Properties

Label 1014.2.e.b
Level $1014$
Weight $2$
Character orbit 1014.e
Analytic conductor $8.097$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{6} ) q^{2} + ( -1 + \zeta_{6} ) q^{3} -\zeta_{6} q^{4} + 2 q^{5} -\zeta_{6} q^{6} -2 \zeta_{6} q^{7} + q^{8} -\zeta_{6} q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{6} ) q^{2} + ( -1 + \zeta_{6} ) q^{3} -\zeta_{6} q^{4} + 2 q^{5} -\zeta_{6} q^{6} -2 \zeta_{6} q^{7} + q^{8} -\zeta_{6} q^{9} + ( -2 + 2 \zeta_{6} ) q^{10} + q^{12} + 2 q^{14} + ( -2 + 2 \zeta_{6} ) q^{15} + ( -1 + \zeta_{6} ) q^{16} -2 \zeta_{6} q^{17} + q^{18} + 6 \zeta_{6} q^{19} -2 \zeta_{6} q^{20} + 2 q^{21} + ( 4 - 4 \zeta_{6} ) q^{23} + ( -1 + \zeta_{6} ) q^{24} - q^{25} + q^{27} + ( -2 + 2 \zeta_{6} ) q^{28} + ( 10 - 10 \zeta_{6} ) q^{29} -2 \zeta_{6} q^{30} + 10 q^{31} -\zeta_{6} q^{32} + 2 q^{34} -4 \zeta_{6} q^{35} + ( -1 + \zeta_{6} ) q^{36} + ( 8 - 8 \zeta_{6} ) q^{37} -6 q^{38} + 2 q^{40} + ( -10 + 10 \zeta_{6} ) q^{41} + ( -2 + 2 \zeta_{6} ) q^{42} + 4 \zeta_{6} q^{43} -2 \zeta_{6} q^{45} + 4 \zeta_{6} q^{46} + 12 q^{47} -\zeta_{6} q^{48} + ( 3 - 3 \zeta_{6} ) q^{49} + ( 1 - \zeta_{6} ) q^{50} + 2 q^{51} -6 q^{53} + ( -1 + \zeta_{6} ) q^{54} -2 \zeta_{6} q^{56} -6 q^{57} + 10 \zeta_{6} q^{58} + 4 \zeta_{6} q^{59} + 2 q^{60} -2 \zeta_{6} q^{61} + ( -10 + 10 \zeta_{6} ) q^{62} + ( -2 + 2 \zeta_{6} ) q^{63} + q^{64} + ( 2 - 2 \zeta_{6} ) q^{67} + ( -2 + 2 \zeta_{6} ) q^{68} + 4 \zeta_{6} q^{69} + 4 q^{70} -\zeta_{6} q^{72} + 4 q^{73} + 8 \zeta_{6} q^{74} + ( 1 - \zeta_{6} ) q^{75} + ( 6 - 6 \zeta_{6} ) q^{76} + ( -2 + 2 \zeta_{6} ) q^{80} + ( -1 + \zeta_{6} ) q^{81} -10 \zeta_{6} q^{82} -4 q^{83} -2 \zeta_{6} q^{84} -4 \zeta_{6} q^{85} -4 q^{86} + 10 \zeta_{6} q^{87} + ( -6 + 6 \zeta_{6} ) q^{89} + 2 q^{90} -4 q^{92} + ( -10 + 10 \zeta_{6} ) q^{93} + ( -12 + 12 \zeta_{6} ) q^{94} + 12 \zeta_{6} q^{95} + q^{96} + 12 \zeta_{6} q^{97} + 3 \zeta_{6} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{3} - q^{4} + 4 q^{5} - q^{6} - 2 q^{7} + 2 q^{8} - q^{9} + O(q^{10}) \) \( 2 q - q^{2} - q^{3} - q^{4} + 4 q^{5} - q^{6} - 2 q^{7} + 2 q^{8} - q^{9} - 2 q^{10} + 2 q^{12} + 4 q^{14} - 2 q^{15} - q^{16} - 2 q^{17} + 2 q^{18} + 6 q^{19} - 2 q^{20} + 4 q^{21} + 4 q^{23} - q^{24} - 2 q^{25} + 2 q^{27} - 2 q^{28} + 10 q^{29} - 2 q^{30} + 20 q^{31} - q^{32} + 4 q^{34} - 4 q^{35} - q^{36} + 8 q^{37} - 12 q^{38} + 4 q^{40} - 10 q^{41} - 2 q^{42} + 4 q^{43} - 2 q^{45} + 4 q^{46} + 24 q^{47} - q^{48} + 3 q^{49} + q^{50} + 4 q^{51} - 12 q^{53} - q^{54} - 2 q^{56} - 12 q^{57} + 10 q^{58} + 4 q^{59} + 4 q^{60} - 2 q^{61} - 10 q^{62} - 2 q^{63} + 2 q^{64} + 2 q^{67} - 2 q^{68} + 4 q^{69} + 8 q^{70} - q^{72} + 8 q^{73} + 8 q^{74} + q^{75} + 6 q^{76} - 2 q^{80} - q^{81} - 10 q^{82} - 8 q^{83} - 2 q^{84} - 4 q^{85} - 8 q^{86} + 10 q^{87} - 6 q^{89} + 4 q^{90} - 8 q^{92} - 10 q^{93} - 12 q^{94} + 12 q^{95} + 2 q^{96} + 12 q^{97} + 3 q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
