Defining parameters
Level: | \( N \) | \(=\) | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1014.g (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 39 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(364\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1014, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 420 | 100 | 320 |
Cusp forms | 308 | 100 | 208 |
Eisenstein series | 112 | 0 | 112 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1014, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1014.2.g.a | $8$ | $8.097$ | 8.0.959512576.1 | None | \(0\) | \(4\) | \(0\) | \(0\) | \(q+\beta _{5}q^{2}+(1+\beta _{2})q^{3}+\beta _{4}q^{4}+\beta _{5}q^{5}+\cdots\) |
1014.2.g.b | $12$ | $8.097$ | 12.0.\(\cdots\).52 | None | \(0\) | \(0\) | \(0\) | \(12\) | \(q-\beta _{6}q^{2}+\beta _{7}q^{3}-\beta _{8}q^{4}+(\beta _{5}-\beta _{9}+\cdots)q^{5}+\cdots\) |
1014.2.g.c | $16$ | $8.097$ | 16.0.\(\cdots\).9 | None | \(0\) | \(0\) | \(0\) | \(-16\) | \(q-\beta _{11}q^{2}-\beta _{15}q^{3}+\beta _{12}q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots\) |
1014.2.g.d | $16$ | $8.097$ | 16.0.\(\cdots\).9 | None | \(0\) | \(0\) | \(0\) | \(16\) | \(q-\beta _{11}q^{2}+(-\beta _{2}-\beta _{5}-\beta _{6}+\beta _{15})q^{3}+\cdots\) |
1014.2.g.e | $48$ | $8.097$ | None | \(0\) | \(-4\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1014, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1014, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)