Properties

Label 1014.2.e.g
Level $1014$
Weight $2$
Character orbit 1014.e
Analytic conductor $8.097$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{12}^{2} ) q^{2} + ( -1 + \zeta_{12}^{2} ) q^{3} -\zeta_{12}^{2} q^{4} + ( 2 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{5} -\zeta_{12}^{2} q^{6} + ( -\zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{7} + q^{8} -\zeta_{12}^{2} q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{12}^{2} ) q^{2} + ( -1 + \zeta_{12}^{2} ) q^{3} -\zeta_{12}^{2} q^{4} + ( 2 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{5} -\zeta_{12}^{2} q^{6} + ( -\zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{7} + q^{8} -\zeta_{12}^{2} q^{9} + ( -2 + \zeta_{12} + 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{10} + ( -3 - \zeta_{12} + 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{11} + q^{12} + ( -1 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{14} + ( -2 + \zeta_{12} + 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{15} + ( -1 + \zeta_{12}^{2} ) q^{16} + ( -\zeta_{12} + 4 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{17} + q^{18} + ( \zeta_{12} - 3 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{19} + ( \zeta_{12} - 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{20} + ( -1 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{21} + ( -\zeta_{12} - 3 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{22} + ( 1 + 3 \zeta_{12} - \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{23} + ( -1 + \zeta_{12}^{2} ) q^{24} + ( 2 - 8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{25} + q^{27} + ( 1 - \zeta_{12} - \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{28} + ( 1 - 2 \zeta_{12} - \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{29} + ( \zeta_{12} - 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{30} + ( -2 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{31} -\zeta_{12}^{2} q^{32} + ( -\zeta_{12} - 3 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{33} + ( -4 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{34} + ( -3 \zeta_{12} + 5 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{35} + ( -1 + \zeta_{12}^{2} ) q^{36} + ( -7 - 2 \zeta_{12} + 7 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{37} + ( 3 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{38} + ( 2 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{40} + ( -1 - 6 \zeta_{12} + \zeta_{12}^{2} + 12 \zeta_{12}^{3} ) q^{41} + ( 1 - \zeta_{12} - \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{42} + ( -5 \zeta_{12} + \zeta_{12}^{2} - 5 \zeta_{12}^{3} ) q^{43} + ( 3 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{44} + ( \zeta_{12} - 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{45} + ( 3 \zeta_{12} + \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{46} + ( -3 - 6 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{47} -\zeta_{12}^{2} q^{48} + ( 3 + 2 \zeta_{12} - 3 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{49} + ( -2 + 4 \zeta_{12} + 2 \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{50} + ( -4 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{51} + ( -3 + 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{53} + ( -1 + \zeta_{12}^{2} ) q^{54} + ( -3 + \zeta_{12} + 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{55} + ( -\zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{56} + ( 3 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{57} + ( -2 \zeta_{12} + \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{58} -8 \zeta_{12}^{2} q^{59} + ( 2 