 2.63809 5.09640i 0.129188 0.249572i
\(418\) −0.566296 + 0.566296i −0.0276985 + 0.0276985i
\(419\) 33.3854i 1.63098i 0.578770 + 0.815491i \(0.303533\pi\)
−0.578770 + 0.815491i \(0.696467\pi\)
\(420\) −7.90310 + 15.2676i −0.385632 + 0.744983i
\(421\) 2.25285 2.25285i 0.109797 0.109797i −0.650074 0.759871i \(-0.725262\pi\)
0.759871 + 0.650074i \(0.225262\pi\)
\(422\) 3.50584 + 3.50584i 0.170662 + 0.170662i
\(423\) 23.0451 + 3.95391i 1.12049 + 0.192246i
\(424\) −2.15268 2.15268i −0.104543 0.104543i
\(425\) 11.2328i 0.544869i
\(426\) −1.30821 0.677177i −0.0633828 0.0328093i
\(427\) −16.7863 16.7863i −0.812346 0.812346i
\(428\) 3.45856 0.167176
\(429\) 0 0
\(430\) −14.7221 −0.709964
\(431\) 15.3329 + 15.3329i 0.738562 + 0.738562i 0.972300 0.233738i \(-0.0750958\pi\)
−0.233738 + 0.972300i \(0.575096\pi\)
\(432\) 5.14688 0.713876i 0.247629 0.0343464i
\(433\) 30.0520i 1.44421i 0.691786 + 0.722103i \(0.256824\pi\)
−0.691786 + 0.722103i \(0.743176\pi\)
\(434\) 16.5112 + 16.5112i 0.792561 + 0.792561i
\(435\) 12.1427 + 38.2043i 0.582200 + 1.83176i
\(436\) −10.9901 10.9901i −0.526330 0.526330i
\(437\) −1.70306 + 1.70306i −0.0814682 + 0.0814682i
\(438\) 11.2699 + 5.83373i 0.538497 + 0.278746i
\(439\) 20.8459i 0.994920i 0.867487 + 0.497460i \(0.165734\pi\)
−0.867487 + 0.497460i \(0.834266\pi\)
\(440\) 1.61045 1.61045i 0.0767753 0.0767753i
\(441\) −1.34024 + 0.947691i −0.0638209 + 0.0451282i
\(442\) 0 0
\(443\) 13.0363i 0.619374i −0.950839 0.309687i \(-0.899776\pi\)
0.950839 0.309687i \(-0.100224\pi\)
\(444\) 1.62372 + 5.10864i 0.0770582 + 0.242445i
\(445\) 37.8627 1.79487
\(446\) −19.0641 −0.902710
\(447\) 12.9662 4.12114i 0.613281 0.194923i
\(448\) −1.79623 + 1.79623i −0.0848637 + 0.0848637i
\(449\) −13.4636 + 13.4636i −0.635385 + 0.635385i −0.949414 0.314028i \(-0.898321\pi\)
0.314028 + 0.949414i \(0.398321\pi\)
\(450\) −30.3592 5.20882i −1.43115 0.245546i
\(451\) −3.08829 −0.145422
\(452\) 10.8971 0.512558
\(453\) 23.9511 7.61254i 1.12532 0.357668i
\(454\) 5.36023i 0.251568i
\(455\) 0 0
\(456\) 2.11345 + 1.09400i 0.0989712 + 0.0512313i
\(457\) −15.0333 + 15.0333i −0.703228 + 0.703228i −0.965102 0.261874i \(-0.915659\pi\)
0.261874 + 0.965102i \(0.415659\pi\)
\(458\) 3.93768i 0.183996i
\(459\) 5.63069 0.780980i 0.262818 0.0364530i
\(460\) 4.84320 4.84320i 0.225816 0.225816i
\(461\) −1.07969 1.07969i −0.0502864 0.0502864i 0.681516 0.731803i \(-0.261321\pi\)
−0.731803 + 0.681516i \(0.761321\pi\)
\(462\) −2.44408 + 0.776820i −0.113709 + 0.0361410i
\(463\) −21.3272 21.3272i −0.991159 0.991159i 0.00880240 0.999961i \(-0.497198\pi\)
−0.999961 + 0.00880240i \(0.997198\pi\)
\(464\) 5.92330i 0.274982i
\(465\) −28.5982 + 55.2474i −1.32621 + 2.56204i
\(466\) 2.71290 + 2.71290i 0.125673 + 0.125673i
\(467\) −11.2935 −0.522601 −0.261300 0.965258i \(-0.584151\pi\)
−0.261300 + 0.965258i \(0.584151\pi\)
\(468\) 0 0
\(469\) −16.7691 −0.774326
\(470\) −21.5341 21.5341i −0.993295 0.993295i
\(471\) −5.34703 + 10.3297i −0.246378 + 0.475966i
\(472\) 8.47900i 0.390278i
\(473\) −1.55291 1.55291i −0.0714031 0.0714031i
\(474\) 21.6385 6.87753i 0.993891 0.315896i
\(475\) −9.97552 9.97552i −0.457708 0.457708i
\(476\) −1.96507 + 1.96507i −0.0900689 + 0.0900689i
\(477\) −7.45709 + 5.27296i −0.341437 + 0.241432i
\(478\) 1.06282i 0.0486121i
\(479\) 20.5591 20.5591i 0.939371 0.939371i −0.0588932 0.998264i \(-0.518757\pi\)
0.998264 + 0.0588932i \(0.0187571\pi\)
\(480\) −6.01029 3.11115i −0.274331 0.142004i
\(481\) 0 0
\(482\) 27.9636i 1.27371i
\(483\) −7.35023 + 2.33618i −0.334447 + 0.106300i
\(484\) −10.6603 −0.484557
\(485\) −2.39659 −0.108824
\(486\) 0.500258 15.5804i 0.0226921 0.706743i
\(487\) −1.79164 + 1.79164i −0.0811869 + 0.0811869i −0.746534 0.665347i \(-0.768284\pi\)
0.665347 + 0.746534i \(0.268284\pi\)
