# Properties

 Label 1008.6.a.y Level $1008$ Weight $6$ Character orbit 1008.a Self dual yes Analytic conductor $161.667$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1008,6,Mod(1,1008)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1008, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 6, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1008.1");

S:= CuspForms(chi, 6);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1008 = 2^{4} \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$6$$ Character orbit: $$[\chi]$$ $$=$$ 1008.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$161.666890371$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 7) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 56 q^{5} + 49 q^{7}+O(q^{10})$$ q + 56 * q^5 + 49 * q^7 $$q + 56 q^{5} + 49 q^{7} + 232 q^{11} - 140 q^{13} + 1722 q^{17} + 98 q^{19} + 1824 q^{23} + 11 q^{25} - 3418 q^{29} + 7644 q^{31} + 2744 q^{35} - 10398 q^{37} + 17962 q^{41} - 10880 q^{43} + 9324 q^{47} + 2401 q^{49} - 2262 q^{53} + 12992 q^{55} - 2730 q^{59} + 25648 q^{61} - 7840 q^{65} + 48404 q^{67} - 58560 q^{71} + 68082 q^{73} + 11368 q^{77} - 31784 q^{79} - 20538 q^{83} + 96432 q^{85} + 50582 q^{89} - 6860 q^{91} + 5488 q^{95} - 58506 q^{97}+O(q^{100})$$ q + 56 * q^5 + 49 * q^7 + 232 * q^11 - 140 * q^13 + 1722 * q^17 + 98 * q^19 + 1824 * q^23 + 11 * q^25 - 3418 * q^29 + 7644 * q^31 + 2744 * q^35 - 10398 * q^37 + 17962 * q^41 - 10880 * q^43 + 9324 * q^47 + 2401 * q^49 - 2262 * q^53 + 12992 * q^55 - 2730 * q^59 + 25648 * q^61 - 7840 * q^65 + 48404 * q^67 - 58560 * q^71 + 68082 * q^73 + 11368 * q^77 - 31784 * q^79 - 20538 * q^83 + 96432 * q^85 + 50582 * q^89 - 6860 * q^91 + 5488 * q^95 - 58506 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 56.0000 0 49.0000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.6.a.y 1
3.b odd 2 1 112.6.a.g 1
4.b odd 2 1 63.6.a.e 1
12.b even 2 1 7.6.a.a 1
21.c even 2 1 784.6.a.c 1
24.f even 2 1 448.6.a.m 1
24.h odd 2 1 448.6.a.c 1
28.d even 2 1 441.6.a.k 1
60.h even 2 1 175.6.a.b 1
60.l odd 4 2 175.6.b.a 2
84.h odd 2 1 49.6.a.a 1
84.j odd 6 2 49.6.c.b 2
84.n even 6 2 49.6.c.c 2
132.d odd 2 1 847.6.a.b 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.6.a.a 1 12.b even 2 1
49.6.a.a 1 84.h odd 2 1
49.6.c.b 2 84.j odd 6 2
49.6.c.c 2 84.n even 6 2
63.6.a.e 1 4.b odd 2 1
112.6.a.g 1 3.b odd 2 1
175.6.a.b 1 60.h even 2 1
175.6.b.a 2 60.l odd 4 2
441.6.a.k 1 28.d even 2 1
448.6.a.c 1 24.h odd 2 1
448.6.a.m 1 24.f even 2 1
784.6.a.c 1 21.c even 2 1
847.6.a.b 1 132.d odd 2 1
1008.6.a.y 1 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{6}^{\mathrm{new}}(\Gamma_0(1008))$$:

 $$T_{5} - 56$$ T5 - 56 $$T_{11} - 232$$ T11 - 232

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T - 56$$
$7$ $$T - 49$$
$11$ $$T - 232$$
$13$ $$T + 140$$
$17$ $$T - 1722$$
$19$ $$T - 98$$
$23$ $$T - 1824$$
$29$ $$T + 3418$$
$31$ $$T - 7644$$
$37$ $$T + 10398$$
$41$ $$T - 17962$$
$43$ $$T + 10880$$
$47$ $$T - 9324$$
$53$ $$T + 2262$$
$59$ $$T + 2730$$
$61$ $$T - 25648$$
$67$ $$T - 48404$$
$71$ $$T + 58560$$
$73$ $$T - 68082$$
$79$ $$T + 31784$$
$83$ $$T + 20538$$
$89$ $$T - 50582$$
$97$ $$T + 58506$$