Properties

Label 1014.2.e.m.991.3
Level $1014$
Weight $2$
Character 1014.991
Analytic conductor $8.097$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1014,2,Mod(529,1014)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1014.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1014, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,-3,-3,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 991.3
Root \(0.900969 - 1.56052i\) of defining polynomial
Character \(\chi\) \(=\) 1014.991
Dual form 1014.2.e.m.529.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +4.04892 q^{5} +(0.500000 - 0.866025i) q^{6} +(-0.346011 + 0.599308i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(2.02446 + 3.50647i) q^{10} +(2.42543 + 4.20096i) q^{11} +1.00000 q^{12} -0.692021 q^{14} +(-2.02446 - 3.50647i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-3.69202 + 6.39477i) q^{17} -1.00000 q^{18} +(0.890084 - 1.54167i) q^{19} +(-2.02446 + 3.50647i) q^{20} +0.692021 q^{21} +(-2.42543 + 4.20096i) q^{22} +(-2.55496 - 4.42532i) q^{23} +(0.500000 + 0.866025i) q^{24} +11.3937 q^{25} +1.00000 q^{27} +(-0.346011 - 0.599308i) q^{28} +(1.67241 + 2.89669i) q^{29} +(2.02446 - 3.50647i) q^{30} +0.972853 q^{31} +(0.500000 - 0.866025i) q^{32} +(2.42543 - 4.20096i) q^{33} -7.38404 q^{34} +(-1.40097 + 2.42655i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(-0.643104 - 1.11389i) q^{37} +1.78017 q^{38} -4.04892 q^{40} +(-0.753020 - 1.30427i) q^{41} +(0.346011 + 0.599308i) q^{42} +(4.15883 - 7.20331i) q^{43} -4.85086 q^{44} +(-2.02446 + 3.50647i) q^{45} +(2.55496 - 4.42532i) q^{46} -7.20775 q^{47} +(-0.500000 + 0.866025i) q^{48} +(3.26055 + 5.64744i) q^{49} +(5.69687 + 9.86726i) q^{50} +7.38404 q^{51} +13.4765 q^{53} +(0.500000 + 0.866025i) q^{54} +(9.82036 + 17.0094i) q^{55} +(0.346011 - 0.599308i) q^{56} -1.78017 q^{57} +(-1.67241 + 2.89669i) q^{58} +(-0.653989 + 1.13274i) q^{59} +4.04892 q^{60} +(0.198062 - 0.343054i) q^{61} +(0.486426 + 0.842515i) q^{62} +(-0.346011 - 0.599308i) q^{63} +1.00000 q^{64} +4.85086 q^{66} +(-3.02715 - 5.24317i) q^{67} +(-3.69202 - 6.39477i) q^{68} +(-2.55496 + 4.42532i) q^{69} -2.80194 q^{70} +(0.664874 - 1.15160i) q^{71} +(0.500000 - 0.866025i) q^{72} -7.65279 q^{73} +(0.643104 - 1.11389i) q^{74} +(-5.69687 - 9.86726i) q^{75} +(0.890084 + 1.54167i) q^{76} -3.35690 q^{77} -8.33944 q^{79} +(-2.02446 - 3.50647i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.753020 - 1.30427i) q^{82} +15.3274 q^{83} +(-0.346011 + 0.599308i) q^{84} +(-14.9487 + 25.8919i) q^{85} +8.31767 q^{86} +(1.67241 - 2.89669i) q^{87} +(-2.42543 - 4.20096i) q^{88} +(-1.55496 - 2.69327i) q^{89} -4.04892 q^{90} +5.10992 q^{92} +(-0.486426 - 0.842515i) q^{93} +(-3.60388 - 6.24210i) q^{94} +(3.60388 - 6.24210i) q^{95} -1.00000 q^{96} +(4.27144 - 7.39835i) q^{97} +(-3.26055 + 5.64744i) q^{98} -4.85086 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{3} - 3 q^{4} + 6 q^{5} + 3 q^{6} + 3 q^{7} - 6 q^{8} - 3 q^{9} + 3 q^{10} + q^{11} + 6 q^{12} + 6 q^{14} - 3 q^{15} - 3 q^{16} - 12 q^{17} - 6 q^{18} + 4 q^{19} - 3 q^{20} - 6 q^{21}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 4.04892 1.81073 0.905365 0.424633i \(-0.139597\pi\)
0.905365 + 0.424633i \(0.139597\pi\)
\(6\) 0.500000 0.866025i 0.204124 0.353553i
\(7\) −0.346011 + 0.599308i −0.130780 + 0.226517i −0.923977 0.382447i \(-0.875081\pi\)
0.793198 + 0.608964i \(0.208415\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 2.02446 + 3.50647i 0.640190 + 1.10884i
\(11\) 2.42543 + 4.20096i 0.731294 + 1.26664i 0.956330 + 0.292288i \(0.0944165\pi\)
−0.225036 + 0.974350i \(0.572250\pi\)
\(12\) 1.00000 0.288675
\(13\) 0 0
\(14\) −0.692021 −0.184951
\(15\) −2.02446 3.50647i −0.522713 0.905365i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.69202 + 6.39477i −0.895447 + 1.55096i −0.0621960 + 0.998064i \(0.519810\pi\)
−0.833251 + 0.552895i \(0.813523\pi\)
\(18\) −1.00000 −0.235702
\(19\) 0.890084 1.54167i 0.204199 0.353683i −0.745678 0.666306i \(-0.767874\pi\)
0.949877 + 0.312623i \(0.101208\pi\)
\(20\) −2.02446 + 3.50647i −0.452683 + 0.784069i
\(21\) 0.692021 0.151011
\(22\) −2.42543 + 4.20096i −0.517103 + 0.895648i
\(23\) −2.55496 4.42532i −0.532746 0.922742i −0.999269 0.0382335i \(-0.987827\pi\)
0.466523 0.884509i \(-0.345506\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) 11.3937 2.27875
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) −0.346011 0.599308i −0.0653899 0.113259i
\(29\) 1.67241 + 2.89669i 0.310558 + 0.537903i 0.978483 0.206326i \(-0.0661507\pi\)
−0.667925 + 0.744228i \(0.732817\pi\)
\(30\) 2.02446 3.50647i 0.369614 0.640190i
\(31\) 0.972853 0.174730 0.0873648 0.996176i \(-0.472155\pi\)
0.0873648 + 0.996176i \(0.472155\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 2.42543 4.20096i 0.422213 0.731294i
\(34\) −7.38404 −1.26635
\(35\) −1.40097 + 2.42655i −0.236807 + 0.410162i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) −0.643104 1.11389i −0.105726 0.183122i 0.808309 0.588759i \(-0.200383\pi\)
−0.914034 + 0.405637i \(0.867050\pi\)
\(38\) 1.78017 0.288781
\(39\) 0 0
\(40\) −4.04892 −0.640190
\(41\) −0.753020 1.30427i −0.117602 0.203693i 0.801215 0.598377i \(-0.204187\pi\)
−0.918817 + 0.394684i \(0.870854\pi\)
\(42\) 0.346011 + 0.599308i 0.0533906 + 0.0924753i
\(43\) 4.15883 7.20331i 0.634216 1.09849i −0.352464 0.935825i \(-0.614656\pi\)
0.986681 0.162669i \(-0.0520104\pi\)
\(44\) −4.85086 −0.731294
\(45\) −2.02446 + 3.50647i −0.301788 + 0.522713i
\(46\) 2.55496 4.42532i 0.376708 0.652477i
\(47\) −7.20775 −1.05136 −0.525679 0.850683i \(-0.676189\pi\)
−0.525679 + 0.850683i \(0.676189\pi\)
\(48\) −0.500000 + 0.866025i −0.0721688 + 0.125000i
\(49\) 3.26055 + 5.64744i 0.465793 + 0.806778i
\(50\) 5.69687 + 9.86726i 0.805658 + 1.39544i
\(51\) 7.38404 1.03397
\(52\) 0 0
\(53\) 13.4765 1.85114 0.925570 0.378577i \(-0.123586\pi\)
0.925570 + 0.378577i \(0.123586\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) 9.82036 + 17.0094i 1.32418 + 2.29354i
\(56\) 0.346011 0.599308i 0.0462376 0.0800859i
\(57\) −1.78017 −0.235789
\(58\) −1.67241 + 2.89669i −0.219598 + 0.380355i
\(59\) −0.653989 + 1.13274i −0.0851422 + 0.147471i −0.905452 0.424449i \(-0.860468\pi\)
0.820310 + 0.571920i \(0.193801\pi\)
\(60\) 4.04892 0.522713
\(61\) 0.198062 0.343054i 0.0253593 0.0439236i −0.853067 0.521801i \(-0.825260\pi\)
0.878427 + 0.477877i \(0.158594\pi\)
\(62\) 0.486426 + 0.842515i 0.0617762 + 0.107000i
\(63\) −0.346011 0.599308i −0.0435933 0.0755057i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 4.85086 0.597099
\(67\) −3.02715 5.24317i −0.369825 0.640555i 0.619713 0.784828i \(-0.287249\pi\)
−0.989538 + 0.144273i \(0.953916\pi\)
\(68\) −3.69202 6.39477i −0.447723 0.775480i
\(69\) −2.55496 + 4.42532i −0.307581 + 0.532746i
\(70\) −2.80194 −0.334896
\(71\) 0.664874 1.15160i 0.0789061 0.136669i −0.823872 0.566776i \(-0.808191\pi\)