\(488\) 6.60814 6.60814i 0.299137 0.299137i
\(489\) −2.59924 + 0.826137i −0.117542 + 0.0373592i
\(490\) 2.13792 0.0965815
\(491\) 36.9151 1.66596 0.832978 0.553307i \(-0.186634\pi\)
0.832978 + 0.553307i \(0.186634\pi\)
\(492\) 2.77977 + 8.74588i 0.125321 + 0.394295i
\(493\) 6.48009i 0.291849i
\(494\) 0 0
\(495\) −3.94478 5.57877i −0.177305 0.250747i
\(496\) −6.49983 + 6.49983i −0.291851 + 0.291851i
\(497\) 2.16044i 0.0969090i
\(498\) 11.2115 + 5.80351i 0.502400 + 0.260061i
\(499\) 22.3461 22.3461i 1.00035 1.00035i 0.000347536 1.00000i \(-0.499889\pi\)
1.00000 0.000347536i \(-0.000110624\pi\)
\(500\) 14.5541 + 14.5541i 0.650877 + 0.650877i
\(501\) −12.8248 40.3502i −0.572970 1.80272i
\(502\) 10.6960 + 10.6960i 0.477385 + 0.477385i
\(503\) 23.3454i 1.04092i −0.853886 0.520460i \(-0.825760\pi\)
0.853886 0.520460i \(-0.174240\pi\)
\(504\) 4.39984 + 6.22231i 0.195984 + 0.277164i
\(505\) 16.1239 + 16.1239i 0.717504 + 0.717504i
\(506\) 1.02174 0.0454218
\(507\) 0 0
\(508\) 9.31325 0.413209
\(509\) −13.1852 13.1852i −0.584424 0.584424i 0.351692 0.936116i \(-0.385606\pi\)
−0.936116 + 0.351692i \(0.885606\pi\)
\(510\) −6.57525 3.40360i −0.291157 0.150714i
\(511\) 18.6117i 0.823333i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 4.30690 5.69404i 0.190154 0.251398i
\(514\) 0.252579 + 0.252579i 0.0111408 + 0.0111408i
\(515\) 5.72793 5.72793i 0.252403 0.252403i
\(516\) −3.00000 + 5.79555i −0.132068 + 0.255135i
\(517\) 4.54291i 0.199797i
\(518\) −5.55909 + 5.55909i −0.244252 + 0.244252i
\(519\) −16.5355 + 31.9441i −0.725827 + 1.40219i
\(520\) 0 0
\(521\) 20.1922i 0.884637i 0.896858 + 0.442318i \(0.145844\pi\)
−0.896858 + 0.442318i \(0.854156\pi\)
\(522\) 17.5140 + 3.00492i 0.766566 + 0.131522i
\(523\) 28.2236 1.23413 0.617066 0.786912i \(-0.288321\pi\)
0.617066 + 0.786912i \(0.288321\pi\)
\(524\) 0.917828 0.0400955
\(525\) −13.6840 43.0534i −0.597218 1.87901i
\(526\) 1.51870 1.51870i 0.0662186 0.0662186i
\(527\) −7.11081 + 7.11081i −0.309752 + 0.309752i
\(528\) −0.305805 0.962144i −0.0133085 0.0418719i
\(529\) −19.9273 −0.866403
\(530\) 11.8954 0.516704
\(531\) 25.0707 + 4.30145i 1.08797 + 0.186667i
\(532\) 3.49026i 0.151322i
\(533\) 0 0
\(534\) 7.71547 14.9051i 0.333881 0.645009i
\(535\) −9.55577 + 9.55577i −0.413132 + 0.413132i
\(536\) 6.60137i 0.285136i
\(537\) −11.1474 + 21.5352i −0.481048 + 0.929313i
\(538\) −17.3407 + 17.3407i −0.747612 + 0.747612i
\(539\) 0.225511 + 0.225511i 0.00971346 + 0.00971346i
\(540\) −12.2481 + 16.1929i −0.527074 + 0.696831i
\(541\) −13.2334 13.2334i −0.568947 0.568947i 0.362887 0.931833i \(-0.381791\pi\)
−0.931833 + 0.362887i \(0.881791\pi\)
\(542\) 21.9261i 0.941805i
\(543\) −39.2862 20.3360i −1.68593 0.872702i
\(544\) −0.773575 0.773575i −0.0331668 0.0331668i
\(545\) 60.7298 2.60138
\(546\) 0 0
\(547\) −14.7212 −0.629433 −0.314717 0.949186i \(-0.601909\pi\)
−0.314717 + 0.949186i \(0.601909\pi\)
\(548\) −6.09427 6.09427i −0.260334 0.260334i
\(549\) −16.1866 22.8913i −0.690826 0.976976i
\(550\) 5.98476i 0.255191i
\(551\) 5.75480 + 5.75480i 0.245163 + 0.245163i
\(552\) −0.919666 2.89351i −0.0391436 0.123156i
\(553\) 23.5465 + 23.5465i 1.00130 + 1.00130i
\(554\) −13.1878 + 13.1878i −0.560295 + 0.560295i
\(555\) −18.6011 9.62862i −0.789571 0.408712i
\(556\) 3.31325i 0.140513i
\(557\) 8.71827 8.71827i 0.369405 0.369405i −0.497855 0.867260i \(-0.665879\pi\)
0.867260 + 0.497855i \(0.165879\pi\)
\(558\) 15.9213 + 22.5161i 0.674001 + 0.953181i
\(559\) 0 0
\(560\) 9.92570i 0.419438i
\(561\) −0.334551 1.05259i −0.0141248 0.0444402i
\(562\) −15.9498 −0.672801
\(563\) 19.7326 0.831628 0.415814 0.909450i \(-0.363497\pi\)
0.415814 + 0.909450i \(0.363497\pi\)
\(564\) −12.8653 + 4.08907i −0.541726 + 0.172181i
\(565\) −30.1080 + 30.1080i −1.26665 + 1.26665i
\(566\) −3.33410 + 3.33410i −0.140143 + 0.140143i
