Properties

Label 1011.1.bf.a
Level $1011$
Weight $1$
Character orbit 1011.bf
Analytic conductor $0.505$
Analytic rank $0$
Dimension $24$
Projective image $D_{56}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1011,1,Mod(47,1011)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1011, base_ring=CyclotomicField(56)) chi = DirichletCharacter(H, H._module([28, 15])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1011.47"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1011 = 3 \cdot 337 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1011.bf (of order \(56\), degree \(24\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.504554727772\)
Analytic rank: \(0\)
Dimension: \(24\)
Coefficient field: \(\Q(\zeta_{56})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{56}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{56} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{56}^{15} q^{3} + \zeta_{56}^{8} q^{4} + ( - \zeta_{56}^{16} + \zeta_{56}^{6}) q^{7} - \zeta_{56}^{2} q^{9} - \zeta_{56}^{23} q^{12} + ( - \zeta_{56}^{19} - \zeta_{56}^{5}) q^{13} + \zeta_{56}^{16} q^{16} + \cdots + ( - \zeta_{56}^{26} + \zeta_{56}^{19}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} + 4 q^{7} - 4 q^{16} - 4 q^{19} + 4 q^{28} + 4 q^{39} + 4 q^{63} - 4 q^{64} - 24 q^{67} - 4 q^{76} + 4 q^{81} - 4 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1011\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(338\)
\(\chi(n)\) \(\zeta_{56}^{19}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
47.1
0.330279 0.943883i
0.993712 0.111964i
0.111964 + 0.993712i
−0.111964 0.993712i
−0.993712 + 0.111964i
−0.330279 + 0.943883i
0.532032 0.846724i
−0.846724 0.532032i
−0.330279 0.943883i
0.943883 + 0.330279i
−0.111964 + 0.993712i
0.532032 + 0.846724i
−0.943883 + 0.330279i
0.846724 0.532032i
0.993712 + 0.111964i
−0.993712 0.111964i
−0.846724 + 0.532032i
0.943883 0.330279i
−0.532032 0.846724i
0.111964 0.993712i
0 −0.943883 0.330279i −0.900969 + 0.433884i 0 0 −0.189606 0.119137i 0 0.781831 + 0.623490i 0
56.1 0 0.111964 + 0.993712i 0.623490 0.781831i 0 0 1.00435 + 0.351438i 0 −0.974928 + 0.222521i 0
137.1 0 0.993712 0.111964i 0.623490 0.781831i 0 0 −0.559311 + 1.59842i 0 0.974928 0.222521i 0
200.1 0 −0.993712 + 0.111964i 0.623490 0.781831i 0 0 −0.559311 + 1.59842i 0 0.974928 0.222521i 0
281.1 0 −0.111964 0.993712i 0.623490 0.781831i 0 0 1.00435 + 0.351438i 0 −0.974928 + 0.222521i 0
290.1 0 0.943883 + 0.330279i −0.900969 + 0.433884i 0 0 −0.189606 0.119137i 0 0.781831 + 0.623490i 0
344.1 0 0.846724 + 0.532032i −0.222521 0.974928i 0 0 1.87590 0.211363i 0 0.433884 + 0.900969i 0
362.1 0 −0.532032 + 0.846724i −0.222521 0.974928i 0 0 −0.0739590 0.656405i 0 −0.433884 0.900969i 0
380.1 0 0.943883 0.330279i −0.900969 0.433884i 0 0 −0.189606 + 0.119137i 0 0.781831 0.623490i 0
458.1 0 −0.330279 + 0.943883i −0.900969 + 0.433884i 0 0 −1.05737 + 1.68280i 0 −0.781831 0.623490i 0
551.1 0 −0.993712 0.111964i 0.623490 + 0.781831i 0 0 −0.559311 1.59842i 0 0.974928 + 0.222521i 0
626.1 0 0.846724 0.532032i −0.222521 + 0.974928i 0 0 1.87590 + 0.211363i 0 0.433884 0.900969i 0
635.1 0 0.330279 + 0.943883i −0.900969 0.433884i 0 0 −1.05737 1.68280i 0 −0.781831 + 0.623490i 0
647.1 0 0.532032 + 0.846724i −0.222521 + 0.974928i 0 0 −0.0739590 + 0.656405i 0 −0.433884 + 0.900969i 0
668.1 0 0.111964 0.993712i 0.623490 + 0.781831i 0 0 1.00435 0.351438i 0 −0.974928 0.222521i 0
680.1 0 −0.111964 + 0.993712i 0.623490 + 0.781831i 0 0 1.00435 0.351438i 0 −0.974928 0.222521i 0
701.1 0 −0.532032 0.846724i −0.222521 + 0.974928i 0 0 −0.0739590 + 0.656405i 0 −0.433884 + 0.900969i 0
713.1 0 −0.330279 0.943883i −0.900969 0.433884i 0 0 −1.05737 1.68280i 0 −0.781831 + 0.623490i 0
722.1 0 −0.846724 + 0.532032i −0.222521 + 0.974928i 0 0 1.87590 + 0.211363i 0 0.433884 0.900969i 0
797.1 0 0.993712 + 0.111964i 0.623490 + 0.781831i 0 0 −0.559311 1.59842i 0 0.974928 + 0.222521i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 47.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
337.p even 56 1 inner
1011.bf odd 56 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1011.1.bf.a 24
3.b odd 2 1 CM 1011.1.bf.a 24
337.p even 56 1 inner 1011.1.bf.a 24
1011.bf odd 56 1 inner 1011.1.bf.a 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1011.1.bf.a 24 1.a even 1 1 trivial
1011.1.bf.a 24 3.b odd 2 1 CM
1011.1.bf.a 24 337.p even 56 1 inner
1011.1.bf.a 24 1011.bf odd 56 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1011, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{24} \) Copy content Toggle raw display
$3$ \( T^{24} - T^{20} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{24} \) Copy content Toggle raw display
$7$ \( (T^{12} - 2 T^{11} + \cdots + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{24} \) Copy content Toggle raw display
$13$ \( (T^{12} + 2 T^{10} + \cdots + 64)^{2} \) Copy content Toggle raw display
$17$ \( T^{24} \) Copy content Toggle raw display
$19$ \( T^{24} + 4 T^{23} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{24} \) Copy content Toggle raw display
$29$ \( T^{24} \) Copy content Toggle raw display
$31$ \( T^{24} - 2 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( (T^{12} + 3 T^{10} + \cdots + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{24} \) Copy content Toggle raw display
$43$ \( T^{24} - 16 T^{20} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{24} \) Copy content Toggle raw display
$53$ \( T^{24} \) Copy content Toggle raw display
$59$ \( T^{24} \) Copy content Toggle raw display
$61$ \( T^{24} - 2 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{24} + 24 T^{23} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{24} \) Copy content Toggle raw display
$73$ \( T^{24} - 2 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{24} + 4 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{24} \) Copy content Toggle raw display
$89$ \( T^{24} \) Copy content Toggle raw display
$97$ \( T^{24} - 2 T^{22} + \cdots + 64 \) Copy content Toggle raw display
show more
show less