Properties

Label 1014.2.g
Level $1014$
Weight $2$
Character orbit 1014.g
Rep. character $\chi_{1014}(239,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $100$
Newform subspaces $5$
Sturm bound $364$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 5 \)
Sturm bound: \(364\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1014, [\chi])\).

Total New Old
Modular forms 420 100 320
Cusp forms 308 100 208
Eisenstein series 112 0 112

Trace form

\( 100 q + 12 q^{7} - 100 q^{16} + 12 q^{19} + 48 q^{27} - 12 q^{28} - 12 q^{31} - 36 q^{33} - 12 q^{37} - 48 q^{42} - 36 q^{45} + 36 q^{54} - 16 q^{55} + 36 q^{57} - 16 q^{61} + 36 q^{63} + 16 q^{66} + 12 q^{67}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1014, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1014.2.g.a 1014.g 39.f $8$ $8.097$ 8.0.959512576.1 None 1014.2.g.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{5}q^{2}+(1+\beta _{2})q^{3}+\beta _{4}q^{4}+\beta _{5}q^{5}+\cdots\)
1014.2.g.b 1014.g 39.f $12$ $8.097$ 12.0.\(\cdots\).52 None 78.2.g.a \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{6}q^{2}+\beta _{7}q^{3}-\beta _{8}q^{4}+(\beta _{5}-\beta _{9}+\cdots)q^{5}+\cdots\)
1014.2.g.c 1014.g 39.f $16$ $8.097$ 16.0.\(\cdots\).9 None 78.2.k.a \(0\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{11}q^{2}-\beta _{15}q^{3}+\beta _{12}q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots\)
1014.2.g.d 1014.g 39.f $16$ $8.097$ 16.0.\(\cdots\).9 None 78.2.k.a \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{11}q^{2}+(-\beta _{2}-\beta _{5}-\beta _{6}+\beta _{15})q^{3}+\cdots\)
1014.2.g.e 1014.g 39.f $48$ $8.097$ None 1014.2.g.e \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1014, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1014, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)