0.902778 + 0.430106i \(0.141524\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) −7.65279 −0.895692 −0.447846 0.894111i \(-0.647809\pi\)
−0.447846 + 0.894111i \(0.647809\pi\)
\(74\) 0.643104 1.11389i 0.0747593 0.129487i
\(75\) −5.69687 9.86726i −0.657817 1.13937i
\(76\) 0.890084 + 1.54167i 0.102100 + 0.176842i
\(77\) −3.35690 −0.382554
\(78\) 0 0
\(79\) −8.33944 −0.938260 −0.469130 0.883129i \(-0.655432\pi\)
−0.469130 + 0.883129i \(0.655432\pi\)
\(80\) −2.02446 3.50647i −0.226341 0.392035i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0.753020 1.30427i 0.0831572 0.144032i
\(83\) 15.3274 1.68240 0.841198 0.540727i \(-0.181851\pi\)
0.841198 + 0.540727i \(0.181851\pi\)
\(84\) −0.346011 + 0.599308i −0.0377529 + 0.0653899i
\(85\) −14.9487 + 25.8919i −1.62141 + 2.80837i
\(86\) 8.31767 0.896917
\(87\) 1.67241 2.89669i 0.179301 0.310558i
\(88\) −2.42543 4.20096i −0.258551 0.447824i
\(89\) −1.55496 2.69327i −0.164825 0.285486i 0.771768 0.635904i \(-0.219373\pi\)
−0.936593 + 0.350419i \(0.886039\pi\)
\(90\) −4.04892 −0.426793
\(91\) 0 0
\(92\) 5.10992 0.532746
\(93\) −0.486426 0.842515i −0.0504401 0.0873648i
\(94\) −3.60388 6.24210i −0.371711 0.643823i
\(95\) 3.60388 6.24210i 0.369750 0.640425i
\(96\) −1.00000 −0.102062
\(97\) 4.27144 7.39835i 0.433699 0.751188i −0.563490 0.826123i \(-0.690542\pi\)
0.997188 + 0.0749347i \(0.0238748\pi\)
\(98\) −3.26055 + 5.64744i −0.329366 + 0.570478i
\(99\) −4.85086 −0.487529
\(100\) −5.69687 + 9.86726i −0.569687 + 0.986726i
\(101\) 5.99880 + 10.3902i 0.596903 + 1.03387i 0.993275 + 0.115777i \(0.0369357\pi\)
−0.396372 + 0.918090i \(0.629731\pi\)
\(102\) 3.69202 + 6.39477i 0.365565 + 0.633176i
\(103\) −12.3230 −1.21423 −0.607113 0.794616i \(-0.707672\pi\)
−0.607113 + 0.794616i \(0.707672\pi\)
\(104\) 0 0
\(105\) 2.80194 0.273441
\(106\) 6.73825 + 11.6710i 0.654477 + 1.13359i
\(107\) −2.94989 5.10935i −0.285176 0.493940i 0.687476 0.726207i \(-0.258719\pi\)
−0.972652 + 0.232268i \(0.925385\pi\)
\(108\) −0.500000 + 0.866025i −0.0481125 + 0.0833333i
\(109\) 0.792249 0.0758837 0.0379418 0.999280i \(-0.487920\pi\)
0.0379418 + 0.999280i \(0.487920\pi\)
\(110\) −9.82036 + 17.0094i −0.936334 + 1.62178i
\(111\) −0.643104 + 1.11389i −0.0610407 + 0.105726i
\(112\) 0.692021 0.0653899
\(113\) −3.10992 + 5.38653i −0.292556 + 0.506722i −0.974413 0.224763i \(-0.927839\pi\)
0.681857 + 0.731485i \(0.261173\pi\)
\(114\) −0.890084 1.54167i −0.0833640 0.144391i
\(115\) −10.3448 17.9177i −0.964659 1.67084i
\(116\) −3.34481 −0.310558
\(117\) 0 0
\(118\) −1.30798 −0.120409
\(119\) −2.55496 4.42532i −0.234213 0.405668i
\(120\) 2.02446 + 3.50647i 0.184807 + 0.320095i
\(121\) −6.26540 + 10.8520i −0.569582 + 0.986544i
\(122\) 0.396125 0.0358634
\(123\) −0.753020 + 1.30427i −0.0678976 + 0.117602i
\(124\) −0.486426 + 0.842515i −0.0436824 + 0.0756601i
\(125\) 25.8877 2.31547
\(126\) 0.346011 0.599308i 0.0308251 0.0533906i
\(127\) 3.00269 + 5.20081i 0.266446 + 0.461497i 0.967941 0.251176i \(-0.0808174\pi\)
−0.701496 + 0.712674i \(0.747484\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −8.31767 −0.732330
\(130\) 0 0
\(131\) 8.81700 0.770345 0.385173 0.922845i \(-0.374142\pi\)
0.385173 + 0.922845i \(0.374142\pi\)
\(132\) 2.42543 + 4.20096i 0.211106 + 0.365647i
\(133\) 0.615957 + 1.06687i 0.0534103 + 0.0925093i
\(134\) 3.02715 5.24317i 0.261506 0.452941i
\(135\) 4.04892 0.348475
\(136\) 3.69202 6.39477i 0.316588 0.548347i
\(137\) 7.87800 13.6451i 0.673063 1.16578i −0.303968 0.952682i \(-0.598312\pi\)
0.977031 0.213097i \(-0.0683551\pi\)
\(138\) −5.10992 −0.434985
\(139\) 3.04892 5.28088i 0.258606 0.447918i −0.707263 0.706951i \(-0.750070\pi\)
0.965869 + 0.259032i \(0.0834036\pi\)
\(140\) −1.40097 2.42655i −0.118403 0.205081i
\(141\) 3.60388 + 6.24210i 0.303501 + 0.525679i
\(142\) 1.32975 0.111590
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 6.77144 + 11.7285i 0.562337 + 0.973997i
\(146\) −3.82640 6.62751i −0.316675 0.548497i
\(147\) 3.26055 5.64744i 0.268926 0.465793i
\(148\) 1.28621 0.105726
\(149\) 1.27628 2.21059i 0.104557 0.181098i −0.809000 0.587809i \(-0.799991\pi\)
0.913557 + 0.406710i \(0.133324\pi\)
\(150\) 5.69687 9.86726i 0.465147 0.805658i
\(151\) −17.7168 −1.44177 −0.720885 0.693054i \(-0.756265\pi\)
−0.720885 + 0.693054i \(0.756265\pi\)
\(152\) −0.890084 + 1.54167i −0.0721953 + 0.125046i
\(153\) −3.69202 6.39477i −0.298482 0.516986i
\(154\) −1.67845 2.90716i −0.135253 0.234265i
\(155\) 3.93900 0.316388
\(156\) 0 0
\(157\) −6.31767 −0.504205 −0.252102 0.967701i \(-0.581122\pi\)
−0.252102 + 0.967701i \(0.581122\pi\)
\(158\) −4.16972 7.22216i −0.331725 0.574565i
\(159\) −6.73825 11.6710i −0.534378 0.925570i
\(160\) 2.02446 3.50647i 0.160048 0.277210i
\(161\) 3.53617 0.278689
\(162\) 0.500000 0.866025i 0.0392837 0.0680414i
\(163\) 7.29590 12.6369i 0.571459 0.989796i −0.424958 0.905213i \(-0.639711\pi\)
0.996416 0.0845824i \(-0.0269556\pi\)
\(164\) 1.50604 0.117602
\(165\) 9.82036 17.0094i 0.764514 1.32418i
\(166\) 7.66368 + 13.2739i 0.594817 + 1.03025i
\(167\) −9.75063 16.8886i −0.754526 1.30688i −0.945610 0.325304i \(-0.894533\pi\)
0.191083 0.981574i \(-0.438800\pi\)
\(168\) −0.692021 −0.0533906
\(169\) 0 0
\(170\) −29.8974 −2.29302
\(171\) 0.890084 + 1.54167i 0.0680664 + 0.117894i
\(172\) 4.15883 + 7.20331i 0.317108 + 0.549247i
\(173\) 4.64526 8.04583i 0.353173 0.611713i −0.633631 0.773636i \(-0.718436\pi\)
0.986803 + 0.161923i \(0.0517695\pi\)
\(174\) 3.34481 0.253570
\(175\) −3.94235 + 6.82836i −0.298014 + 0.516175i
\(176\) 2.42543 4.20096i 0.182823 0.316660i
\(177\) 1.30798 0.0983137
\(178\) 1.55496 2.69327i 0.116549 0.201869i
\(179\) −11.3964 19.7392i −0.851808 1.47538i −0.879575 0.475761i \(-0.842173\pi\)
0.0277662 0.999614i \(-0.491161\pi\)
\(180\) −2.02446 3.50647i −0.150894 0.261356i
\(181\) 0.537500 0.0399520 0.0199760 0.999800i \(-0.493641\pi\)
0.0199760 + 0.999800i \(0.493641\pi\)
\(182\) 0 0
\(183\) −0.396125 −0.0292824
\(184\) 2.55496 + 4.42532i 0.188354 + 0.326239i
\(185\) −2.60388 4.51004i −0.191441 0.331585i
\(186\) 0.486426 0.842515i 0.0356665 0.0617762i
\(187\) −35.8189 −2.61934
\(188\) 3.60388 6.24210i 0.262840 0.455252i
\(189\) −0.346011 + 0.599308i −0.0251686 + 0.0435933i
\(190\) 7.20775 0.522905
\(191\) 4.89977 8.48665i 0.354535 0.614073i −0.632503 0.774558i \(-0.717972\pi\)
0.987038 + 0.160485i \(0.0513058\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) −7.09783 12.2938i −0.510913 0.884928i −0.999920 0.0126478i \(-0.995974\pi\)
0.489007 0.872280i \(-0.337359\pi\)
\(194\) 8.54288 0.613343
\(195\) 0 0
\(196\) −6.52111 −0.465793
\(197\) −1.50484 2.60647i −0.107216 0.185703i 0.807426 0.589969i \(-0.200860\pi\)
−0.914641 + 0.404266i \(0.867527\pi\)
\(198\) −2.42543 4.20096i −0.172368 0.298549i
\(199\) −6.44720 + 11.1669i −0.457030 + 0.791599i −0.998802 0.0489263i \(-0.984420\pi\)
0.541773 + 0.840525i \(0.317753\pi\)