529.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i 2.00000 −0.500000 0.866025i −1.00000 1.73205i 1.00000 −0.500000 0.866025i −1.00000 + 1.73205i
991.1 −0.500000 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i 2.00000 −0.500000 + 0.866025i −1.00000 + 1.73205i 1.00000 −0.500000 + 0.866025i −1.00000 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.2.e.b 2
13.b even 2 1 1014.2.e.e 2
13.c even 3 1 1014.2.a.g 1
13.c even 3 1 inner 1014.2.e.b 2
13.d odd 4 2 1014.2.i.c 4
13.e even 6 1 1014.2.a.b 1
13.e even 6 1 1014.2.e.e 2
13.f odd 12 2 78.2.b.a 2
13.f odd 12 2 1014.2.i.c 4
39.h odd 6 1 3042.2.a.n 1
39.i odd 6 1 3042.2.a.c 1
39.k even 12 2 234.2.b.a 2
52.i odd 6 1 8112.2.a.g 1
52.j odd 6 1 8112.2.a.j 1
52.l even 12 2 624.2.c.a 2
65.o even 12 2 1950.2.f.g 2
65.s odd 12 2 1950.2.b.c 2
65.t even 12 2 1950.2.f.d 2
91.bc even 12 2 3822.2.c.d 2
104.u even 12 2 2496.2.c.m 2
104.x odd 12 2 2496.2.c.f 2
156.v odd 12 2 1872.2.c.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.b.a 2 13.f odd 12 2
234.2.b.a 2 39.k even 12 2
624.2.c.a 2 52.l even 12 2
1014.2.a.b 1 13.e even 6 1
1014.2.a.g 1 13.c even 3 1
1014.2.e.b 2 1.a even 1 1 trivial
1014.2.e.b 2 13.c even 3 1 inner
1014.2.e.e 2 13.b even 2 1
1014.2.e.e 2 13.e even 6 1
1014.2.i.c 4 13.d odd 4 2
1014.2.i.c 4 13.f odd 12 2
1872.2.c.b 2 156.v odd 12 2
1950.2.b.c 2 65.s odd 12 2
1950.2.f.d 2 65.t even 12 2
1950.2.f.g 2 65.o even 12 2
2496.2.c.f 2 104.x odd 12 2
2496.2.c.m 2 104.u even 12 2
3042.2.a.c 1 39.i odd 6 1
3042.2.a.n 1 39.h odd 6 1
3822.2.c.d 2 91.bc even 12 2
8112.2.a.g 1 52.i odd 6 1
8112.2.a.j 1 52.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1014, [\chi])\):

\( T_{5} - 2 \)
\( T_{7}^{2} + 2 T_{7} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ \( 1 + T + T^{2} \)
$5$ \( ( -2 + T )^{2} \)
$7$ \( 4 + 2 T + T^{2} \)
$11$ \( T^{2} \)
$13$ \( T^{2} \)
$17$ \( 4 + 2 T + T^{2} \)
$19$ \( 36 - 6 T + T^{2} \)
$23$ \( 16 - 4 T + T^{2} \)
$29$ \( 100 - 10 T + T^{2} \)
$31$ \( ( -10 + T )^{2} \)
$37$ \( 64 - 8 T + T^{2} \)
$41$ \( 100 + 10 T + T^{2} \)
$43$ \( 16 - 4 T + T^{2} \)
$47$ \( ( -12 + T )^{2} \)
$53$ \( ( 6 + T )^{2} \)
$59$ \( 16 - 4 T + T^{2} \)
$61$ \( 4 + 2 T + T^{2} \)
$67$ \( 4 - 2 T + T^{2} \)
$71$ \( T^{2} \)
$73$ \( ( -4 + T )^{2} \)
$79$ \( T^{2} \)
$83$ \( ( 4 + T )^{2} \)
$89$ \( 36 + 6 T + T^{2} \)
$97$ \( 144 - 12 T + T^{2} \)
show more
show less