\(567\) 20.6302 9.85280i 0.866385 0.413779i
\(568\) 0.850484 0.0356855
\(569\) −34.9006 −1.46311 −0.731555 0.681782i \(-0.761205\pi\)
−0.731555 + 0.681782i \(0.761205\pi\)
\(570\) −8.86196 + 2.81666i −0.371187 + 0.117977i
\(571\) 2.37582i 0.0994248i −0.998764 0.0497124i \(-0.984170\pi\)
0.998764 0.0497124i \(-0.0158305\pi\)
\(572\) 0 0
\(573\) 36.3725 + 18.8278i 1.51948 + 0.786542i
\(574\) −9.51702 + 9.51702i −0.397233 + 0.397233i
\(575\) 17.9983i 0.750581i
\(576\) −2.44949 + 1.73205i −0.102062 + 0.0721688i
\(577\) 3.78848 3.78848i 0.157716 0.157716i −0.623838 0.781554i \(-0.714427\pi\)
0.781554 + 0.623838i \(0.214427\pi\)
\(578\) 11.1745 + 11.1745i 0.464799 + 0.464799i
\(579\) −17.4950 + 5.56055i −0.727066 + 0.231089i
\(580\) −16.3657 16.3657i −0.679548 0.679548i
\(581\) 18.5153i 0.768143i
\(582\) −0.488365 + 0.943448i −0.0202434 + 0.0391072i
\(583\) 1.25475 + 1.25475i 0.0519663 + 0.0519663i
\(584\) −7.32673 −0.303182
\(585\) 0 0
\(586\) −21.3553 −0.882179
\(587\) 7.18566 + 7.18566i 0.296584 + 0.296584i 0.839674 0.543090i \(-0.182746\pi\)
−0.543090 + 0.839674i \(0.682746\pi\)
\(588\) 0.435655 0.841620i 0.0179661 0.0347078i
\(589\) 12.6299i 0.520404i
\(590\) −23.4269 23.4269i −0.964471 0.964471i
\(591\) −5.72415 + 1.81935i −0.235460 + 0.0748380i
\(592\) −2.18840 2.18840i −0.0899429 0.0899429i
\(593\) 9.76893 9.76893i 0.401162 0.401162i −0.477481 0.878642i \(-0.658450\pi\)
0.878642 + 0.477481i \(0.158450\pi\)
\(594\) −3.00000 + 0.416102i −0.123091 + 0.0170729i
\(595\) 10.8587i 0.445164i
\(596\) −5.55437 + 5.55437i −0.227516 + 0.227516i
\(597\) −4.74998 2.45877i −0.194404 0.100631i
\(598\) 0 0
\(599\) 35.2538i 1.44043i 0.693750 + 0.720216i \(0.255957\pi\)
−0.693750 + 0.720216i \(0.744043\pi\)
\(600\) 16.9485 5.38688i 0.691921 0.219918i
\(601\) 9.14384 0.372985 0.186493 0.982456i \(-0.440288\pi\)
0.186493 + 0.982456i \(0.440288\pi\)
\(602\) −9.57108 −0.390088
\(603\) −19.5189 3.34892i −0.794872 0.136378i
\(604\) −10.2600 + 10.2600i −0.417473 + 0.417473i
\(605\) 29.4536 29.4536i 1.19746 1.19746i
\(606\) 9.63301 3.06173i 0.391314 0.124374i
\(607\) −19.9279 −0.808847 −0.404423 0.914572i \(-0.632528\pi\)
−0.404423 + 0.914572i \(0.632528\pi\)
\(608\) −1.37398 −0.0557224
\(609\) 7.89418 + 24.8372i 0.319888 + 1.00645i
\(610\) 36.5157i 1.47848i
\(611\) 0 0
\(612\) −2.67974 + 1.89486i −0.108322 + 0.0765953i
\(613\) −10.6247 + 10.6247i −0.429127 + 0.429127i −0.888331 0.459204i \(-0.848135\pi\)
0.459204 + 0.888331i \(0.348135\pi\)
\(614\) 22.9469i 0.926063i
\(615\) −31.8446 16.4840i −1.28410 0.664698i
\(616\) 1.04698 1.04698i 0.0421840 0.0421840i
\(617\) 7.20247 + 7.20247i 0.289961 + 0.289961i 0.837065 0.547104i \(-0.184270\pi\)
−0.547104 + 0.837065i \(0.684270\pi\)
\(618\) −1.08766 3.42208i −0.0437523 0.137656i
\(619\) 18.1131 + 18.1131i 0.728027 + 0.728027i 0.970226 0.242199i \(-0.0778688\pi\)
−0.242199 + 0.970226i \(0.577869\pi\)
\(620\) 35.9172i 1.44247i
\(621\) −9.02207 + 1.25137i −0.362043 + 0.0502157i
\(622\) −23.2259 23.2259i −0.931275 0.931275i
\(623\) 24.6151 0.986185
\(624\) 0 0
\(625\) −29.0857 −1.16343
\(626\) −7.82263 7.82263i −0.312655 0.312655i
\(627\) −1.23188 0.637668i −0.0491965 0.0254660i
\(628\) 6.71547i 0.267976i
\(629\) −2.39412 2.39412i −0.0954596 0.0954596i
\(630\) −29.3483 5.03537i −1.16926 0.200614i
\(631\) −14.2008 14.2008i −0.565325 0.565325i 0.365490 0.930815i \(-0.380901\pi\)
−0.930815 + 0.365490i \(0.880901\pi\)
\(632\) −9.26936 + 9.26936i −0.368716 + 0.368716i
\(633\) −3.94769 + 7.62635i −0.156907 + 0.303120i
\(634\) 24.8194i 0.985704i
\(635\) −25.7319 + 25.7319i −1.02114 + 1.02114i
\(636\) 2.42398 4.68278i 0.0961173 0.185684i
\(637\) 0 0
\(638\) 3.45256i 0.136688i
\(639\) 0.431456 2.51471i 0.0170681 0.0994803i
\(640\) 3.90738 0.154453