\(200\) −11.3937 −0.805658
\(201\) −3.02715 + 5.24317i −0.213518 + 0.369825i
\(202\) −5.99880 + 10.3902i −0.422074 + 0.731054i
\(203\) −2.31468 −0.162459
\(204\) −3.69202 + 6.39477i −0.258493 + 0.447723i
\(205\) −3.04892 5.28088i −0.212946 0.368833i
\(206\) −6.16152 10.6721i −0.429294 0.743558i
\(207\) 5.10992 0.355164
\(208\) 0 0
\(209\) 8.63533 0.597319
\(210\) 1.40097 + 2.42655i 0.0966760 + 0.167448i
\(211\) −3.89977 6.75460i −0.268471 0.465006i 0.699996 0.714147i \(-0.253185\pi\)
−0.968467 + 0.249141i \(0.919852\pi\)
\(212\) −6.73825 + 11.6710i −0.462785 + 0.801567i
\(213\) −1.32975 −0.0911129
\(214\) 2.94989 5.10935i 0.201650 0.349268i
\(215\) 16.8388 29.1656i 1.14839 1.98908i
\(216\) −1.00000 −0.0680414
\(217\) −0.336618 + 0.583039i −0.0228511 + 0.0395792i
\(218\) 0.396125 + 0.686108i 0.0268289 + 0.0464691i
\(219\) 3.82640 + 6.62751i 0.258564 + 0.447846i
\(220\) −19.6407 −1.32418
\(221\) 0 0
\(222\) −1.28621 −0.0863246
\(223\) −6.09783 10.5618i −0.408341 0.707268i 0.586363 0.810049i \(-0.300559\pi\)
−0.994704 + 0.102781i \(0.967226\pi\)
\(224\) 0.346011 + 0.599308i 0.0231188 + 0.0400430i
\(225\) −5.69687 + 9.86726i −0.379791 + 0.657817i
\(226\) −6.21983 −0.413737
\(227\) 3.37167 5.83990i 0.223785 0.387608i −0.732169 0.681123i \(-0.761492\pi\)
0.955954 + 0.293515i \(0.0948252\pi\)
\(228\) 0.890084 1.54167i 0.0589472 0.102100i
\(229\) 19.8237 1.30999 0.654994 0.755634i \(-0.272671\pi\)
0.654994 + 0.755634i \(0.272671\pi\)
\(230\) 10.3448 17.9177i 0.682117 1.18146i
\(231\) 1.67845 + 2.90716i 0.110434 + 0.191277i
\(232\) −1.67241 2.89669i −0.109799 0.190177i
\(233\) −30.0301 −1.96734 −0.983670 0.179983i \(-0.942396\pi\)
−0.983670 + 0.179983i \(0.942396\pi\)
\(234\) 0 0
\(235\) −29.1836 −1.90373
\(236\) −0.653989 1.13274i −0.0425711 0.0737353i
\(237\) 4.16972 + 7.22216i 0.270852 + 0.469130i
\(238\) 2.55496 4.42532i 0.165613 0.286851i
\(239\) −22.0978 −1.42939 −0.714695 0.699436i \(-0.753435\pi\)
−0.714695 + 0.699436i \(0.753435\pi\)
\(240\) −2.02446 + 3.50647i −0.130678 + 0.226341i
\(241\) 5.06369 8.77056i 0.326181 0.564962i −0.655570 0.755135i \(-0.727572\pi\)
0.981751 + 0.190173i \(0.0609048\pi\)
\(242\) −12.5308 −0.805510
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0.198062 + 0.343054i 0.0126796 + 0.0219618i
\(245\) 13.2017 + 22.8660i 0.843426 + 1.46086i
\(246\) −1.50604 −0.0960217
\(247\) 0 0
\(248\) −0.972853 −0.0617762
\(249\) −7.66368 13.2739i −0.485666 0.841198i
\(250\) 12.9438 + 22.4194i 0.818641 + 1.41793i
\(251\) −2.77359 + 4.80401i −0.175068 + 0.303226i −0.940185 0.340665i \(-0.889348\pi\)
0.765117 + 0.643891i \(0.222681\pi\)
\(252\) 0.692021 0.0435933
\(253\) 12.3937 21.4666i 0.779187 1.34959i
\(254\) −3.00269 + 5.20081i −0.188405 + 0.326328i
\(255\) 29.8974 1.87225
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 6.89977 + 11.9508i 0.430396 + 0.745468i 0.996907 0.0785862i \(-0.0250406\pi\)
−0.566511 + 0.824054i \(0.691707\pi\)
\(258\) −4.15883 7.20331i −0.258918 0.448459i
\(259\) 0.890084 0.0553071
\(260\) 0 0
\(261\) −3.34481 −0.207039
\(262\) 4.40850 + 7.63575i 0.272358 + 0.471738i
\(263\) 11.2349 + 19.4594i 0.692773 + 1.19992i 0.970926 + 0.239382i \(0.0769448\pi\)
−0.278152 + 0.960537i \(0.589722\pi\)
\(264\) −2.42543 + 4.20096i −0.149275 + 0.258551i
\(265\) 54.5652 3.35192
\(266\) −0.615957 + 1.06687i −0.0377668 + 0.0654139i
\(267\) −1.55496 + 2.69327i −0.0951619 + 0.164825i
\(268\) 6.05429 0.369825
\(269\) 13.0070 22.5288i 0.793051 1.37360i −0.131019 0.991380i \(-0.541825\pi\)
0.924070 0.382224i \(-0.124842\pi\)
\(270\) 2.02446 + 3.50647i 0.123205 + 0.213397i
\(271\) 1.44235 + 2.49823i 0.0876167 + 0.151757i 0.906503 0.422199i \(-0.138742\pi\)
−0.818887 + 0.573955i \(0.805408\pi\)
\(272\) 7.38404 0.447723
\(273\) 0 0
\(274\) 15.7560 0.951855
\(275\) 27.6347 + 47.8647i 1.66643 + 2.88635i
\(276\) −2.55496 4.42532i −0.153790 0.266373i
\(277\) 0.731250 1.26656i 0.0439366 0.0761004i −0.843221 0.537567i \(-0.819343\pi\)
0.887157 + 0.461467i \(0.152677\pi\)
\(278\) 6.09783 0.365724
\(279\) −0.486426 + 0.842515i −0.0291216 + 0.0504401i
\(280\) 1.40097 2.42655i 0.0837239 0.145014i
\(281\) −5.68233 −0.338980 −0.169490 0.985532i \(-0.554212\pi\)
−0.169490 + 0.985532i \(0.554212\pi\)
\(282\) −3.60388 + 6.24210i −0.214608 + 0.371711i
\(283\) 12.6039 + 21.8306i 0.749223 + 1.29769i 0.948196 + 0.317687i \(0.102906\pi\)
−0.198973 + 0.980005i \(0.563761\pi\)
\(284\) 0.664874 + 1.15160i 0.0394530 + 0.0683347i
\(285\) −7.20775 −0.426950
\(286\) 0 0
\(287\) 1.04221 0.0615199
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) −18.7620 32.4968i −1.10365 1.91158i
\(290\) −6.77144 + 11.7285i −0.397633 + 0.688720i
\(291\) −8.54288 −0.500792
\(292\) 3.82640 6.62751i 0.223923 0.387846i
\(293\) −3.57457 + 6.19134i −0.208829 + 0.361702i −0.951346 0.308125i \(-0.900298\pi\)
0.742517 + 0.669827i \(0.233632\pi\)
\(294\) 6.52111 0.380319
\(295\) −2.64795 + 4.58638i −0.154170 + 0.267029i
\(296\) 0.643104 + 1.11389i 0.0373797 + 0.0647435i
\(297\) 2.42543 + 4.20096i 0.140738 + 0.243765i
\(298\) 2.55257 0.147866
\(299\) 0 0
\(300\) 11.3937 0.657817
\(301\) 2.87800 + 4.98485i 0.165885 + 0.287322i
\(302\) −8.85839 15.3432i −0.509743 0.882901i
\(303\) 5.99880 10.3902i 0.344622 0.596903i
\(304\) −1.78017 −0.102100
\(305\) 0.801938 1.38900i 0.0459188 0.0795337i
\(306\) 3.69202 6.39477i 0.211059 0.365565i
\(307\) 17.9952 1.02704 0.513521 0.858077i \(-0.328341\pi\)
0.513521 + 0.858077i \(0.328341\pi\)
\(308\) 1.67845 2.90716i 0.0956384 0.165651i
\(309\) 6.16152 + 10.6721i 0.350517 + 0.607113i
\(310\) 1.96950 + 3.41127i 0.111860 + 0.193747i
\(311\) 3.32975 0.188813 0.0944064 0.995534i \(-0.469905\pi\)
0.0944064 + 0.995534i \(0.469905\pi\)
\(312\) 0 0
\(313\) −17.8834 −1.01083 −0.505414 0.862877i \(-0.668660\pi\)
−0.505414 + 0.862877i \(0.668660\pi\)
\(314\) −3.15883 5.47126i −0.178263 0.308761i
\(315\) −1.40097 2.42655i −0.0789357 0.136721i
\(316\) 4.16972 7.22216i 0.234565 0.406279i
\(317\) −4.39373 −0.246777 −0.123388 0.992358i \(-0.539376\pi\)
−0.123388 + 0.992358i \(0.539376\pi\)
\(318\) 6.73825 11.6710i 0.377862 0.654477i
\(319\) −8.11260 + 14.0514i −0.454219 + 0.786730i
\(320\) 4.04892 0.226341
\(321\) −2.94989 + 5.10935i −0.164647 + 0.285176i
\(322\) 1.76809 + 3.06241i 0.0985316 + 0.170662i
\(323\) 6.57242 + 11.3838i 0.365699 + 0.633409i
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 14.5918 0.808165
\(327\) −0.396125 0.686108i −0.0219057 0.0379418i
\(328\) 0.753020 + 1.30427i 0.0415786 + 0.0720162i
\(329\) 2.49396 4.31966i 0.137496 0.238151i
\(330\) 19.6407 1.08119
\(331\) −12.8388 + 22.2374i −0.705683 + 1.22228i 0.260762 + 0.965403i \(0.416026\pi\)
−0.966445 + 0.256875i \(0.917307\pi\)
\(332\) −7.66368 + 13.2739i −0.420599 + 0.728499i
\(333\) 1.28621 0.0704838
\(334\) 9.75063 16.8886i 0.533531 0.924102i
\(335\) −12.2567 21.2292i −0.669653 1.15987i
\(336\) −0.346011 0.599308i −0.0188764 0.0326949i
