Properties

 Label 1014.2.b.e Level $1014$ Weight $2$ Character orbit 1014.b Analytic conductor $8.097$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$1014 = 2 \cdot 3 \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1014.b (of order $$2$$, degree $$1$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$8.09683076496$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: no (minimal twist has level 78) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{12}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \zeta_{12}^{3} q^{2} + q^{3} - q^{4} + ( -1 + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{5} + \zeta_{12}^{3} q^{6} + ( -1 + 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{7} -\zeta_{12}^{3} q^{8} + q^{9} +O(q^{10})$$ $$q + \zeta_{12}^{3} q^{2} + q^{3} - q^{4} + ( -1 + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{5} + \zeta_{12}^{3} q^{6} + ( -1 + 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{7} -\zeta_{12}^{3} q^{8} + q^{9} + ( -2 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{10} + ( -1 + 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{11} - q^{12} + ( -1 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{14} + ( -1 + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{15} + q^{16} + ( 4 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{17} + \zeta_{12}^{3} q^{18} + ( -1 + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{19} + ( 1 - 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{20} + ( -1 + 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{21} + ( 3 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{22} + ( 1 - 6 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{23} -\zeta_{12}^{3} q^{24} + ( -2 - 8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{25} + q^{27} + ( 1 - 2 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{28} + ( -1 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{29} + ( -2 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{30} + ( -2 + 4 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{31} + \zeta_{12}^{3} q^{32} + ( -1 + 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{33} + ( -1 + 2 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{34} + ( -5 - 6 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{35} - q^{36} + ( -2 + 4 \zeta_{12}^{2} - 7 \zeta_{12}^{3} ) q^{37} + ( -3 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{38} + ( 2 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{40} + ( 6 - 12 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{41} + ( -1 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{42} + ( 1 + 10 \zeta_{12} - 5 \zeta_{12}^{3} ) q^{43} + ( 1 - 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{44} + ( -1 + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{45} + ( 3 - 6 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{46} + ( 3 - 6 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{47} + q^{48} + ( 3 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{49} + ( 4 - 8 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{50} + ( 4 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{51} + ( -3 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{53} + \zeta_{12}^{3} q^{54} + ( 3 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{55} + ( 1 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{56} + ( -1 + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{57} + ( 2 - 4 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{58} -8 \zeta_{12}^{3} q^{59} + ( 1 - 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{60} + ( -4 - 6 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{61} + ( 2 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{62} + ( -1 + 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{63} - q^{64} + ( 3 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{66} + ( -7 + 14 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{67} + ( -4 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{68} + ( 1 - 6 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{69} + ( 3 - 6 \zeta_{12}^{2} - 5 \zeta_{12}^{3} ) q^{70} + ( -1 + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{71} -\zeta_{12}^{3} q^{72} + ( 1 - 2 \zeta_{12}^{2} + 8 \zeta_{12}^{3} ) q^{73} + ( 7 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{74} + ( -2 - 8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{75} + ( 1 - 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{76} + ( 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{77} + ( -6 + 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{79} + ( -1 + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{80} + q^{81} + ( -1 + 12 \zeta_{12} - 6 \zeta_{12}^{3} ) q^{82} + ( 3 - 6 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{83} + ( 1 - 2 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{84} + ( -6 + 12 \zeta_{12}^{2} + 11 \zeta_{12}^{3} ) q^{85} + ( -5 + 10 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{86} + ( -1 - 4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{87} + ( -3 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{88} + ( -2 + 4 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{89} + ( -2 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{90} + ( -1 + 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{92} + ( -2 + 4 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{93} + ( -3 + 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{94} + ( -9 - 10 \zeta_{12} + 5 \zeta_{12}^{3} ) q^{95} + \zeta_{12}^{3} q^{96} -6 \zeta_{12}^{3} q^{97} + ( 2 - 4 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{98} + ( -1 + 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 4 q^{3} - 4 q^{4} + 4 q^{9} + O(q^{10})$$ $$4 q + 4 q^{3} - 4 q^{4} + 4 q^{9} - 8 q^{10} - 4 q^{12} - 4 q^{14} + 4 q^{16} + 16 q^{17} + 12 q^{22} + 4 q^{23} - 8 q^{25} + 4 q^{27} - 4 q^{29} - 8 q^{30} - 20 q^{35} - 4 q^{36} - 12 q^{38} + 8 q^{40} - 4 q^{42} + 4 q^{43} + 4 q^{48} + 12 q^{49} + 16 q^{51} - 12 q^{53} + 12 q^{55} + 4 q^{56} - 16 q^{61} + 8 q^{62} - 4 q^{64} + 12 q^{66} - 16 q^{68} + 4 q^{69} + 28 q^{74} - 8 q^{75} - 24 q^{79} + 4 q^{81} - 4 q^{82} - 4 q^{87} - 12 q^{88} - 8 q^{90} - 4 q^{92} - 12 q^{94} - 36 q^{95} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times$$.