\(641\) 44.6833 1.76489 0.882443 0.470420i \(-0.155898\pi\)
0.882443 + 0.470420i \(0.155898\pi\)
\(642\) 1.81452 + 5.70897i 0.0716136 + 0.225315i
\(643\) −6.35599 + 6.35599i −0.250656 + 0.250656i −0.821239 0.570584i \(-0.806717\pi\)
0.570584 + 0.821239i \(0.306717\pi\)
\(644\) 3.14864 3.14864i 0.124074 0.124074i
\(645\) −7.72393 24.3015i −0.304130 0.956872i
\(646\) −1.50314 −0.0591402
\(647\) 37.9737 1.49290 0.746451 0.665441i \(-0.231756\pi\)
0.746451 + 0.665441i \(0.231756\pi\)
\(648\) 3.87868 + 8.12132i 0.152369 + 0.319036i
\(649\) 4.94222i 0.193999i
\(650\) 0 0
\(651\) −18.5921 + 35.9172i −0.728682 + 1.40771i
\(652\) 1.11345 1.11345i 0.0436059 0.0436059i
\(653\) 18.4886i 0.723513i −0.932273 0.361757i \(-0.882177\pi\)
0.932273 0.361757i \(-0.117823\pi\)
\(654\) 12.3752 23.9070i 0.483908 0.934839i
\(655\) −2.53590 + 2.53590i −0.0990857 + 0.0990857i
\(656\) −3.74650 3.74650i −0.146276 0.146276i
\(657\) −3.71690 + 21.6637i −0.145010 + 0.845180i
\(658\) −13.9997 13.9997i −0.545763 0.545763i
\(659\) 0.743853i 0.0289764i 0.999895 + 0.0144882i \(0.00461190\pi\)
−0.999895 + 0.0144882i \(0.995388\pi\)
\(660\) 3.50326 + 1.81342i 0.136364 + 0.0705873i
\(661\) −19.8275 19.8275i −0.771200 0.771200i 0.207116 0.978316i \(-0.433592\pi\)
−0.978316 + 0.207116i \(0.933592\pi\)
\(662\) 4.62395 0.179715
\(663\) 0 0
\(664\) −7.28877 −0.282859
\(665\) −9.64335 9.64335i −0.373953 0.373953i
\(666\) −7.58086 + 5.36048i −0.293752 + 0.207714i
\(667\) 10.3831i 0.402034i
\(668\) 17.2850 + 17.2850i 0.668775 + 0.668775i
\(669\) −10.0019 31.4687i −0.386697 1.21665i
\(670\) 18.2392 + 18.2392i 0.704640 + 0.704640i
\(671\) −3.85174 + 3.85174i −0.148695 + 0.148695i
\(672\) −3.90738 2.02261i −0.150730 0.0780238i
\(673\) 27.6374i 1.06534i −0.846322 0.532672i \(-0.821188\pi\)
0.846322 0.532672i \(-0.178812\pi\)
\(674\) −5.50437 + 5.50437i −0.212021 + 0.212021i
\(675\) −7.32980 52.8461i −0.282124 2.03405i
\(676\) 0 0
\(677\) 34.0927i 1.31029i −0.755504 0.655145i \(-0.772608\pi\)
0.755504 0.655145i \(-0.227392\pi\)
\(678\) 5.71715 + 17.9877i 0.219566 + 0.690812i
\(679\) −1.55806 −0.0597928
\(680\) 4.27467 0.163926
\(681\) −8.84802 + 2.81223i −0.339057 + 0.107765i
\(682\) 3.78860 3.78860i 0.145073 0.145073i
\(683\) 16.4785 16.4785i 0.630531 0.630531i −0.317670 0.948201i \(-0.602900\pi\)
0.948201 + 0.317670i \(0.102900\pi\)
\(684\) −0.697030 + 4.06259i −0.0266516 + 0.155337i
\(685\) 33.6762 1.28670
\(686\) 19.1716 0.731976
\(687\) 6.49985 2.06589i 0.247985 0.0788188i
\(688\) 3.76778i 0.143645i
\(689\) 0 0
\(690\) 10.5356 + 5.45361i 0.401082 + 0.207615i
\(691\) 7.22628 7.22628i 0.274901 0.274901i −0.556169 0.831069i \(-0.687729\pi\)
0.831069 + 0.556169i \(0.187729\pi\)
\(692\) 20.7673i 0.789456i
\(693\) −2.56456 3.62684i −0.0974197 0.137772i
\(694\) 7.66753 7.66753i 0.291056 0.291056i
\(695\) −9.15429 9.15429i −0.347242 0.347242i
\(696\) −9.77747 + 3.10764i −0.370614 + 0.117795i
\(697\) −4.09867 4.09867i −0.155248 0.155248i
\(698\) 15.3725i 0.581856i
\(699\) −3.05482 + 5.90146i −0.115544 + 0.223214i
\(700\) 18.4429 + 18.4429i 0.697077 + 0.697077i
\(701\) −31.9420 −1.20643 −0.603217 0.797577i \(-0.706115\pi\)
−0.603217 + 0.797577i \(0.706115\pi\)
\(702\) 0 0
\(703\) −4.25230 −0.160379
\(704\) 0.412157 + 0.412157i 0.0155337 + 0.0155337i
\(705\) 24.2481 46.8438i 0.913237 1.76424i
\(706\) 1.86741i 0.0702808i
\(707\) 10.4824 + 10.4824i 0.394231 + 0.394231i
\(708\) −13.9961 + 4.44849i −0.526007 + 0.167184i
\(709\) 5.25088 + 5.25088i 0.197201 + 0.197201i 0.798799 0.601598i \(-0.205469\pi\)
−0.601598 + 0.798799i \(0.705469\pi\)
\(710\) −2.34983 + 2.34983i −0.0881876 + 0.0881876i
\(711\) 22.7052 + 32.1100i 0.851512 + 1.20422i
\(712\) 9.69006i 0.363150i
\(713\) 11.3937 11.3937i 0.426697 0.426697i
\(714\) −4.27467 2.21273i −0.159976 0.0828095i