\(337\) −24.6504 −1.34279 −0.671396 0.741098i \(-0.734305\pi\)
−0.671396 + 0.741098i \(0.734305\pi\)
\(338\) 0 0
\(339\) 6.21983 0.337815
\(340\) −14.9487 25.8919i −0.810707 1.40418i
\(341\) 2.35958 + 4.08692i 0.127779 + 0.221319i
\(342\) −0.890084 + 1.54167i −0.0481302 + 0.0833640i
\(343\) −9.35690 −0.505225
\(344\) −4.15883 + 7.20331i −0.224229 + 0.388377i
\(345\) −10.3448 + 17.9177i −0.556946 + 0.964659i
\(346\) 9.29052 0.499461
\(347\) −7.14795 + 12.3806i −0.383722 + 0.664626i −0.991591 0.129411i \(-0.958691\pi\)
0.607869 + 0.794037i \(0.292025\pi\)
\(348\) 1.67241 + 2.89669i 0.0896504 + 0.155279i
\(349\) 5.53079 + 9.57962i 0.296057 + 0.512785i 0.975230 0.221193i \(-0.0709949\pi\)
−0.679173 + 0.733978i \(0.737662\pi\)
\(350\) −7.88471 −0.421455
\(351\) 0 0
\(352\) 4.85086 0.258551
\(353\) −5.25236 9.09735i −0.279555 0.484203i 0.691719 0.722166i \(-0.256854\pi\)
−0.971274 + 0.237963i \(0.923520\pi\)
\(354\) 0.653989 + 1.13274i 0.0347591 + 0.0602046i
\(355\) 2.69202 4.66272i 0.142878 0.247471i
\(356\) 3.10992 0.164825
\(357\) −2.55496 + 4.42532i −0.135223 + 0.234213i
\(358\) 11.3964 19.7392i 0.602320 1.04325i
\(359\) −5.10992 −0.269691 −0.134846 0.990867i \(-0.543054\pi\)
−0.134846 + 0.990867i \(0.543054\pi\)
\(360\) 2.02446 3.50647i 0.106698 0.184807i
\(361\) 7.91550 + 13.7101i 0.416605 + 0.721582i
\(362\) 0.268750 + 0.465488i 0.0141252 + 0.0244655i
\(363\) 12.5308 0.657696
\(364\) 0 0
\(365\) −30.9855 −1.62186
\(366\) −0.198062 0.343054i −0.0103529 0.0179317i
\(367\) 4.22401 + 7.31620i 0.220492 + 0.381903i 0.954957 0.296743i \(-0.0959005\pi\)
−0.734466 + 0.678646i \(0.762567\pi\)
\(368\) −2.55496 + 4.42532i −0.133186 + 0.230686i
\(369\) 1.50604 0.0784014
\(370\) 2.60388 4.51004i 0.135369 0.234466i
\(371\) −4.66301 + 8.07658i −0.242092 + 0.419315i
\(372\) 0.972853 0.0504401
\(373\) −3.84548 + 6.66056i −0.199111 + 0.344871i −0.948241 0.317553i \(-0.897139\pi\)
0.749129 + 0.662424i \(0.230472\pi\)
\(374\) −17.9095 31.0201i −0.926076 1.60401i
\(375\) −12.9438 22.4194i −0.668417 1.15773i
\(376\) 7.20775 0.371711
\(377\) 0 0
\(378\) −0.692021 −0.0355937
\(379\) −5.70171 9.87565i −0.292877 0.507278i 0.681612 0.731714i \(-0.261279\pi\)
−0.974489 + 0.224436i \(0.927946\pi\)
\(380\) 3.60388 + 6.24210i 0.184875 + 0.320213i
\(381\) 3.00269 5.20081i 0.153832 0.266446i
\(382\) 9.79954 0.501388
\(383\) 10.3351 17.9010i 0.528100 0.914696i −0.471363 0.881939i \(-0.656238\pi\)
0.999463 0.0327572i \(-0.0104288\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) −13.5918 −0.692702
\(386\) 7.09783 12.2938i 0.361270 0.625738i
\(387\) 4.15883 + 7.20331i 0.211405 + 0.366165i
\(388\) 4.27144 + 7.39835i 0.216849 + 0.375594i
\(389\) 17.4776 0.886148 0.443074 0.896485i \(-0.353888\pi\)
0.443074 + 0.896485i \(0.353888\pi\)
\(390\) 0 0
\(391\) 37.7318 1.90818
\(392\) −3.26055 5.64744i −0.164683 0.285239i
\(393\) −4.40850 7.63575i −0.222379 0.385173i
\(394\) 1.50484 2.60647i 0.0758130 0.131312i
\(395\) −33.7657 −1.69894
\(396\) 2.42543 4.20096i 0.121882 0.211106i
\(397\) −9.67994 + 16.7661i −0.485822 + 0.841469i −0.999867 0.0162944i \(-0.994813\pi\)
0.514045 + 0.857763i \(0.328146\pi\)
\(398\) −12.8944 −0.646338
\(399\) 0.615957 1.06687i 0.0308364 0.0534103i
\(400\) −5.69687 9.86726i −0.284843 0.493363i
\(401\) −7.24160 12.5428i −0.361628 0.626359i 0.626601 0.779341i \(-0.284446\pi\)
−0.988229 + 0.152982i \(0.951112\pi\)
\(402\) −6.05429 −0.301961
\(403\) 0 0
\(404\) −11.9976 −0.596903
\(405\) −2.02446 3.50647i −0.100596 0.174238i
\(406\) −1.15734 2.00457i −0.0574379 0.0994854i
\(407\) 3.11960 5.40331i 0.154633 0.267832i
\(408\) −7.38404 −0.365565
\(409\) −9.44922 + 16.3665i −0.467234 + 0.809273i −0.999299 0.0374304i \(-0.988083\pi\)
0.532065 + 0.846703i \(0.321416\pi\)
\(410\) 3.04892 5.28088i 0.150575 0.260804i
\(411\) −15.7560 −0.777186
\(412\) 6.16152 10.6721i 0.303556 0.525775i
\(413\) −0.452575 0.783882i −0.0222697 0.0385723i
\(414\) 2.55496 + 4.42532i 0.125569 + 0.217492i
\(415\) 62.0592 3.04637
\(416\) 0 0
\(417\) −6.09783 −0.298612
\(418\) 4.31767 + 7.47842i 0.211184 + 0.365781i
\(419\) 10.8802 + 18.8450i 0.531531 + 0.920638i 0.999323 + 0.0367993i \(0.0117162\pi\)
−0.467792 + 0.883838i \(0.654950\pi\)
\(420\) −1.40097 + 2.42655i −0.0683603 + 0.118403i
\(421\) −20.5918 −1.00358 −0.501791 0.864989i \(-0.667325\pi\)
−0.501791 + 0.864989i \(0.667325\pi\)
\(422\) 3.89977 6.75460i 0.189838 0.328809i
\(423\) 3.60388 6.24210i 0.175226 0.303501i
\(424\) −13.4765 −0.654477
\(425\) −42.0659 + 72.8603i −2.04050 + 3.53424i
\(426\) −0.664874 1.15160i −0.0322133 0.0557950i
\(427\) 0.137063 + 0.237401i 0.00663296 + 0.0114886i
\(428\) 5.89977 0.285176
\(429\) 0 0
\(430\) 33.6775 1.62408
\(431\) 17.2567 + 29.8894i 0.831224 + 1.43972i 0.897068 + 0.441893i \(0.145693\pi\)
−0.0658433 + 0.997830i \(0.520974\pi\)
\(432\) −0.500000 0.866025i −0.0240563 0.0416667i
\(433\) 1.06315 1.84144i 0.0510920 0.0884939i −0.839348 0.543594i \(-0.817063\pi\)
0.890440 + 0.455100i \(0.150397\pi\)
\(434\) −0.673235 −0.0323163
\(435\) 6.77144 11.7285i 0.324666 0.562337i
\(436\) −0.396125 + 0.686108i −0.0189709 + 0.0328586i
\(437\) −9.09651 −0.435145
\(438\) −3.82640 + 6.62751i −0.182832 + 0.316675i
\(439\) −10.9160 18.9071i −0.520994 0.902388i −0.999702 0.0244137i \(-0.992228\pi\)
0.478708 0.877974i \(-0.341105\pi\)
\(440\) −9.82036 17.0094i −0.468167 0.810889i
\(441\) −6.52111 −0.310529
\(442\) 0 0
\(443\) −7.54048 −0.358259 −0.179130 0.983825i \(-0.557328\pi\)
−0.179130 + 0.983825i \(0.557328\pi\)
\(444\) −0.643104 1.11389i −0.0305204 0.0528628i
\(445\) −6.29590 10.9048i −0.298454 0.516938i
\(446\) 6.09783 10.5618i 0.288741 0.500114i
\(447\) −2.55257 −0.120732
\(448\) −0.346011 + 0.599308i −0.0163475 + 0.0283146i
\(449\) 9.87800 17.1092i 0.466172 0.807433i −0.533082 0.846064i \(-0.678966\pi\)
0.999254 + 0.0386305i \(0.0122995\pi\)
\(450\) −11.3937 −0.537106
\(451\) 3.65279 6.32682i 0.172003 0.297918i
\(452\) −3.10992 5.38653i −0.146278 0.253361i
\(453\) 8.85839 + 15.3432i 0.416203 + 0.720885i
\(454\) 6.74333 0.316480
\(455\) 0 0
\(456\) 1.78017 0.0833640
\(457\) 11.9291 + 20.6618i 0.558019 + 0.966517i 0.997662 + 0.0683441i \(0.0217716\pi\)
−0.439643 + 0.898173i \(0.644895\pi\)
\(458\) 9.91185 + 17.1678i 0.463151 + 0.802200i
\(459\) −3.69202 + 6.39477i −0.172329 + 0.298482i
\(460\) 20.6896 0.964659
\(461\) −8.78866 + 15.2224i −0.409329 + 0.708978i −0.994815 0.101704i \(-0.967570\pi\)
0.585486 + 0.810683i \(0.300904\pi\)
\(462\) −1.67845 + 2.90716i −0.0780885 + 0.135253i
\(463\) −23.8431 −1.10808 −0.554041 0.832489i \(-0.686915\pi\)
−0.554041 + 0.832489i \(0.686915\pi\)
\(464\) 1.67241 2.89669i 0.0776396 0.134476i
\(465\) −1.96950 3.41127i −0.0913334 0.158194i
\(466\) −15.0151 26.0069i −0.695559 1.20474i
\(467\) 8.61058 0.398450 0.199225 0.979954i \(-0.436158\pi\)
0.199225 + 0.979954i \(0.436158\pi\)
\(468\) 0 0