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{60} + ( -3 \zeta_{12} + 4 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{61} + ( 2 + 2 \zeta_{12} - 2 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{62} + ( 1 - \zeta_{12} - \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{63} + q^{64} + ( 3 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{66} + ( -1 + 7 \zeta_{12} + \zeta_{12}^{2} - 14 \zeta_{12}^{3} ) q^{67} + ( 4 - \zeta_{12} - 4 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{68} + ( 3 \zeta_{12} + \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{69} + ( -5 + 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{70} + ( \zeta_{12} - 3 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{71} -\zeta_{12}^{2} q^{72} + ( -8 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{73} + ( -2 \zeta_{12} - 7 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{74} + ( -2 + 4 \zeta_{12} + 2 \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{75} + ( -3 + \zeta_{12} + 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{76} + ( 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{77} + ( -6 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{79} + ( -2 + \zeta_{12} + 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{80} + ( -1 + \zeta_{12}^{2} ) q^{81} + ( -6 \zeta_{12} - \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{82} + ( 5 + 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{83} + ( -\zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{84} + ( -6 \zeta_{12} + 11 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{85} + ( -1 + 10 \zeta_{12} - 5 \zeta_{12}^{3} ) q^{86} + ( -2 \zeta_{12} + \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{87} + ( -3 - \zeta_{12} + 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{88} + ( 6 - 2 \zeta_{12} - 6 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{89} + ( 2 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{90} + ( -1 - 6 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{92} + ( 2 + 2 \zeta_{12} - 2 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{93} + ( 3 + 3 \zeta_{12} - 3 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{94} + ( 5 \zeta_{12} - 9 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{95} + q^{96} + 6 \zeta_{12}^{2} q^{97} + ( 2 \zeta_{12} + 3 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{98} + ( 3 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{2} - 2q^{3} - 2q^{4} + 8q^{5} - 2q^{6} + 2q^{7} + 4q^{8} - 2q^{9} + O(q^{10}) \) \( 4q - 2q^{2} - 2q^{3} - 2q^{4} + 8q^{5} - 2q^{6} + 2q^{7} + 4q^{8} - 2q^{9} - 4q^{10} - 6q^{11} + 4q^{12} - 4q^{14} - 4q^{15} - 2q^{16} + 8q^{17} + 4q^{18} - 6q^{19} - 4q^{20} - 4q^{21} - 6q^{22} + 2q^{23} - 2q^{24} + 8q^{25} + 4q^{27} + 2q^{28} + 2q^{29} - 4q^{30} - 8q^{31} - 2q^{32} - 6q^{33} - 16q^{34} + 10q^{35} - 2q^{36} - 14q^{37} + 12q^{38} + 8q^{40} - 2q^{41} + 2q^{42} + 2q^{43} + 12q^{44} - 4q^{45} + 2q^{46} - 12q^{47} - 2q^{48} + 6q^{49} - 4q^{50} - 16q^{51} - 12q^{53} - 2q^{54} - 6q^{55} + 2q^{56} + 12q^{57} + 2q^{58} - 16q^{59} + 8q^{60} + 8q^{61} + 4q^{62} + 2q^{63} + 4q^{64} + 12q^{66} - 2q^{67} + 8q^{68} + 2q^{69} - 20q^{70} - 6q^{71} - 2q^{72} - 32q^{73} - 14q^{74} - 4q^{75} - 6q^{76} - 24q^{79} - 4q^{80} - 2q^{81} - 2q^{82} + 20q^{83} + 2q^{84} + 22q^{85} - 4q^{86} + 2q^{87} - 6q^{88} + 12q^{89} + 8q^{90} - 4q^{92} + 4q^{93} + 6q^{94} - 18q^{95} + 4q^{96} + 12q^{97} + 6q^{98} + 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-\zeta_{12}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