\(715\) 0 0
\(716\) 14.0004i 0.523218i
\(717\) −1.75437 + 0.557604i −0.0655181 + 0.0208241i
\(718\) 17.1595 0.640387
\(719\) 28.9186 1.07848 0.539240 0.842152i \(-0.318711\pi\)
0.539240 + 0.842152i \(0.318711\pi\)
\(720\) 1.98224 11.5533i 0.0738736 0.430567i
\(721\) 3.72381 3.72381i 0.138682 0.138682i
\(722\) 12.1001 12.1001i 0.450320 0.450320i
\(723\) −46.1589 + 14.6710i −1.71667 + 0.545621i
\(724\) 25.5405 0.949207
\(725\) 60.8181 2.25873
\(726\) −5.59288 17.5967i −0.207571 0.653074i
\(727\) 13.5518i 0.502608i −0.967908 0.251304i \(-0.919141\pi\)
0.967908 0.251304i \(-0.0808594\pi\)
\(728\) 0 0
\(729\) 25.9808 7.34847i 0.962250 0.272166i
\(730\) 20.2433 20.2433i 0.749237 0.749237i
\(731\) 4.12195i 0.152456i
\(732\) 14.3749 + 7.44098i 0.531311 + 0.275027i
\(733\) −13.9665 + 13.9665i −0.515864 + 0.515864i −0.916317 0.400453i \(-0.868853\pi\)
0.400453 + 0.916317i \(0.368853\pi\)
\(734\) 6.40838 + 6.40838i 0.236538 + 0.236538i
\(735\) 1.12166 + 3.52903i 0.0413729 + 0.130170i
\(736\) 1.23950 + 1.23950i 0.0456887 + 0.0456887i
\(737\) 3.84779i 0.141735i
\(738\) −12.9782 + 9.17701i −0.477736 + 0.337810i
\(739\) 1.39265 + 1.39265i 0.0512293 + 0.0512293i 0.732257 0.681028i \(-0.238467\pi\)
−0.681028 + 0.732257i \(0.738467\pi\)
\(740\) 12.0928 0.444541
\(741\) 0 0
\(742\) 7.73339 0.283902
\(743\) 4.23148 + 4.23148i 0.155238 + 0.155238i 0.780453 0.625215i \(-0.214989\pi\)
−0.625215 + 0.780453i \(0.714989\pi\)
\(744\) −14.1393 7.31902i −0.518370 0.268328i
\(745\) 30.6927i 1.12449i
\(746\) 5.35695 + 5.35695i 0.196132 + 0.196132i
\(747\) −3.69764 + 21.5514i −0.135290 + 0.788525i
\(748\) 0.450899 + 0.450899i 0.0164865 + 0.0164865i
\(749\) −6.21235 + 6.21235i −0.226994 + 0.226994i
\(750\) −16.3883 + 31.6598i −0.598417 + 1.15605i
\(751\) 17.5041i 0.638733i 0.947631 + 0.319366i \(0.103470\pi\)
−0.947631 + 0.319366i \(0.896530\pi\)
\(752\) 5.51114 5.51114i 0.200971 0.200971i
\(753\) −12.0440 + 23.2673i −0.438909 + 0.847906i
\(754\) 0 0
\(755\) 56.6953i 2.06335i
\(756\) −7.96267 + 10.5272i −0.289600 + 0.382872i
\(757\) 8.00336 0.290887 0.145443 0.989367i \(-0.453539\pi\)
0.145443 + 0.989367i \(0.453539\pi\)
\(758\) −12.0771 −0.438660
\(759\) 0.536052 + 1.68656i 0.0194575 + 0.0612183i
\(760\) 3.79623 3.79623i 0.137704 0.137704i
\(761\) −13.8584 + 13.8584i −0.502368 + 0.502368i −0.912173 0.409805i \(-0.865597\pi\)
0.409805 + 0.912173i \(0.365597\pi\)
\(762\) 4.88617 + 15.3732i 0.177007 + 0.556912i
\(763\) 39.4813 1.42932
\(764\) −23.6463 −0.855493
\(765\) 2.16857 12.6393i 0.0784047 0.456976i
\(766\) 36.8323i 1.33081i
\(767\) 0 0
\(768\) 0.796225 1.53819i 0.0287313 0.0555046i
\(769\) 30.3616 30.3616i 1.09487 1.09487i 0.0998650 0.995001i \(-0.468159\pi\)
0.995001 0.0998650i \(-0.0318411\pi\)
\(770\) 5.78547i 0.208494i
\(771\) −0.284412 + 0.549443i −0.0102429 + 0.0197877i
\(772\) 7.49437 7.49437i 0.269728 0.269728i
\(773\) −6.55172 6.55172i −0.235649 0.235649i 0.579397 0.815046i \(-0.303288\pi\)
−0.815046 + 0.579397i \(0.803288\pi\)
\(774\) −11.1406 1.91142i −0.400439 0.0687044i
\(775\) 66.7377 + 66.7377i 2.39729 + 2.39729i
\(776\) 0.613350i 0.0220180i
\(777\) −12.0928 6.25971i −0.433828 0.224566i
\(778\) −9.97109 9.97109i −0.357481 0.357481i
\(779\) −7.27984 −0.260827
\(780\) 0 0
\(781\) −0.495728 −0.0177385
\(782\) 1.35602 + 1.35602i 0.0484910 + 0.0484910i
\(783\) 4.22850 + 30.4865i 0.151114 + 1.08950i
\(784\) 0.547150i 0.0195411i
\(785\) 18.5544 + 18.5544i 0.662235 + 0.662235i
\(786\) 0.481536 + 1.51504i 0.0171758 + 0.0540397i
\(787\) −30.1223 30.1223i −1.07375 1.07375i −0.997055 0.0766903i \(-0.975565\pi\)
−0.0766903 0.997055i \(-0.524435\pi\)
\(788\) 2.45207 2.45207i 0.0873514 0.0873514i
\(789\) 3.30368 + 1.71011i 0.117614 + 0.0608815i
\(790\) 51.2213i 1.82237i
\(791\) −19.5737 + 19.5737i −0.695960 + 0.695960i