\(469\) 4.18970 0.193462
\(470\) −14.5918 25.2737i −0.673069 1.16579i
\(471\) 3.15883 + 5.47126i 0.145551 + 0.252102i
\(472\) 0.653989 1.13274i 0.0301023 0.0521387i
\(473\) 40.3478 1.85519
\(474\) −4.16972 + 7.22216i −0.191522 + 0.331725i
\(475\) 10.1414 17.5654i 0.465318 0.805955i
\(476\) 5.10992 0.234213
\(477\) −6.73825 + 11.6710i −0.308523 + 0.534378i
\(478\) −11.0489 19.1373i −0.505366 0.875319i
\(479\) 3.29052 + 5.69935i 0.150348 + 0.260410i 0.931355 0.364112i \(-0.118627\pi\)
−0.781008 + 0.624522i \(0.785294\pi\)
\(480\) −4.04892 −0.184807
\(481\) 0 0
\(482\) 10.1274 0.461289
\(483\) −1.76809 3.06241i −0.0804507 0.139345i
\(484\) −6.26540 10.8520i −0.284791 0.493272i
\(485\) 17.2947 29.9553i 0.785312 1.36020i
\(486\) −1.00000 −0.0453609
\(487\) −11.6380 + 20.1576i −0.527369 + 0.913430i 0.472122 + 0.881533i \(0.343488\pi\)
−0.999491 + 0.0318970i \(0.989845\pi\)
\(488\) −0.198062 + 0.343054i −0.00896586 + 0.0155293i
\(489\) −14.5918 −0.659864
\(490\) −13.2017 + 22.8660i −0.596392 + 1.03298i
\(491\) 7.77024 + 13.4585i 0.350666 + 0.607372i 0.986366 0.164565i \(-0.0526219\pi\)
−0.635700 + 0.771936i \(0.719289\pi\)
\(492\) −0.753020 1.30427i −0.0339488 0.0588010i
\(493\) −24.6983 −1.11235
\(494\) 0 0
\(495\) −19.6407 −0.882784
\(496\) −0.486426 0.842515i −0.0218412 0.0378301i
\(497\) 0.460107 + 0.796929i 0.0206386 + 0.0357472i
\(498\) 7.66368 13.2739i 0.343418 0.594817i
\(499\) −9.53617 −0.426898 −0.213449 0.976954i \(-0.568470\pi\)
−0.213449 + 0.976954i \(0.568470\pi\)
\(500\) −12.9438 + 22.4194i −0.578866 + 1.00263i
\(501\) −9.75063 + 16.8886i −0.435626 + 0.754526i
\(502\) −5.54719 −0.247583
\(503\) 6.91723 11.9810i 0.308424 0.534206i −0.669594 0.742728i \(-0.733532\pi\)
0.978018 + 0.208521i \(0.0668651\pi\)
\(504\) 0.346011 + 0.599308i 0.0154125 + 0.0266953i
\(505\) 24.2887 + 42.0692i 1.08083 + 1.87205i
\(506\) 24.7875 1.10194
\(507\) 0 0
\(508\) −6.00538 −0.266446
\(509\) −20.4819 35.4757i −0.907843 1.57243i −0.817054 0.576560i \(-0.804395\pi\)
−0.0907888 0.995870i \(-0.528939\pi\)
\(510\) 14.9487 + 25.8919i 0.661939 + 1.14651i
\(511\) 2.64795 4.58638i 0.117138 0.202890i
\(512\) −1.00000 −0.0441942
\(513\) 0.890084 1.54167i 0.0392982 0.0680664i
\(514\) −6.89977 + 11.9508i −0.304336 + 0.527125i
\(515\) −49.8950 −2.19864
\(516\) 4.15883 7.20331i 0.183082 0.317108i
\(517\) −17.4819 30.2795i −0.768852 1.33169i
\(518\) 0.445042 + 0.770835i 0.0195540 + 0.0338686i
\(519\) −9.29052 −0.407809
\(520\) 0 0
\(521\) 36.3672 1.59327 0.796637 0.604457i \(-0.206610\pi\)
0.796637 + 0.604457i \(0.206610\pi\)
\(522\) −1.67241 2.89669i −0.0731993 0.126785i
\(523\) 3.01507 + 5.22225i 0.131840 + 0.228353i 0.924386 0.381459i \(-0.124578\pi\)
−0.792546 + 0.609812i \(0.791245\pi\)
\(524\) −4.40850 + 7.63575i −0.192586 + 0.333569i
\(525\) 7.88471 0.344117
\(526\) −11.2349 + 19.4594i −0.489865 + 0.848471i
\(527\) −3.59179 + 6.22117i −0.156461 + 0.270998i
\(528\) −4.85086 −0.211106
\(529\) −1.55562 + 2.69442i −0.0676357 + 0.117149i
\(530\) 27.2826 + 47.2549i 1.18508 + 2.05262i
\(531\) −0.653989 1.13274i −0.0283807 0.0491568i
\(532\) −1.23191 −0.0534103
\(533\) 0 0
\(534\) −3.10992 −0.134579
\(535\) −11.9438 20.6873i −0.516377 0.894392i
\(536\) 3.02715 + 5.24317i 0.130753 + 0.226471i
\(537\) −11.3964 + 19.7392i −0.491792 + 0.851808i
\(538\) 26.0140 1.12154
\(539\) −15.8165 + 27.3949i −0.681264 + 1.17998i
\(540\) −2.02446 + 3.50647i −0.0871188 + 0.150894i
\(541\) 7.92154 0.340574 0.170287 0.985395i \(-0.445531\pi\)
0.170287 + 0.985395i \(0.445531\pi\)
\(542\) −1.44235 + 2.49823i −0.0619544 + 0.107308i
\(543\) −0.268750 0.465488i −0.0115332 0.0199760i
\(544\) 3.69202 + 6.39477i 0.158294 + 0.274173i
\(545\) 3.20775 0.137405
\(546\) 0 0
\(547\) 18.4155 0.787390 0.393695 0.919241i \(-0.371197\pi\)
0.393695 + 0.919241i \(0.371197\pi\)
\(548\) 7.87800 + 13.6451i 0.336532 + 0.582890i
\(549\) 0.198062 + 0.343054i 0.00845309 + 0.0146412i
\(550\) −27.6347 + 47.8647i −1.17835 + 2.04096i
\(551\) 5.95433 0.253663
\(552\) 2.55496 4.42532i 0.108746 0.188354i
\(553\) 2.88553 4.99789i 0.122705 0.212532i
\(554\) 1.46250 0.0621357
\(555\) −2.60388 + 4.51004i −0.110528 + 0.191441i
\(556\) 3.04892 + 5.28088i 0.129303 + 0.223959i
\(557\) −11.9879 20.7637i −0.507944 0.879786i −0.999958 0.00919783i \(-0.997072\pi\)
0.492013 0.870588i \(-0.336261\pi\)
\(558\) −0.972853 −0.0411841
\(559\) 0 0
\(560\) 2.80194 0.118403
\(561\) 17.9095 + 31.0201i 0.756138 + 1.30967i
\(562\) −2.84117 4.92104i −0.119847 0.207582i
\(563\) 1.14646 1.98572i 0.0483174 0.0836882i −0.840855 0.541260i \(-0.817947\pi\)
0.889173 + 0.457572i \(0.151281\pi\)
\(564\) −7.20775 −0.303501
\(565\) −12.5918 + 21.8096i −0.529741 + 0.917538i
\(566\) −12.6039 + 21.8306i −0.529780 + 0.917607i
\(567\) 0.692021 0.0290622
\(568\) −0.664874 + 1.15160i −0.0278975 + 0.0483199i
\(569\) 22.1715 + 38.4022i 0.929478 + 1.60990i 0.784197 + 0.620513i \(0.213075\pi\)
0.145281 + 0.989390i \(0.453591\pi\)
\(570\) −3.60388 6.24210i −0.150950 0.261453i
\(571\) −15.2707 −0.639058 −0.319529 0.947577i \(-0.603525\pi\)
−0.319529 + 0.947577i \(0.603525\pi\)
\(572\) 0 0
\(573\) −9.79954 −0.409382
\(574\) 0.521106 + 0.902583i 0.0217506 + 0.0376731i
\(575\) −29.1105 50.4209i −1.21399 2.10270i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −8.77048 −0.365120 −0.182560 0.983195i \(-0.558438\pi\)
−0.182560 + 0.983195i \(0.558438\pi\)
\(578\) 18.7620 32.4968i 0.780398 1.35169i
\(579\) −7.09783 + 12.2938i −0.294976 + 0.510913i
\(580\) −13.5429 −0.562337
\(581\) −5.30343 + 9.18581i −0.220023 + 0.381092i
\(582\) −4.27144 7.39835i −0.177057 0.306671i
\(583\) 32.6863 + 56.6143i 1.35373 + 2.34472i
\(584\) 7.65279 0.316675
\(585\) 0 0
\(586\) −7.14914 −0.295328
\(587\) −19.0715 33.0328i −0.787166 1.36341i −0.927697 0.373335i \(-0.878214\pi\)
0.140531 0.990076i \(-0.455119\pi\)
\(588\) 3.26055 + 5.64744i 0.134463 + 0.232897i
\(589\) 0.865921 1.49982i 0.0356796 0.0617989i
\(590\) −5.29590 −0.218029
\(591\) −1.50484 + 2.60647i −0.0619010 + 0.107216i
\(592\) −0.643104 + 1.11389i −0.0264314 + 0.0457806i
\(593\) 37.9517 1.55849 0.779244 0.626720i \(-0.215603\pi\)
0.779244 + 0.626720i \(0.215603\pi\)
\(594\) −2.42543 + 4.20096i −0.0995165 + 0.172368i
\(595\) −10.3448 17.9177i −0.424096 0.734556i
\(596\) 1.27628 + 2.21059i 0.0522786 + 0.0905491i
\(597\) 12.8944 0.527732
\(598\) 0 0
\(599\) −3.57971 −0.146263 −0.0731315 0.997322i \(-0.523299\pi\)
−0.0731315 + 0.997322i \(0.523299\pi\)
\(600\) 5.69687 + 9.86726i 0.232574 + 0.402829i
\(601\) 2.85839 + 4.95087i 0.116596 + 0.201950i 0.918417 0.395615i \(-0.129468\pi\)
−0.801821 + 0.597565i \(0.796135\pi\)
\(602\) −2.87800 + 4.98485i −0.117299 + 0.203167i
\(603\) 6.05429 0.246550
\(604\) 8.85839 15.3432i 0.360443 0.624305i
\(605\) −25.3681 + 43.9388i −1.03136 + 1.78637i
\(606\) 11.9976 0.487369
\(607\) −11.2143 + 19.4238i −0.455175 + 0.788387i −0.998698 0.0510075i \(-0.983757\pi\)