529.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.500000 + 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i 0.267949 −0.500000 0.866025i −0.366025 0.633975i 1.00000 −0.500000 0.866025i −0.133975 + 0.232051i
529.2 −0.500000 + 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i 3.73205 −0.500000 0.866025i 1.36603 + 2.36603i 1.00000 −0.500000 0.866025i −1.86603 + 3.23205i
991.1 −0.500000 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i 0.267949 −0.500000 + 0.866025i −0.366025 + 0.633975i 1.00000 −0.500000 + 0.866025i −0.133975 0.232051i
991.2 −0.500000 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i 3.73205 −0.500000 + 0.866025i 1.36603 2.36603i 1.00000 −0.500000 + 0.866025i −1.86603 3.23205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.2.e.g 4
13.b even 2 1 1014.2.e.i 4
13.c even 3 1 1014.2.a.k 2
13.c even 3 1 inner 1014.2.e.g 4
13.d odd 4 1 78.2.i.a 4
13.d odd 4 1 1014.2.i.a 4
13.e even 6 1 1014.2.a.i 2
13.e even 6 1 1014.2.e.i 4
13.f odd 12 1 78.2.i.a 4
13.f odd 12 2 1014.2.b.e 4
13.f odd 12 1 1014.2.i.a 4
39.f even 4 1 234.2.l.c 4
39.h odd 6 1 3042.2.a.y 2
39.i odd 6 1 3042.2.a.p 2
39.k even 12 1 234.2.l.c 4
39.k even 12 2 3042.2.b.i 4
52.f even 4 1 624.2.bv.e 4
52.i odd 6 1 8112.2.a.bj 2
52.j odd 6 1 8112.2.a.bp 2
52.l even 12 1 624.2.bv.e 4
65.f even 4 1 1950.2.y.g 4
65.g odd 4 1 1950.2.bc.d 4
65.k even 4 1 1950.2.y.b 4
65.o even 12 1 1950.2.y.b 4
65.s odd 12 1 1950.2.bc.d 4
65.t even 12 1 1950.2.y.g 4
156.l odd 4 1 1872.2.by.h 4
156.v odd 12 1 1872.2.by.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.i.a 4 13.d odd 4 1
78.2.i.a 4 13.f odd 12 1
234.2.l.c 4 39.f even 4 1
234.2.l.c 4 39.k even 12 1
624.2.bv.e 4 52.f even 4 1
624.2.bv.e 4 52.l even 12 1
1014.2.a.i 2 13.e even 6 1
1014.2.a.k 2 13.c even 3 1
1014.2.b.e 4 13.f odd 12 2
1014.2.e.g 4 1.a even 1 1 trivial
1014.2.e.g 4 13.c even 3 1 inner
1014.2.e.i 4 13.b even 2 1
1014.2.e.i 4 13.e even 6 1
1014.2.i.a 4 13.d odd 4 1
1014.2.i.a 4 13.f odd 12 1
1872.2.by.h 4 156.l odd 4 1
1872.2.by.h 4 156.v odd 12 1
1950.2.y.b 4 65.k even 4 1
1950.2.y.b 4 65.o even 12 1
1950.2.y.g 4 65.f even 4 1
1950.2.y.g 4 65.t even 12 1
1950.2.bc.d 4 65.g odd 4 1
1950.2.bc.d 4 65.s odd 12 1
3042.2.a.p 2 39.i odd 6 1
3042.2.a.y 2 39.h odd 6 1
3042.2.b.i 4 39.k even 12 2
8112.2.a.bj 2 52.i odd 6 1
8112.2.a.bp 2 52.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1014, [\chi])\):

\( T_{5}^{2} - 4 T_{5} + 1 \)
\( T_{7}^{4} - 2 T_{7}^{3} + 6 T_{7}^{2} + 4 T_{7} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T + T^{2} )^{2} \)
$3$ \( ( 1 + T + T^{2} )^{2} \)
$5$ \( ( 1 - 4 T + T^{2} )^{2} \)
$7$ \( 4 + 4 T + 6 T^{2} - 2 T^{3} + T^{4} \)
$11$ \( 36 + 36 T + 30 T^{2} + 6 T^{3} + T^{4} \)
$13$ \( T^{4} \)
$17$ \( 169 - 104 T + 51 T^{2} - 8 T^{3} + T^{4} \)
$19$ \( 36 + 36 T + 30 T^{2} + 6 T^{3} + T^{4} \)
$23$ \( 676 + 52 T + 30 T^{2} - 2 T^{3} + T^{4} \)
$29$ \( 121 + 22 T + 15 T^{2} - 2 T^{3} + T^{4} \)
$31$ \( ( -8 + 4 T + T^{2} )^{2} \)
$37$ \( 1369 + 518 T + 159 T^{2} + 14 T^{3} + T^{4} \)
$41$ \( 11449 - 214 T + 111 T^{2} + 2 T^{3} + T^{4} \)
$43$ \( 5476 + 148 T + 78 T^{2} - 2 T^{3} + T^{4} \)
$47$ \( ( -18 + 6 T + T^{2} )^{2} \)
$53$ \( ( -3 + 6 T + T^{2} )^{2} \)
$59$ \( ( 64 + 8 T + T^{2} )^{2} \)
$61$ \( 121 + 88 T + 75 T^{2} - 8 T^{3} + T^{4} \)
$67$ \( 21316 - 292 T + 150 T^{2} + 2 T^{3} + T^{4} \)
$71$ \( 36 + 36 T + 30 T^{2} + 6 T^{3} + T^{4} \)
$73$ \( ( 61 + 16 T + T^{2} )^{2} \)
$79$ \( ( 24 + 12 T + T^{2} )^{2} \)
$83$ \( ( -2 - 10 T + T^{2} )^{2} \)
$89$ \( 576 - 288 T + 120 T^{2} - 12 T^{3} + T^{4} \)
$97$ \( ( 36 - 6 T + T^{2} )^{2} \)
show more
show less