\(792\) 1.42775 1.00957i 0.0507330 0.0358736i
\(793\) 0 0
\(794\) 7.85191i 0.278654i
\(795\) 6.24090 + 19.6355i 0.221342 + 0.696400i
\(796\) 3.08804 0.109453
\(797\) 21.0322 0.744998 0.372499 0.928033i \(-0.378501\pi\)
0.372499 + 0.928033i \(0.378501\pi\)
\(798\) −5.76130 + 1.83115i −0.203948 + 0.0648222i
\(799\) 6.02919 6.02919i 0.213297 0.213297i
\(800\) −7.26029 + 7.26029i −0.256690 + 0.256690i
\(801\) 28.6515 + 4.91582i 1.01235 + 0.173692i
\(802\) 21.8561 0.771764
\(803\) 4.27059 0.150706
\(804\) 10.8968 3.46340i 0.384299 0.122145i
\(805\) 17.3990i 0.613233i
\(806\) 0 0
\(807\) −37.7218 19.5262i −1.32787 0.687356i
\(808\) −4.12652 + 4.12652i −0.145171 + 0.145171i
\(809\) 27.1206i 0.953508i 0.879037 + 0.476754i \(0.158187\pi\)
−0.879037 + 0.476754i \(0.841813\pi\)
\(810\) −33.1552 11.7221i −1.16496 0.411874i
\(811\) 39.1597 39.1597i 1.37508 1.37508i 0.522359 0.852726i \(-0.325052\pi\)
0.852726 0.522359i \(-0.174948\pi\)
\(812\) −10.6396 10.6396i −0.373376 0.373376i
\(813\) 36.1929 11.5035i 1.26934 0.403444i
\(814\) 1.27557 + 1.27557i 0.0447088 + 0.0447088i
\(815\) 6.15276i 0.215522i
\(816\) 0.871071 1.68278i 0.0304936 0.0589091i
\(817\) −3.66060 3.66060i −0.128068 0.128068i
\(818\) 2.24149 0.0783720
\(819\) 0 0
\(820\) 20.7026 0.722968
\(821\) 6.07641 + 6.07641i 0.212068 + 0.212068i 0.805145 0.593077i \(-0.202087\pi\)
−0.593077 + 0.805145i \(0.702087\pi\)
\(822\) 6.86235 13.2570i 0.239352 0.462392i
\(823\) 8.51217i 0.296715i −0.988934 0.148358i \(-0.952601\pi\)
0.988934 0.148358i \(-0.0473987\pi\)
\(824\) 1.46593 + 1.46593i 0.0510680 + 0.0510680i
\(825\) −9.87892 + 3.13989i −0.343940 + 0.109317i
\(826\) −15.2302 15.2302i −0.529926 0.529926i
\(827\) 18.9976 18.9976i 0.660613 0.660613i −0.294912 0.955524i \(-0.595290\pi\)
0.955524 + 0.294912i \(0.0952903\pi\)
\(828\) 4.29376 3.03615i 0.149219 0.105513i
\(829\) 16.5329i 0.574211i −0.957899 0.287106i \(-0.907307\pi\)
0.957899 0.287106i \(-0.0926931\pi\)
\(830\) 20.1384 20.1384i 0.699014 0.699014i
\(831\) −28.6877 14.8499i −0.995167 0.515136i
\(832\) 0 0
\(833\) 0.598582i 0.0207396i
\(834\) −5.46912 + 1.73829i −0.189380 + 0.0601920i
\(835\) −95.5144 −3.30541
\(836\) 0.800864 0.0276985
\(837\) −28.8138 + 38.0939i −0.995950 + 1.31672i
\(838\) 23.6070 23.6070i 0.815491 0.815491i
\(839\) −29.3294 + 29.3294i −1.01256 + 1.01256i −0.0126419 + 0.999920i \(0.504024\pi\)
−0.999920 + 0.0126419i \(0.995976\pi\)
\(840\) 16.3842 5.20750i 0.565307 0.179676i
\(841\) −6.08547 −0.209844
\(842\) −3.18601 −0.109797
\(843\) −8.36801 26.3280i −0.288210 0.906784i
\(844\) 4.95801i 0.170662i
\(845\) 0 0
\(846\) −13.4995 19.0912i −0.464122 0.656368i
\(847\) 19.1482 19.1482i 0.657941 0.657941i
\(848\) 3.04435i 0.104543i
\(849\) −7.25276 3.75430i −0.248914 0.128847i
\(850\) −7.94276 + 7.94276i −0.272435 + 0.272435i
\(851\) 3.83610 + 3.83610i 0.131500 + 0.131500i
\(852\) 0.446205 + 1.40388i 0.0152867 + 0.0480961i
\(853\) −13.7858 13.7858i −0.472018 0.472018i 0.430549 0.902567i \(-0.358320\pi\)
−0.902567 + 0.430549i \(0.858320\pi\)
\(854\) 23.7394i 0.812346i
\(855\) −9.29881 13.1505i −0.318013 0.449738i
\(856\) −2.44557 2.44557i −0.0835879 0.0835879i
\(857\) −41.5499 −1.41932 −0.709659 0.704545i \(-0.751151\pi\)
−0.709659 + 0.704545i \(0.751151\pi\)
\(858\) 0 0
\(859\) 44.2270 1.50900 0.754502 0.656298i \(-0.227878\pi\)
0.754502 + 0.656298i \(0.227878\pi\)
\(860\) 10.4101 + 10.4101i 0.354982 + 0.354982i
\(861\) −20.7026 10.7165i −0.705544 0.365217i
\(862\) 21.6840i 0.738562i
\(863\) 14.7459 + 14.7459i 0.501956 + 0.501956i 0.912045 0.410089i \(-0.134502\pi\)
−0.410089 + 0.912045i \(0.634502\pi\)
\(864\) −4.14418 3.13461i −0.140988 0.106642i
\(865\) 57.3788 + 57.3788i 1.95094 + 1.95094i
\(866\) 21.2499 21.2499i 0.722103 0.722103i
\(867\) −12.5829 + 24.3083i −0.427337 + 0.825552i