0.543523 + 0.839394i \(0.317090\pi\)
\(608\) −0.890084 1.54167i −0.0360977 0.0625230i
\(609\) 1.15734 + 2.00457i 0.0468979 + 0.0812295i
\(610\) 1.60388 0.0649390
\(611\) 0 0
\(612\) 7.38404 0.298482
\(613\) −19.9801 34.6066i −0.806991 1.39775i −0.914939 0.403592i \(-0.867761\pi\)
0.107948 0.994157i \(-0.465572\pi\)
\(614\) 8.99761 + 15.5843i 0.363114 + 0.628932i
\(615\) −3.04892 + 5.28088i −0.122944 + 0.212946i
\(616\) 3.35690 0.135253
\(617\) 15.7235 27.2339i 0.633003 1.09639i −0.353931 0.935272i \(-0.615155\pi\)
0.986934 0.161123i \(-0.0515115\pi\)
\(618\) −6.16152 + 10.6721i −0.247853 + 0.429294i
\(619\) 29.3685 1.18042 0.590210 0.807250i \(-0.299045\pi\)
0.590210 + 0.807250i \(0.299045\pi\)
\(620\) −1.96950 + 3.41127i −0.0790970 + 0.137000i
\(621\) −2.55496 4.42532i −0.102527 0.177582i
\(622\) 1.66487 + 2.88365i 0.0667554 + 0.115624i
\(623\) 2.15213 0.0862232
\(624\) 0 0
\(625\) 47.8485 1.91394
\(626\) −8.94169 15.4875i −0.357382 0.619003i
\(627\) −4.31767 7.47842i −0.172431 0.298659i
\(628\) 3.15883 5.47126i 0.126051 0.218327i
\(629\) 9.49742 0.378687
\(630\) 1.40097 2.42655i 0.0558159 0.0966760i
\(631\) 10.8400 18.7754i 0.431532 0.747436i −0.565473 0.824767i \(-0.691306\pi\)
0.997005 + 0.0773307i \(0.0246397\pi\)
\(632\) 8.33944 0.331725
\(633\) −3.89977 + 6.75460i −0.155002 + 0.268471i
\(634\) −2.19687 3.80508i −0.0872487 0.151119i
\(635\) 12.1576 + 21.0576i 0.482461 + 0.835647i
\(636\) 13.4765 0.534378
\(637\) 0 0
\(638\) −16.2252 −0.642362
\(639\) 0.664874 + 1.15160i 0.0263020 + 0.0455564i
\(640\) 2.02446 + 3.50647i 0.0800238 + 0.138605i
\(641\) −7.00538 + 12.1337i −0.276696 + 0.479251i −0.970562 0.240853i \(-0.922573\pi\)
0.693866 + 0.720104i \(0.255906\pi\)
\(642\) −5.89977 −0.232845
\(643\) 15.3937 26.6627i 0.607070 1.05148i −0.384651 0.923062i \(-0.625678\pi\)
0.991721 0.128413i \(-0.0409884\pi\)
\(644\) −1.76809 + 3.06241i −0.0696723 + 0.120676i
\(645\) −33.6775 −1.32605
\(646\) −6.57242 + 11.3838i −0.258588 + 0.447888i
\(647\) 8.30127 + 14.3782i 0.326357 + 0.565266i 0.981786 0.189990i \(-0.0608456\pi\)
−0.655429 + 0.755257i \(0.727512\pi\)
\(648\) 0.500000 + 0.866025i 0.0196419 + 0.0340207i
\(649\) −6.34481 −0.249056
\(650\) 0 0
\(651\) 0.673235 0.0263862
\(652\) 7.29590 + 12.6369i 0.285729 + 0.494898i
\(653\) −14.2729 24.7214i −0.558543 0.967425i −0.997618 0.0689745i \(-0.978027\pi\)
0.439075 0.898450i \(-0.355306\pi\)
\(654\) 0.396125 0.686108i 0.0154897 0.0268289i
\(655\) 35.6993 1.39489
\(656\) −0.753020 + 1.30427i −0.0294005 + 0.0509232i
\(657\) 3.82640 6.62751i 0.149282 0.258564i
\(658\) 4.98792 0.194449
\(659\) −13.8593 + 24.0051i −0.539884 + 0.935106i 0.459026 + 0.888423i \(0.348198\pi\)
−0.998910 + 0.0466830i \(0.985135\pi\)
\(660\) 9.82036 + 17.0094i 0.382257 + 0.662088i
\(661\) 5.40044 + 9.35383i 0.210053 + 0.363822i 0.951731 0.306934i \(-0.0993031\pi\)
−0.741678 + 0.670756i \(0.765970\pi\)
\(662\) −25.6775 −0.997986
\(663\) 0 0
\(664\) −15.3274 −0.594817
\(665\) 2.49396 + 4.31966i 0.0967116 + 0.167509i
\(666\) 0.643104 + 1.11389i 0.0249198 + 0.0431623i
\(667\) 8.54586 14.8019i 0.330897 0.573130i
\(668\) 19.5013 0.754526
\(669\) −6.09783 + 10.5618i −0.235756 + 0.408341i
\(670\) 12.2567 21.2292i 0.473516 0.820154i
\(671\) 1.92154 0.0741803
\(672\) 0.346011 0.599308i 0.0133477 0.0231188i
\(673\) −8.16301 14.1388i −0.314661 0.545009i 0.664704 0.747107i \(-0.268558\pi\)
−0.979365 + 0.202098i \(0.935224\pi\)
\(674\) −12.3252 21.3479i −0.474749 0.822289i
\(675\) 11.3937 0.438545
\(676\) 0 0
\(677\) 41.4252 1.59210 0.796050 0.605231i \(-0.206919\pi\)
0.796050 + 0.605231i \(0.206919\pi\)
\(678\) 3.10992 + 5.38653i 0.119436 + 0.206869i
\(679\) 2.95593 + 5.11982i 0.113438 + 0.196480i
\(680\) 14.9487 25.8919i 0.573256 0.992909i
\(681\) −6.74333 −0.258405
\(682\) −2.35958 + 4.08692i −0.0903532 + 0.156496i
\(683\) 15.6163 27.0481i 0.597539 1.03497i −0.395644 0.918404i \(-0.629479\pi\)
0.993183 0.116564i \(-0.0371881\pi\)
\(684\) −1.78017 −0.0680664
\(685\) 31.8974 55.2479i 1.21874 2.11091i
\(686\) −4.67845 8.10331i −0.178624 0.309386i
\(687\) −9.91185 17.1678i −0.378161 0.654994i
\(688\) −8.31767 −0.317108
\(689\) 0 0
\(690\) −20.6896 −0.787641
\(691\) 12.4819 + 21.6192i 0.474833 + 0.822435i 0.999585 0.0288205i \(-0.00917513\pi\)
−0.524752 + 0.851255i \(0.675842\pi\)
\(692\) 4.64526 + 8.04583i 0.176586 + 0.305856i
\(693\) 1.67845 2.90716i 0.0637590 0.110434i
\(694\) −14.2959 −0.542665
\(695\) 12.3448 21.3818i 0.468265 0.811060i
\(696\) −1.67241 + 2.89669i −0.0633924 + 0.109799i
\(697\) 11.1207 0.421225
\(698\) −5.53079 + 9.57962i −0.209344 + 0.362594i
\(699\) 15.0151 + 26.0069i 0.567922 + 0.983670i
\(700\) −3.94235 6.82836i −0.149007 0.258088i
\(701\) 8.17151 0.308634 0.154317 0.988021i \(-0.450682\pi\)
0.154317 + 0.988021i \(0.450682\pi\)
\(702\) 0 0
\(703\) −2.28967 −0.0863564
\(704\) 2.42543 + 4.20096i 0.0914117 + 0.158330i
\(705\) 14.5918 + 25.2737i 0.549559 + 0.951864i
\(706\) 5.25236 9.09735i 0.197675 0.342383i
\(707\) −8.30260 −0.312251
\(708\) −0.653989 + 1.13274i −0.0245784 + 0.0425711i
\(709\) −18.3991 + 31.8682i −0.690993 + 1.19684i 0.280520 + 0.959848i \(0.409493\pi\)
−0.971513 + 0.236987i \(0.923840\pi\)
\(710\) 5.38404 0.202060
\(711\) 4.16972 7.22216i 0.156377 0.270852i
\(712\) 1.55496 + 2.69327i 0.0582745 + 0.100934i
\(713\) −2.48560 4.30518i −0.0930864 0.161230i
\(714\) −5.10992 −0.191234
\(715\) 0 0
\(716\) 22.7928 0.851808
\(717\) 11.0489 + 19.1373i 0.412629 + 0.714695i
\(718\) −2.55496 4.42532i −0.0953502 0.165151i
\(719\) −17.6112 + 30.5034i −0.656786 + 1.13759i 0.324657 + 0.945832i \(0.394751\pi\)
−0.981443 + 0.191755i \(0.938582\pi\)
\(720\) 4.04892 0.150894
\(721\) 4.26391 7.38530i 0.158796 0.275043i
\(722\) −7.91550 + 13.7101i −0.294584 + 0.510235i
\(723\) −10.1274 −0.376641
\(724\) −0.268750 + 0.465488i −0.00998801 + 0.0172997i
\(725\) 19.0550 + 33.0042i 0.707683 + 1.22574i
\(726\) 6.26540 + 10.8520i 0.232531 + 0.402755i
\(727\) 40.6872 1.50901 0.754503 0.656297i \(-0.227878\pi\)
0.754503 + 0.656297i \(0.227878\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −15.4928 26.8343i −0.573413 0.993180i
\(731\) 30.7090 + 53.1896i 1.13581 + 1.96729i
\(732\) 0.198062 0.343054i 0.00732059 0.0126796i
\(733\) −27.1400 −1.00244 −0.501220 0.865320i \(-0.667115\pi\)
−0.501220 + 0.865320i \(0.667115\pi\)
\(734\) −4.22401 + 7.31620i −0.155911 + 0.270046i
\(735\) 13.2017 22.8660i 0.486952 0.843426i
\(736\) −5.10992 −0.188354
\(737\) 14.6843 25.4339i 0.540901 0.936869i
\(738\) 0.753020 + 1.30427i 0.0277191 + 0.0480108i
\(739\) 1.86294 + 3.22670i 0.0685292 + 0.118696i 0.898254 0.439476i \(-0.144836\pi\)
−0.829725 + 0.558173i \(0.811503\pi\)
\(740\) 5.20775 0.191441
\(741\) 0 0
\(742\) −9.32603 −0.342369
\(743\) 10.9293 + 18.9301i 0.400958 + 0.694479i 0.993842 0.110809i \(-0.0353441\pi\)
−0.592884 + 0.805288i \(0.702011\pi\)
\(744\) 0.486426 + 0.842515i 0.0178333 + 0.0308881i