 $$n$$ $$677$$ $$847$$ $$\chi(n)$$ $$1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
337.1
 0.866025 − 0.500000i −0.866025 − 0.500000i −0.866025 + 0.500000i 0.866025 + 0.500000i
1.00000i 1.00000 −1.00000 3.73205i 1.00000i 2.73205i 1.00000i 1.00000 −3.73205
337.2 1.00000i 1.00000 −1.00000 0.267949i 1.00000i 0.732051i 1.00000i 1.00000 −0.267949
337.3 1.00000i 1.00000 −1.00000 0.267949i 1.00000i 0.732051i 1.00000i 1.00000 −0.267949
337.4 1.00000i 1.00000 −1.00000 3.73205i 1.00000i 2.73205i 1.00000i 1.00000 −3.73205
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.2.b.e 4
3.b odd 2 1 3042.2.b.i 4
13.b even 2 1 inner 1014.2.b.e 4
13.c even 3 1 78.2.i.a 4
13.c even 3 1 1014.2.i.a 4
13.d odd 4 1 1014.2.a.i 2
13.d odd 4 1 1014.2.a.k 2
13.e even 6 1 78.2.i.a 4
13.e even 6 1 1014.2.i.a 4
13.f odd 12 2 1014.2.e.g 4
13.f odd 12 2 1014.2.e.i 4
39.d odd 2 1 3042.2.b.i 4
39.f even 4 1 3042.2.a.p 2
39.f even 4 1 3042.2.a.y 2
39.h odd 6 1 234.2.l.c 4
39.i odd 6 1 234.2.l.c 4
52.f even 4 1 8112.2.a.bj 2
52.f even 4 1 8112.2.a.bp 2
52.i odd 6 1 624.2.bv.e 4
52.j odd 6 1 624.2.bv.e 4
65.l even 6 1 1950.2.bc.d 4
65.n even 6 1 1950.2.bc.d 4
65.q odd 12 1 1950.2.y.b 4
65.q odd 12 1 1950.2.y.g 4
65.r odd 12 1 1950.2.y.b 4
65.r odd 12 1 1950.2.y.g 4
156.p even 6 1 1872.2.by.h 4
156.r even 6 1 1872.2.by.h 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.i.a 4 13.c even 3 1
78.2.i.a 4 13.e even 6 1
234.2.l.c 4 39.h odd 6 1
234.2.l.c 4 39.i odd 6 1
624.2.bv.e 4 52.i odd 6 1
624.2.bv.e 4 52.j odd 6 1
1014.2.a.i 2 13.d odd 4 1
1014.2.a.k 2 13.d odd 4 1
1014.2.b.e 4 1.a even 1 1 trivial
1014.2.b.e 4 13.b even 2 1 inner
1014.2.e.g 4 13.f odd 12 2
1014.2.e.i 4 13.f odd 12 2
1014.2.i.a 4 13.c even 3 1
1014.2.i.a 4 13.e even 6 1
1872.2.by.h 4 156.p even 6 1
1872.2.by.h 4 156.r even 6 1
1950.2.y.b 4 65.q odd 12 1
1950.2.y.b 4 65.r odd 12 1
1950.2.y.g 4 65.q odd 12 1
1950.2.y.g 4 65.r odd 12 1
1950.2.bc.d 4 65.l even 6 1
1950.2.bc.d 4 65.n even 6 1
3042.2.a.p 2 39.f even 4 1
3042.2.a.y 2 39.f even 4 1
3042.2.b.i 4 3.b odd 2 1
3042.2.b.i 4 39.d odd 2 1
8112.2.a.bj 2 52.f even 4 1
8112.2.a.bp 2 52.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5}^{4} + 14 T_{5}^{2} + 1$$ acting on $$S_{2}^{\mathrm{new}}(1014, [\chi])$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( 1 + T^{2} )^{2}$$
$3$ $$( -1 + T )^{4}$$
$5$ $$1 + 14 T^{2} + T^{4}$$
$7$ $$4 + 8 T^{2} + T^{4}$$
$11$ $$36 + 24 T^{2} + T^{4}$$
$13$ $$T^{4}$$
$17$ $$( 13 - 8 T + T^{2} )^{2}$$
$19$ $$36 + 24 T^{2} + T^{4}$$
$23$ $$( -26 - 2 T + T^{2} )^{2}$$
$29$ $$( -11 + 2 T + T^{2} )^{2}$$
$31$ $$64 + 32 T^{2} + T^{4}$$
$37$ $$1369 + 122 T^{2} + T^{4}$$
$41$ $$11449 + 218 T^{2} + T^{4}$$
$43$ $$( -74 - 2 T + T^{2} )^{2}$$
$47$ $$324 + 72 T^{2} + T^{4}$$
$53$ $$( -3 + 6 T + T^{2} )^{2}$$
$59$ $$( 64 + T^{2} )^{2}$$
$61$ $$( -11 + 8 T + T^{2} )^{2}$$
$67$ $$21316 + 296 T^{2} + T^{4}$$
$71$ $$36 + 24 T^{2} + T^{4}$$
$73$ $$3721 + 134 T^{2} + T^{4}$$
$79$ $$( 24 + 12 T + T^{2} )^{2}$$
$83$ $$4 + 104 T^{2} + T^{4}$$
$89$ $$576 + 96 T^{2} + T^{4}$$
$97$ $$( 36 + T^{2} )^{2}$$