\(868\) 23.3503i 0.792561i
\(869\) 5.40290 5.40290i 0.183281 0.183281i
\(870\) 18.4283 35.6007i 0.624778 1.20698i
\(871\) 0 0
\(872\) 15.5423i 0.526330i
\(873\) −1.81355 0.311156i −0.0613794 0.0105310i
\(874\) 2.40848 0.0814682
\(875\) −52.2847 −1.76755
\(876\) −3.84395 12.0941i −0.129875 0.408622i
\(877\) 31.9277 31.9277i 1.07812 1.07812i 0.0814427 0.996678i \(-0.474047\pi\)
0.996678 0.0814427i \(-0.0259527\pi\)
\(878\) 14.7403 14.7403i 0.497460 0.497460i
\(879\) −11.2040 35.2508i −0.377902 1.18898i
\(880\) −2.27752 −0.0767753
\(881\) −31.1330 −1.04890 −0.524448 0.851442i \(-0.675728\pi\)
−0.524448 + 0.851442i \(0.675728\pi\)
\(882\) 1.61781 + 0.277572i 0.0544745 + 0.00934635i
\(883\) 45.7983i 1.54123i 0.637298 + 0.770617i \(0.280052\pi\)
−0.637298 + 0.770617i \(0.719948\pi\)
\(884\) 0 0
\(885\) 26.3795 50.9612i 0.886737 1.71304i
\(886\) −9.21806 + 9.21806i −0.309687 + 0.309687i
\(887\) 29.5730i 0.992965i −0.868047 0.496482i \(-0.834625\pi\)
0.868047 0.496482i \(-0.165375\pi\)
\(888\) 2.46422 4.76050i 0.0826936 0.159752i
\(889\) −16.7287 + 16.7287i −0.561062 + 0.561062i
\(890\) −26.7730 26.7730i −0.897433 0.897433i
\(891\) −2.26079 4.73373i −0.0757395 0.158586i
\(892\) 13.4803 + 13.4803i 0.451355 + 0.451355i
\(893\) 10.7087i 0.358354i
\(894\) −12.0826 6.25440i −0.404102 0.209179i
\(895\) 38.6821 + 38.6821i 1.29300 + 1.29300i
\(896\) 2.54025 0.0848637
\(897\) 0 0
\(898\) 19.0404 0.635385
\(899\) −38.5004 38.5004i −1.28406 1.28406i
\(900\) 17.7840 + 25.1504i 0.592801 + 0.838347i
\(901\) 3.33051i 0.110956i
\(902\) 2.18375 + 2.18375i 0.0727109 + 0.0727109i
\(903\) −5.02145 15.7988i −0.167103 0.525751i
\(904\) −7.70543 7.70543i −0.256279 0.256279i
\(905\) −70.5668 + 70.5668i −2.34572 + 2.34572i
\(906\) −22.3188 11.5531i −0.741493 0.383825i
\(907\) 58.1044i 1.92933i 0.263487 + 0.964663i \(0.415127\pi\)
−0.263487 + 0.964663i \(0.584873\pi\)
\(908\) 3.79025 3.79025i 0.125784 0.125784i
\(909\) 10.1079 + 14.2947i 0.335257 + 0.474125i
\(910\) 0 0
\(911\) 52.8673i 1.75157i 0.482701 + 0.875785i \(0.339656\pi\)
−0.482701 + 0.875785i \(0.660344\pi\)
\(912\) −0.720857 2.26801i −0.0238700 0.0751012i
\(913\) 4.24846 0.140604
\(914\) 21.2603 0.703228
\(915\) −60.2758 + 19.1579i −1.99266 + 0.633340i
\(916\) −2.78436 + 2.78436i −0.0919978 + 0.0919978i
\(917\) −1.64863 + 1.64863i −0.0544424 + 0.0544424i
\(918\) −4.53373 3.42926i −0.149636 0.113182i
\(919\) −6.15017 −0.202875 −0.101438 0.994842i \(-0.532344\pi\)
−0.101438 + 0.994842i \(0.532344\pi\)
\(920\) −6.84932 −0.225816
\(921\) −37.8781 + 12.0391i −1.24812 + 0.396700i
\(922\) 1.52692i 0.0502864i
\(923\) 0 0
\(924\) 2.27752 + 1.17893i 0.0749250 + 0.0387840i
\(925\) −22.4697 + 22.4697i −0.738799 + 0.738799i
\(926\) 30.1612i 0.991159i
\(927\) 5.07812 3.59077i 0.166787 0.117936i
\(928\) 4.18840 4.18840i 0.137491 0.137491i
\(929\) −25.3106 25.3106i −0.830414 0.830414i 0.157160 0.987573i \(-0.449766\pi\)
−0.987573 + 0.157160i \(0.949766\pi\)
\(930\) 59.2878 18.8439i 1.94412 0.617915i
\(931\) 0.531585 + 0.531585i 0.0174220 + 0.0174220i
\(932\) 3.83663i 0.125673i
\(933\) 26.1532 50.5240i 0.856216 1.65408i
\(934\) 7.98571 + 7.98571i 0.261300 + 0.261300i
\(935\) −2.49161 −0.0814844
\(936\) 0 0
\(937\) −13.8585 −0.452737 −0.226369 0.974042i \(-0.572685\pi\)
−0.226369 + 0.974042i \(0.572685\pi\)
\(938\) 11.8576 + 11.8576i 0.387163 + 0.387163i
\(939\) 8.80854 17.0168i 0.287456 0.555322i
\(940\) 30.4538i 0.993295i
\(941\) −10.8257 10.8257i −0.352908 0.352908i 0.508283 0.861190i \(-0.330281\pi\)
−0.861190 + 0.508283i \(0.830281\pi\)
\(942\) 11.0851 3.52326i 0.361172 0.114794i
\(943\) 6.56731 + 6.56731i 0.213861 + 0.213861i
\(944\) 5.99556 5.99556i 0.195139 0.195139i
\(945\) −7.08572 51.0864i −0.230499 1.66184i
\(946\) 2.19615i 0.0714031i