\(745\) 5.16756 8.95048i 0.189325 0.327920i
\(746\) −7.69096 −0.281586
\(747\) −7.66368 + 13.2739i −0.280399 + 0.485666i
\(748\) 17.9095 31.0201i 0.654835 1.13421i
\(749\) 4.08277 0.149181
\(750\) 12.9438 22.4194i 0.472642 0.818641i
\(751\) −26.6821 46.2147i −0.973644 1.68640i −0.684341 0.729162i \(-0.739910\pi\)
−0.289303 0.957238i \(-0.593423\pi\)
\(752\) 3.60388 + 6.24210i 0.131420 + 0.227626i
\(753\) 5.54719 0.202151
\(754\) 0 0
\(755\) −71.7338 −2.61066
\(756\) −0.346011 0.599308i −0.0125843 0.0217966i
\(757\) 2.31767 + 4.01432i 0.0842370 + 0.145903i 0.905066 0.425271i \(-0.139821\pi\)
−0.820829 + 0.571174i \(0.806488\pi\)
\(758\) 5.70171 9.87565i 0.207095 0.358700i
\(759\) −24.7875 −0.899728
\(760\) −3.60388 + 6.24210i −0.130726 + 0.226425i
\(761\) 5.78017 10.0115i 0.209531 0.362918i −0.742036 0.670360i \(-0.766140\pi\)
0.951567 + 0.307442i \(0.0994730\pi\)
\(762\) 6.00538 0.217552
\(763\) −0.274127 + 0.474801i −0.00992405 + 0.0171890i
\(764\) 4.89977 + 8.48665i 0.177268 + 0.307036i
\(765\) −14.9487 25.8919i −0.540471 0.936123i
\(766\) 20.6703 0.746847
\(767\) 0 0
\(768\) 1.00000 0.0360844
\(769\) 7.37196 + 12.7686i 0.265840 + 0.460448i 0.967783 0.251785i \(-0.0810175\pi\)
−0.701944 + 0.712233i \(0.747684\pi\)
\(770\) −6.79590 11.7708i −0.244907 0.424192i
\(771\) 6.89977 11.9508i 0.248489 0.430396i
\(772\) 14.1957 0.510913
\(773\) −3.21134 + 5.56220i −0.115504 + 0.200059i −0.917981 0.396624i \(-0.870182\pi\)
0.802477 + 0.596683i \(0.203515\pi\)
\(774\) −4.15883 + 7.20331i −0.149486 + 0.258918i
\(775\) 11.0844 0.398164
\(776\) −4.27144 + 7.39835i −0.153336 + 0.265585i
\(777\) −0.445042 0.770835i −0.0159658 0.0276536i
\(778\) 8.73878 + 15.1360i 0.313301 + 0.542652i
\(779\) −2.68100 −0.0960570
\(780\) 0 0
\(781\) 6.45042 0.230814
\(782\) 18.8659 + 32.6767i 0.674644 + 1.16852i
\(783\) 1.67241 + 2.89669i 0.0597670 + 0.103519i
\(784\) 3.26055 5.64744i 0.116448 0.201694i
\(785\) −25.5797 −0.912979
\(786\) 4.40850 7.63575i 0.157246 0.272358i
\(787\) 21.7168 37.6146i 0.774119 1.34081i −0.161169 0.986927i \(-0.551526\pi\)
0.935288 0.353887i \(-0.115140\pi\)
\(788\) 3.00969 0.107216
\(789\) 11.2349 19.4594i 0.399973 0.692773i
\(790\) −16.8828 29.2419i −0.600665 1.04038i
\(791\) −2.15213 3.72760i −0.0765209 0.132538i
\(792\) 4.85086 0.172368
\(793\) 0 0
\(794\) −19.3599 −0.687056
\(795\) −27.2826 47.2549i −0.967615 1.67596i
\(796\) −6.44720 11.1669i −0.228515 0.395799i
\(797\) −10.5082 + 18.2007i −0.372219 + 0.644703i −0.989907 0.141721i \(-0.954736\pi\)
0.617687 + 0.786424i \(0.288070\pi\)
\(798\) 1.23191 0.0436093
\(799\) 26.6112 46.0919i 0.941436 1.63061i
\(800\) 5.69687 9.86726i 0.201415 0.348860i
\(801\) 3.10992 0.109883
\(802\) 7.24160 12.5428i 0.255710 0.442903i
\(803\) −18.5613 32.1491i −0.655014 1.13452i
\(804\) −3.02715 5.24317i −0.106759 0.184912i
\(805\) 14.3177 0.504631
\(806\) 0 0
\(807\) −26.0140 −0.915736
\(808\) −5.99880 10.3902i −0.211037 0.365527i
\(809\) 4.16123 + 7.20746i 0.146301 + 0.253401i 0.929858 0.367920i \(-0.119930\pi\)
−0.783557 + 0.621320i \(0.786597\pi\)
\(810\) 2.02446 3.50647i 0.0711322 0.123205i
\(811\) −14.4638 −0.507894 −0.253947 0.967218i \(-0.581729\pi\)
−0.253947 + 0.967218i \(0.581729\pi\)
\(812\) 1.15734 2.00457i 0.0406147 0.0703468i
\(813\) 1.44235 2.49823i 0.0505855 0.0876167i
\(814\) 6.23921 0.218684
\(815\) 29.5405 51.1656i 1.03476 1.79225i
\(816\) −3.69202 6.39477i −0.129247 0.223862i
\(817\) −7.40342 12.8231i −0.259013 0.448623i
\(818\) −18.8984 −0.660769
\(819\) 0 0
\(820\) 6.09783 0.212946
\(821\) 19.2080 + 33.2693i 0.670365 + 1.16111i 0.977801 + 0.209538i \(0.0671960\pi\)
−0.307435 + 0.951569i \(0.599471\pi\)
\(822\) −7.87800 13.6451i −0.274777 0.475928i
\(823\) 20.4874 35.4852i 0.714145 1.23694i −0.249143 0.968467i \(-0.580149\pi\)
0.963288 0.268469i \(-0.0865178\pi\)
\(824\) 12.3230 0.429294
\(825\) 27.6347 47.8647i 0.962116 1.66643i
\(826\) 0.452575 0.783882i 0.0157471 0.0272748i
\(827\) 3.51035 0.122067 0.0610335 0.998136i \(-0.480560\pi\)
0.0610335 + 0.998136i \(0.480560\pi\)
\(828\) −2.55496 + 4.42532i −0.0887909 + 0.153790i
\(829\) 6.60925 + 11.4476i 0.229549 + 0.397590i 0.957674 0.287853i \(-0.0929416\pi\)
−0.728126 + 0.685444i \(0.759608\pi\)
\(830\) 31.0296 + 53.7448i 1.07705 + 1.86551i
\(831\) −1.46250 −0.0507336
\(832\) 0 0
\(833\) −48.1521 −1.66837
\(834\) −3.04892 5.28088i −0.105575 0.182862i
\(835\) −39.4795 68.3805i −1.36624 2.36640i
\(836\) −4.31767 + 7.47842i −0.149330 + 0.258647i
\(837\) 0.972853 0.0336267
\(838\) −10.8802 + 18.8450i −0.375849 + 0.650989i
\(839\) −27.9245 + 48.3667i −0.964062 + 1.66980i −0.251947 + 0.967741i \(0.581071\pi\)
−0.712115 + 0.702063i \(0.752263\pi\)
\(840\) −2.80194 −0.0966760
\(841\) 8.90611 15.4258i 0.307107 0.531925i
\(842\) −10.2959 17.8330i −0.354820 0.614566i
\(843\) 2.84117 + 4.92104i 0.0978550 + 0.169490i
\(844\) 7.79954 0.268471
\(845\) 0 0
\(846\) 7.20775 0.247808
\(847\) −4.33579 7.50981i −0.148979 0.258040i
\(848\) −6.73825 11.6710i −0.231392 0.400784i
\(849\) 12.6039 21.8306i 0.432564 0.749223i
\(850\) −84.1318 −2.88570
\(851\) −3.28621 + 5.69188i −0.112650 + 0.195115i
\(852\) 0.664874 1.15160i 0.0227782 0.0394530i
\(853\) 21.8103 0.746770 0.373385 0.927676i \(-0.378197\pi\)
0.373385 + 0.927676i \(0.378197\pi\)
\(854\) −0.137063 + 0.237401i −0.00469021 + 0.00812368i
\(855\) 3.60388 + 6.24210i 0.123250 + 0.213475i
\(856\) 2.94989 + 5.10935i 0.100825 + 0.174634i
\(857\) 28.8961 0.987070 0.493535 0.869726i \(-0.335704\pi\)
0.493535 + 0.869726i \(0.335704\pi\)
\(858\) 0 0
\(859\) −17.2755 −0.589431 −0.294715 0.955585i \(-0.595225\pi\)
−0.294715 + 0.955585i \(0.595225\pi\)
\(860\) 16.8388 + 29.1656i 0.574197 + 0.994539i
\(861\) −0.521106 0.902583i −0.0177593 0.0307599i
\(862\) −17.2567 + 29.8894i −0.587764 + 1.01804i
\(863\) 44.7741 1.52413 0.762063 0.647503i \(-0.224187\pi\)
0.762063 + 0.647503i \(0.224187\pi\)
\(864\) 0.500000 0.866025i 0.0170103 0.0294628i
\(865\) 18.8083 32.5769i 0.639501 1.10765i
\(866\) 2.12631 0.0722549
\(867\) −18.7620 + 32.4968i −0.637192 + 1.10365i
\(868\) −0.336618 0.583039i −0.0114255 0.0197896i
\(869\) −20.2267 35.0337i −0.686144 1.18844i
\(870\) 13.5429 0.459147
\(871\) 0 0
\(872\) −0.792249 −0.0268289
\(873\) 4.27144 + 7.39835i 0.144566 + 0.250396i
\(874\) −4.54825 7.87781i −0.153847 0.266471i
\(875\) −8.95742 + 15.5147i −0.302816 + 0.524493i
\(876\) −7.65279 −0.258564
\(877\) −20.1371 + 34.8784i −0.679980 + 1.17776i 0.295006 + 0.955495i \(0.404678\pi\)
−0.974986 + 0.222265i \(0.928655\pi\)
\(878\) 10.9160 18.9071i 0.368398 0.638085i
\(879\) 7.14914 0.241135
\(880\) 9.82036 17.0094i 0.331044 0.573385i
\(881\) −4.70410 8.14775i −0.158485 0.274505i 0.775837 0.630933i \(-0.217328\pi\)
−0.934323 + 0.356428i \(0.883994\pi\)
\(882\) −3.26055 5.64744i −0.109789 0.190159i
\(883\) −51.2271 −1.72393 −0.861965 0.506968i \(-0.830766\pi\)
