Properties

Label 1008.6.a.bp
Level $1008$
Weight $6$
Character orbit 1008.a
Self dual yes
Analytic conductor $161.667$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,6,Mod(1,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1008.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(161.666890371\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{4281}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1070 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{4281}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 5) q^{5} - 49 q^{7} + (3 \beta + 27) q^{11} + (2 \beta + 120) q^{13} + (21 \beta - 953) q^{17} + ( - 20 \beta + 200) q^{19} + ( - 35 \beta + 1465) q^{23} + ( - 10 \beta + 1181) q^{25} + (44 \beta - 2770) q^{29}+ \cdots + ( - 254 \beta - 113108) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{5} - 98 q^{7} + 54 q^{11} + 240 q^{13} - 1906 q^{17} + 400 q^{19} + 2930 q^{23} + 2362 q^{25} - 5540 q^{29} - 4904 q^{31} - 490 q^{35} + 2952 q^{37} - 6070 q^{41} - 3304 q^{43} + 16988 q^{47}+ \cdots - 226216 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
33.2147
−32.2147
0 0 0 −60.4294 0 −49.0000 0 0 0
1.2 0 0 0 70.4294 0 −49.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.6.a.bp 2
3.b odd 2 1 336.6.a.s 2
4.b odd 2 1 504.6.a.p 2
12.b even 2 1 168.6.a.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.6.a.i 2 12.b even 2 1
336.6.a.s 2 3.b odd 2 1
504.6.a.p 2 4.b odd 2 1
1008.6.a.bp 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1008))\):

\( T_{5}^{2} - 10T_{5} - 4256 \) Copy content Toggle raw display
\( T_{11}^{2} - 54T_{11} - 37800 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 10T - 4256 \) Copy content Toggle raw display
$7$ \( (T + 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 54T - 37800 \) Copy content Toggle raw display
$13$ \( T^{2} - 240T - 2724 \) Copy content Toggle raw display
$17$ \( T^{2} + 1906 T - 979712 \) Copy content Toggle raw display
$19$ \( T^{2} - 400 T - 1672400 \) Copy content Toggle raw display
$23$ \( T^{2} - 2930 T - 3098000 \) Copy content Toggle raw display
$29$ \( T^{2} + 5540 T - 615116 \) Copy content Toggle raw display
$31$ \( T^{2} + 4904 T + 2656000 \) Copy content Toggle raw display
$37$ \( T^{2} - 2952 T + 106572 \) Copy content Toggle raw display
$41$ \( T^{2} + 6070 T + 542200 \) Copy content Toggle raw display
$43$ \( T^{2} + 3304 T - 96179120 \) Copy content Toggle raw display
$47$ \( T^{2} - 16988 T - 29380160 \) Copy content Toggle raw display
$53$ \( T^{2} + 6896 T - 222521732 \) Copy content Toggle raw display
$59$ \( T^{2} - 53820 T + 269180544 \) Copy content Toggle raw display
$61$ \( T^{2} - 4148 T - 401811308 \) Copy content Toggle raw display
$67$ \( T^{2} + 33516 T - 438805536 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 1325842032 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 4506501860 \) Copy content Toggle raw display
$79$ \( T^{2} + 57740 T - 33425600 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 12181502832 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 3641083000 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 12517226668 \) Copy content Toggle raw display
show more
show less