\(947\) −15.0501 + 15.0501i −0.489061 + 0.489061i −0.908010 0.418949i \(-0.862399\pi\)
0.418949 + 0.908010i \(0.362399\pi\)
\(948\) −20.1639 10.4376i −0.654893 0.338998i
\(949\) 0 0
\(950\) 14.1075i 0.457708i
\(951\) −40.9689 + 13.0214i −1.32851 + 0.422249i
\(952\) 2.77903 0.0900689
\(953\) −20.6433 −0.668703 −0.334351 0.942448i \(-0.608517\pi\)
−0.334351 + 0.942448i \(0.608517\pi\)
\(954\) 9.00151 + 1.54441i 0.291435 + 0.0500023i
\(955\) 65.3332 65.3332i 2.11413 2.11413i
\(956\) 0.751524 0.751524i 0.0243060 0.0243060i
\(957\) 5.69907 1.81138i 0.184225 0.0585535i
\(958\) −29.0750 −0.939371
\(959\) 21.8934 0.706974
\(960\) 2.05000 + 6.44983i 0.0661634 + 0.208167i
\(961\) 53.4956i 1.72566i
\(962\) 0 0
\(963\) −8.47170 + 5.99040i −0.272997 + 0.193038i
\(964\) 19.7732 19.7732i 0.636853 0.636853i
\(965\) 41.4129i 1.33313i
\(966\) 6.84932 + 3.54547i 0.220373 + 0.114074i
\(967\) −3.56933 + 3.56933i −0.114782 + 0.114782i −0.762165 0.647383i \(-0.775863\pi\)
0.647383 + 0.762165i \(0.275863\pi\)
\(968\) 7.53794 + 7.53794i 0.242279 + 0.242279i
\(969\) −0.788618 2.48120i −0.0253341 0.0797076i
\(970\) 1.69465 + 1.69465i 0.0544118 + 0.0544118i
\(971\) 37.0559i 1.18918i −0.804029 0.594590i \(-0.797314\pi\)
0.804029 0.594590i \(-0.202686\pi\)
\(972\) −11.3708 + 10.6633i −0.364717 + 0.342025i
\(973\) −5.95134 5.95134i −0.190791 0.190791i
\(974\) 2.53376 0.0811869
\(975\) 0 0
\(976\) −9.34533 −0.299137
\(977\) −34.5163 34.5163i −1.10427 1.10427i −0.993889 0.110385i \(-0.964792\pi\)
−0.110385 0.993889i \(-0.535208\pi\)
\(978\) 2.42211 + 1.25378i 0.0774505 + 0.0400914i
\(979\) 5.64812i 0.180515i
\(980\) −1.51174 1.51174i −0.0482907 0.0482907i
\(981\) 45.9555 + 7.88471i 1.46725 + 0.251740i
\(982\) −26.1029 26.1029i −0.832978 0.832978i
\(983\) 33.9032 33.9032i 1.08134 1.08134i 0.0849587 0.996384i \(-0.472924\pi\)
0.996384 0.0849587i \(-0.0270758\pi\)
\(984\) 4.21868 8.14986i 0.134487 0.259808i
\(985\) 13.5498i 0.431733i
\(986\) 4.58212 4.58212i 0.145924 0.145924i
\(987\) 15.7641 30.4538i 0.501776 0.969357i
\(988\) 0 0
\(989\) 6.60462i 0.210015i
\(990\) −1.15540 + 6.73417i −0.0367210 + 0.214026i
\(991\) −48.7016 −1.54706 −0.773529 0.633761i \(-0.781510\pi\)
−0.773529 + 0.633761i \(0.781510\pi\)
\(992\) 9.19215 0.291851
\(993\) 2.42595 + 7.63267i 0.0769850 + 0.242215i
\(994\) −1.52766 + 1.52766i −0.0484545 + 0.0484545i
\(995\) −8.53204 + 8.53204i −0.270484 + 0.270484i
\(996\) −3.82404 12.0314i −0.121169 0.381231i
\(997\) −5.53393 −0.175261 −0.0876306 0.996153i \(-0.527930\pi\)
−0.0876306 + 0.996153i \(0.527930\pi\)
\(998\) −31.6021 −1.00035
\(999\) −12.8257 9.70121i −0.405787 0.306933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.2.g.c.239.3 16
3.2 odd 2 inner 1014.2.g.c.239.7 16
13.3 even 3 78.2.k.a.71.4 yes 16
13.5 odd 4 1014.2.g.d.437.3 16
13.7 odd 12 78.2.k.a.11.1 16
13.8 odd 4 inner 1014.2.g.c.437.7 16
13.12 even 2 1014.2.g.d.239.7 16
39.5 even 4 1014.2.g.d.437.7 16
39.8 even 4 inner 1014.2.g.c.437.3 16
39.20 even 12 78.2.k.a.11.4 yes 16
39.29 odd 6 78.2.k.a.71.1 yes 16
39.38 odd 2 1014.2.g.d.239.3 16
52.3 odd 6 624.2.cn.d.305.2 16
52.7 even 12 624.2.cn.d.401.4 16
156.59 odd 12 624.2.cn.d.401.2 16
156.107 even 6 624.2.cn.d.305.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.k.a.11.1 16 13.7 odd 12
78.2.k.a.11.4 yes 16 39.20 even 12
78.2.k.a.71.1 yes 16 39.29 odd 6
78.2.k.a.71.4 yes 16 13.3 even 3
624.2.cn.d.305.2 16 52.3 odd 6
624.2.cn.d.305.4 16 156.107 even 6
624.2.cn.d.401.2 16 156.59 odd 12
624.2.cn.d.401.4 16 52.7 even 12
1014.2.g.c.239.3 16 1.1 even 1 trivial
1014.2.g.c.239.7 16 3.2 odd 2 inner
1014.2.g.c.437.3 16 39.8 even 4 inner
1014.2.g.c.437.7 16 13.8 odd 4 inner
1014.2.g.d.239.3 16 39.38 odd 2
1014.2.g.d.239.7 16 13.12 even 2
1014.2.g.d.437.3 16 13.5 odd 4
1014.2.g.d.437.7 16 39.5 even 4