−0.861965 + 0.506968i \(0.830766\pi\)
\(884\) 0 0
\(885\) 5.29590 0.178020
\(886\) −3.77024 6.53025i −0.126664 0.219388i
\(887\) 19.9608 + 34.5731i 0.670217 + 1.16085i 0.977842 + 0.209342i \(0.0671324\pi\)
−0.307625 + 0.951508i \(0.599534\pi\)
\(888\) 0.643104 1.11389i 0.0215812 0.0373797i
\(889\) −4.15585 −0.139383
\(890\) 6.29590 10.9048i 0.211039 0.365530i
\(891\) 2.42543 4.20096i 0.0812549 0.140738i
\(892\) 12.1957 0.408341
\(893\) −6.41550 + 11.1120i −0.214687 + 0.371848i
\(894\) −1.27628 2.21059i −0.0426853 0.0739331i
\(895\) −46.1432 79.9223i −1.54240 2.67151i
\(896\) −0.692021 −0.0231188
\(897\) 0 0
\(898\) 19.7560 0.659266
\(899\) 1.62701 + 2.81806i 0.0542637 + 0.0939875i
\(900\) −5.69687 9.86726i −0.189896 0.328909i
\(901\) −49.7555 + 86.1791i −1.65760 + 2.87104i
\(902\) 7.30559 0.243249
\(903\) 2.87800 4.98485i 0.0957739 0.165885i
\(904\) 3.10992 5.38653i 0.103434 0.179153i
\(905\) 2.17629 0.0723424
\(906\) −8.85839 + 15.3432i −0.294300 + 0.509743i
\(907\) 17.4155 + 30.1645i 0.578272 + 1.00160i 0.995678 + 0.0928765i \(0.0296062\pi\)
−0.417405 + 0.908720i \(0.637060\pi\)
\(908\) 3.37167 + 5.83990i 0.111893 + 0.193804i
\(909\) −11.9976 −0.397936
\(910\) 0 0
\(911\) 13.2125 0.437751 0.218875 0.975753i \(-0.429761\pi\)
0.218875 + 0.975753i \(0.429761\pi\)
\(912\) 0.890084 + 1.54167i 0.0294736 + 0.0510498i
\(913\) 37.1754 + 64.3897i 1.23033 + 2.13099i
\(914\) −11.9291 + 20.6618i −0.394579 + 0.683430i
\(915\) −1.60388 −0.0530225
\(916\) −9.91185 + 17.1678i −0.327497 + 0.567241i
\(917\) −3.05078 + 5.28410i −0.100746 + 0.174496i
\(918\) −7.38404 −0.243710
\(919\) −10.5087 + 18.2017i −0.346651 + 0.600417i −0.985652 0.168789i \(-0.946015\pi\)
0.639001 + 0.769206i \(0.279348\pi\)
\(920\) 10.3448 + 17.9177i 0.341058 + 0.590731i
\(921\) −8.99761 15.5843i −0.296481 0.513521i
\(922\) −17.5773 −0.578878
\(923\) 0 0
\(924\) −3.35690 −0.110434
\(925\) −7.32736 12.6914i −0.240922 0.417289i
\(926\) −11.9215 20.6487i −0.391766 0.678559i
\(927\) 6.16152 10.6721i 0.202371 0.350517i
\(928\) 3.34481 0.109799
\(929\) −13.4983 + 23.3797i −0.442864 + 0.767063i −0.997901 0.0647630i \(-0.979371\pi\)
0.555037 + 0.831826i \(0.312704\pi\)
\(930\) 1.96950 3.41127i 0.0645825 0.111860i
\(931\) 11.6087 0.380459
\(932\) 15.0151 26.0069i 0.491835 0.851883i
\(933\) −1.66487 2.88365i −0.0545055 0.0944064i
\(934\) 4.30529 + 7.45698i 0.140873 + 0.244000i
\(935\) −145.028 −4.74292
\(936\) 0 0
\(937\) 23.1745 0.757078 0.378539 0.925585i \(-0.376427\pi\)
0.378539 + 0.925585i \(0.376427\pi\)
\(938\) 2.09485 + 3.62839i 0.0683993 + 0.118471i
\(939\) 8.94169 + 15.4875i 0.291801 + 0.505414i
\(940\) 14.5918 25.2737i 0.475932 0.824338i
\(941\) −7.54048 −0.245813 −0.122906 0.992418i \(-0.539221\pi\)
−0.122906 + 0.992418i \(0.539221\pi\)
\(942\) −3.15883 + 5.47126i −0.102920 + 0.178263i
\(943\) −3.84787 + 6.66471i −0.125304 + 0.217033i
\(944\) 1.30798 0.0425711
\(945\) −1.40097 + 2.42655i −0.0455735 + 0.0789357i
\(946\) 20.1739 + 34.9422i 0.655910 + 1.13607i
\(947\) 10.3300 + 17.8922i 0.335681 + 0.581417i 0.983615 0.180279i \(-0.0577001\pi\)
−0.647934 + 0.761696i \(0.724367\pi\)
\(948\) −8.33944 −0.270852
\(949\) 0 0
\(950\) 20.2828 0.658059
\(951\) 2.19687 + 3.80508i 0.0712383 + 0.123388i
\(952\) 2.55496 + 4.42532i 0.0828067 + 0.143425i
\(953\) 15.1468 26.2349i 0.490651 0.849833i −0.509291 0.860595i \(-0.670092\pi\)
0.999942 + 0.0107614i \(0.00342552\pi\)
\(954\) −13.4765 −0.436318
\(955\) 19.8388 34.3618i 0.641968 1.11192i
\(956\) 11.0489 19.1373i 0.357348 0.618944i
\(957\) 16.2252 0.524487
\(958\) −3.29052 + 5.69935i −0.106312 + 0.184138i
\(959\) 5.45175 + 9.44270i 0.176046 + 0.304921i
\(960\) −2.02446 3.50647i −0.0653391 0.113171i
\(961\) −30.0536 −0.969470
\(962\) 0 0
\(963\) 5.89977 0.190118
\(964\) 5.06369 + 8.77056i 0.163090 + 0.282481i
\(965\) −28.7385 49.7766i −0.925127 1.60237i
\(966\) 1.76809 3.06241i 0.0568872 0.0985316i
\(967\) 20.7289 0.666595 0.333298 0.942822i \(-0.391839\pi\)
0.333298 + 0.942822i \(0.391839\pi\)
\(968\) 6.26540 10.8520i 0.201378 0.348796i
\(969\) 6.57242 11.3838i 0.211136 0.365699i
\(970\) 34.5894 1.11060
\(971\) 19.5547 33.8698i 0.627541 1.08693i −0.360503 0.932758i \(-0.617395\pi\)
0.988044 0.154175i \(-0.0492718\pi\)
\(972\) −0.500000 0.866025i −0.0160375 0.0277778i
\(973\) 2.10992 + 3.65448i 0.0676408 + 0.117157i
\(974\) −23.2760 −0.745813
\(975\) 0 0
\(976\) −0.396125 −0.0126796
\(977\) 3.63773 + 6.30073i 0.116381 + 0.201578i 0.918331 0.395813i \(-0.129537\pi\)
−0.801950 + 0.597391i \(0.796204\pi\)
\(978\) −7.29590 12.6369i −0.233297 0.404082i
\(979\) 7.54288 13.0646i 0.241071 0.417548i
\(980\) −26.4034 −0.843426
\(981\) −0.396125 + 0.686108i −0.0126473 + 0.0219057i
\(982\) −7.77024 + 13.4585i −0.247958 + 0.429477i
\(983\) −53.4857 −1.70593 −0.852965 0.521969i \(-0.825198\pi\)
−0.852965 + 0.521969i \(0.825198\pi\)
\(984\) 0.753020 1.30427i 0.0240054 0.0415786i
\(985\) −6.09299 10.5534i −0.194139 0.336258i
\(986\) −12.3491 21.3893i −0.393276 0.681175i
\(987\) −4.98792 −0.158767
\(988\) 0 0
\(989\) −42.5026 −1.35150
\(990\) −9.82036 17.0094i −0.312111 0.540593i
\(991\) −8.02877 13.9062i −0.255042 0.441746i 0.709865 0.704338i \(-0.248756\pi\)
−0.964907 + 0.262592i \(0.915423\pi\)
\(992\) 0.486426 0.842515i 0.0154441 0.0267499i
\(993\) 25.6775 0.814852
\(994\) −0.460107 + 0.796929i −0.0145937 + 0.0252771i
\(995\) −26.1042 + 45.2138i −0.827558 + 1.43337i
\(996\) 15.3274 0.485666
\(997\) −11.2131 + 19.4217i −0.355123 + 0.615092i −0.987139 0.159864i \(-0.948894\pi\)
0.632016 + 0.774956i \(0.282228\pi\)
\(998\) −4.76809 8.25857i −0.150931 0.261420i
\(999\) −0.643104 1.11389i −0.0203469 0.0352419i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.2.e.m.991.3 6
13.2 odd 12 1014.2.b.g.337.4 6
13.3 even 3 1014.2.a.m.1.3 3
13.4 even 6 1014.2.e.k.529.1 6
13.5 odd 4 1014.2.i.g.361.4 12
13.6 odd 12 1014.2.i.g.823.1 12
13.7 odd 12 1014.2.i.g.823.6 12
13.8 odd 4 1014.2.i.g.361.3 12
13.9 even 3 inner 1014.2.e.m.529.3 6
13.10 even 6 1014.2.a.o.1.1 yes 3
13.11 odd 12 1014.2.b.g.337.3 6
13.12 even 2 1014.2.e.k.991.1 6
39.2 even 12 3042.2.b.r.1351.3 6
39.11 even 12 3042.2.b.r.1351.4 6
39.23 odd 6 3042.2.a.bd.1.3 3
39.29 odd 6 3042.2.a.be.1.1 3
52.3 odd 6 8112.2.a.ce.1.3 3
52.23 odd 6 8112.2.a.bz.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1014.2.a.m.1.3 3 13.3 even 3
1014.2.a.o.1.1 yes 3 13.10 even 6
1014.2.b.g.337.3 6 13.11 odd 12
1014.2.b.g.337.4 6 13.2 odd 12
1014.2.e.k.529.1 6 13.4 even 6
1014.2.e.k.991.1 6 13.12 even 2
1014.2.e.m.529.3 6 13.9 even 3 inner
1014.2.e.m.991.3 6 1.1 even 1 trivial
1014.2.i.g.361.3 12 13.8 odd 4
1014.2.i.g.361.4 12 13.5 odd 4
1014.2.i.g.823.1 12 13.6 odd 12
1014.2.i.g.823.6 12 13.7 odd 12
3042.2.a.bd.1.3 3 39.23 odd 6
3042.2.a.be.1.1 3 39.29 odd 6
3042.2.b.r.1351.3 6 39.2 even 12
3042.2.b.r.1351.4 6 39.11 even 12
8112.2.a.bz.1.1 3 52.23 odd 6
8112.2.a.ce.1.3 3 52.3 odd 6